diff --git a/.flake8 b/.flake8
new file mode 100644
index 0000000..afdc694
--- /dev/null
+++ b/.flake8
@@ -0,0 +1,6 @@
+[flake8]
+max-line-length = 89
+import-style-order = google
+inline-quotes = double
+
+ignore=T201
\ No newline at end of file
diff --git a/ecology.xlsx b/ecology.xlsx
new file mode 100644
index 0000000..496414d
Binary files /dev/null and b/ecology.xlsx differ
diff --git a/requirements.txt b/requirements.txt
index cacee3b..0b5bdbc 100644
--- a/requirements.txt
+++ b/requirements.txt
@@ -1,4 +1,5 @@
pandas==2.1.3
numpy==1.26.4
seaborn==0.12.2
-matplotlib==3.8.2
\ No newline at end of file
+matplotlib==3.8.2
+art==6.2
\ No newline at end of file
diff --git a/spandas/preprocessing.py b/spandas/preprocessing.py
index 0bf0e86..1cb3626 100644
--- a/spandas/preprocessing.py
+++ b/spandas/preprocessing.py
@@ -1,3 +1,301 @@
+# stdlib
+from dataclasses import dataclass
+
+# third party
+from art import tprint
+
+import matplotlib.pyplot as plt
+
+import pandas as pd
+
+
# write your code here
# it is preferable to use Classes in this module
# also use type annotations to make code more clear and efficient to write
+
+
+@dataclass
+class Loggs:
+ """
+ Класс отвечает за вывод логов
+ Каждое поле включает или вылючает логи а конкретном этапе
+
+ test:
+ логи на этапе тестирования датасета на "приколы" (описано в object_to_float_check)
+ cols_selection:
+ Вывод выбранных колонок для очистки от выбросов
+ was_became:
+ Отвечает за вывод логов типа "было-стало" (графики и т.д.)
+ """
+
+ test: bool = False
+ cols_selection: bool = True
+ was_became: bool = True
+
+
+def get_list_of_cols(
+ df: pd.DataFrame, n=2, exclude=["id"], method: int = 1, ignore_strings: bool = True
+):
+ """
+ Returns a list like:
+ [column, column, column ...]
+ where the column is name of selected column
+
+ Parameters
+ ----------
+ df : pd.DataFrame
+ Your main pandas dataframe
+ n : int
+ The maximum allowed number of string values per column
+ len(return[column]) <= n
+ exclude : list[str], default ["id"]
+ The columns you want to exclude from the result
+ method : int in (1, 2), default 1
+ The method of selecting the columns
+ ignore_strings : bool, default True
+ Flag for ignoring strings in columns
+ """
+ if method not in (1, 2):
+ raise ValueError("Method must be 1 or 2")
+
+ result = []
+ if method == 1:
+ for col in df.columns:
+ if col in exclude:
+ continue
+ if df[col].dtype not in ["float64", "int64"] and not ignore_strings:
+ continue
+ if df[col].dtype in ["float64", "int64"]:
+ result.append(col)
+ continue
+ str_count = sum(list(map(lambda x: not str(x).isdigit(), df[col].unique())))
+ if str_count <= n:
+ result.append(col)
+ return result
+ elif method == 2:
+ for col in df.columns:
+ if (ignore_strings or df[col].dtype in ["float64", "int64"]) and df.shape[
+ 0
+ ] / 100 < len(df[col].unique()) <= df.shape[0]:
+ result.append(col)
+ return result
+
+
+def mark_outliers(series: pd.Series, method: int = 1):
+ """
+ returns a Series of bool values. True if element is outlier
+
+ Parameters
+ ----------
+ series : pd.Series
+ Column from the pd.Dataframe or any other series with dtype in
+ ("int64", "float64")
+ method : int in (1, ) default 1
+ method of marking the outliers
+ ----------
+ Здесь не используется ignore_string т.к. если он True, то строки и так сохраняются
+ А если он False, то столбцы со строками вообще не должны выбираться, поэтому сюда
+ строковые значения не попадут
+ """
+ if series.dtype not in ["float64", "int64"]:
+ series_without_strings = series[
+ series.apply(lambda x: str(x).isdigit())
+ ].astype("float64")
+ if method == 1:
+ q1 = series_without_strings.quantile(0.25)
+ q3 = series_without_strings.quantile(0.75)
+ iqr = q3 - q1
+ lower_fence = q1 - 1.5 * iqr
+ upper_fence = q3 + 1.5 * iqr
+ return ~series.apply(
+ lambda x: (
+ lower_fence <= float(x) <= upper_fence if str(x).isdigit() else True
+ )
+ )
+ if method == 2:
+ # here will be some method
+ pass
+
+
+def remove_outliers_from_series(series: pd.Series, method: int = 1):
+ """
+ returns series without outliers
+
+ Parameters
+ ----------
+ series : pd.Series
+ Column from the pd.Dataframe or any other series with dtype in
+ ("int64", "float64")
+ method : int in (1, ) default 1
+ method of marking the outliers
+ """
+ return series[~mark_outliers(series, method=method)]
+
+
+def remove_outliers(df: pd.DataFrame, columns: list[str] = [], method: int = 1):
+ """
+ returns your df without outliers
+
+ Parameters
+ ----------
+ df : pd.DataFrame
+ Your main pandas dataframe
+ method : int in (1, ) default 1
+ method of marking the outliers
+ columns: list[str] default []
+ List of columns you want to clear of outliers
+ """
+ return df[~sum(mark_outliers(df[co], method=method) for co in columns).astype(bool)]
+
+
+def print_distr(
+ df: pd.DataFrame, cols: dict, figsize: tuple[int, int] = (30, 30), bins: int = 100
+) -> tuple[bool, str]:
+ """
+ Дим, эта функция (или целый блок, их бы в отдельный подмодуль вынести)
+ Пока что она вызывается автоматически в data_preprocessing в конце, в was-became
+ logging части
+ Параметры там, всё остальное, всё поменяешь, пока-что док не нужен т.к. вызывается
+ автоматически
+ """
+ try:
+ _, axes = plt.subplots(
+ (len(cols) // 2) + (1 if len(cols) % 2 > 0 else 0),
+ 2,
+ figsize=figsize,
+ )
+ i, j, max_i = (
+ 0,
+ 0,
+ (len(cols) // 2) + (1 if len(cols) % 2 > 0 else 0),
+ )
+ for col in cols:
+ col_of_nums = df[col].apply(
+ lambda x: (-1000 if (not str(x).isdigit() or x != x) else float(x))
+ ) # x != x only when x is NaN
+ axes[i, j].hist(col_of_nums, bins=bins)
+ axes[i, j].set_xlabel(f"Значение переменной {col}")
+ axes[i, j].set_ylabel("Частота")
+ axes[i, j].set_title(f"График распределения переменной {col}")
+ i += 1
+ if i == max_i:
+ j += 1
+ i = 0
+ plt.tight_layout()
+ plt.show()
+ except Exception as ex:
+ return False, str(ex)
+ return True, ""
+
+
+def data_preprocessing(
+ df: pd.DataFrame,
+ n: int = 2,
+ logging: Loggs = Loggs(),
+ select_method: int = 1,
+ delete_method: int = 1,
+ save_deleted: bool = True,
+ ignore_strings: bool = True,
+ exclude: list[str] = ["id"],
+):
+ """
+ Returns two values: clear dataframe and dict of deleted values
+
+ clear_df = pd.Dataframe without outliers
+
+ deleted = { # not empty only if save_deleted is True
+ method: "iqr" or smthg else
+ column: {
+ count: (count of deleted elements)
+ deleted: {
+ id: value,
+ id: value,
+ ...
+ }
+ },
+ ...
+ }
+
+
+ Parameters
+ ----------
+ df : pd.DataFrame
+ Your main pandas dataframe
+ n : int
+ The maximum allowed number of string values per column (for selection columns)
+ exclude : list[str], default ["id"]
+ The columns you want to exclude
+ select_method : int in (1, 2), default 1
+ The method of selecting the columns
+ delete_method : int in (1, ), default 1
+ The method of deleting the outliers
+ ignore_strings : bool, default True
+ Flag for ignoring strings in columns
+ save_deleted : bool, default True
+ Flag for saving and returns deleted values
+ logging : Loggs
+ object of class Loggs (it consists of flags for logging, look class Loggs)
+ """
+ df = object_to_float_check(df, logging=logging.test)
+
+ cols = get_list_of_cols(
+ df=df, n=n, exclude=exclude, method=select_method, ignore_strings=ignore_strings
+ )
+
+ if logging.cols_selection:
+ tprint("Selected cols:")
+ print()
+ print(*cols, sep=" | ")
+ tprint("__________")
+
+ clear_df = df.copy(deep=True)
+ deleted = {}
+ for col in cols:
+ marks = mark_outliers(clear_df[col], method=delete_method)
+ if save_deleted:
+ deleted[col] = {}
+ deleted[col]["count"] = sum(marks)
+ deleted[col]["deleted"] = dict(
+ zip(
+ list(clear_df[marks][col].keys()), list(clear_df[marks][col].values)
+ )
+ )
+ print(f"column: {col} => deleted: {deleted[col]['count']}")
+ clear_df = clear_df[~marks]
+ if logging.was_became:
+ tprint("WAS:")
+ print_distr(df, cols, (10, 13))
+ tprint("__________")
+ tprint("BECAME:")
+ print_distr(clear_df, cols, (10, 13))
+ return clear_df, deleted
+
+
+def object_to_float_check(df: pd.DataFrame, autofix: bool = True, logging=False):
+ """
+ Герман попросил
+ Идея в чём, в датасете могут быть столбцы типа object но при этом в них только числа
+ Эта фанка это находит и меняет тип столбца
+ Всегда вызывается автоматически из data_preprocessing
+
+ Parameters
+ ----------
+ df : pd.DataFrame
+ Your main pandas dataframe
+ autofix : bool default True
+ Flag for autofixing the problem
+ logging : bool default False
+ Flag for logging the process
+ """
+ testing = df.select_dtypes(include="object")
+ bad_columns = []
+ for col in testing.columns:
+ if sum(testing[col].apply(lambda x: not str(x).isdigit())) == 0:
+ bad_columns.append(col)
+ if bad_columns and logging:
+ print(f'Найдены "плохие столбцы" вот их список: {" | ".join(bad_columns)}')
+ if autofix:
+ for col in bad_columns:
+ df[col] = df[col].astype(float)
+
+ return df
diff --git a/test.ipynb b/test.ipynb
new file mode 100644
index 0000000..025a843
--- /dev/null
+++ b/test.ipynb
@@ -0,0 +1,1293 @@
+{
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import pandas as pd\n",
+ "from spandas.preprocessing import data_preprocessing, Loggs"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Здесь пример быстрого использования библиотеки"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
\n",
+ "
id
\n",
+ "
a4a
\n",
+ "
a6a
\n",
+ "
a2
\n",
+ "
a0
\n",
+ "
b1
\n",
+ "
b5
\n",
+ "
b7a
\n",
+ "
d1a1x
\n",
+ "
g1a
\n",
+ "
...
\n",
+ "
BMGc23i
\n",
+ "
BMGc23j
\n",
+ "
BMGc24
\n",
+ "
BMGc25
\n",
+ "
BMGc27
\n",
+ "
BMGd6
\n",
+ "
BMGd7
\n",
+ "
BMGe1
\n",
+ "
BMGe2
\n",
+ "
BMGe2u
\n",
+ "
\n",
+ " \n",
+ " \n",
+ "
\n",
+ "
0
\n",
+ "
22
\n",
+ "
Готовые Металлические Изделия
\n",
+ "
Малый
\n",
+ "
Центральный Федеральный округ
\n",
+ "
Производство
\n",
+ "
Акционерная компания с неторгуемыми акциями ил...
\n",
+ "
2007
\n",
+ "
Нет
\n",
+ "
Производство Готовых Строительных Металлически...
\n",
+ "
0
\n",
+ "
...
\n",
+ "
Да
\n",
+ "
Нет
\n",
+ "
Модернизация машин и оборудования
\n",
+ "
Да
\n",
+ "
NaN
\n",
+ "
Нет
\n",
+ "
Нет
\n",
+ "
100000
\n",
+ "
20000
\n",
+ "
Литры
\n",
+ "
\n",
+ "
\n",
+ "
1
\n",
+ "
29
\n",
+ "
Машины и оборудование
\n",
+ "
Крупный
\n",
+ "
Центральный Федеральный округ
\n",
+ "
Производство
\n",
+ "
Акционерная компания с неторгуемыми акциями ил...
\n",
+ "
2002
\n",
+ "
Нет
\n",
+ "
Производство Насосов И Компрессоров
\n",
+ "
0
\n",
+ "
...
\n",
+ "
Нет
\n",
+ "
Нет
\n",
+ "
Модернизация машин и оборудования
\n",
+ "
Нет
\n",
+ "
Не является приоритетом по сравнению с другими...
\n",
+ "
Нет
\n",
+ "
Нет
\n",
+ "
160000
\n",
+ "
18500
\n",
+ "
Литры
\n",
+ "
\n",
+ "
\n",
+ "
2
\n",
+ "
34
\n",
+ "
Другое Производство
\n",
+ "
Средний
\n",
+ "
Центральный Федеральный округ
\n",
+ "
Производство
\n",
+ "
Акционерная компания с неторгуемыми акциями ил...
\n",
+ "
2005
\n",
+ "
Нет
\n",
+ "
Производство Алюминиевых И Медных Проводов, Си...
\n",
+ "
100
\n",
+ "
...
\n",
+ "
Да
\n",
+ "
Не знаю
\n",
+ "
NaN
\n",
+ "
Нет
\n",
+ "
Нехватка финансовых ресурсов
\n",
+ "
Нет
\n",
+ "
Нет
\n",
+ "
Не знаю
\n",
+ "
Не знаю
\n",
+ "
NaN
\n",
+ "
\n",
+ "
\n",
+ "
3
\n",
+ "
50
\n",
+ "
Готовые Металлические Изделия
\n",
+ "
Малый
\n",
+ "
Центральный Федеральный округ
\n",
+ "
Другие услуги
\n",
+ "
Акционерная компания с неторгуемыми акциями ил...
\n",
+ "
2015
\n",
+ "
Нет
\n",
+ "
Строительство жилых и нежилых зданий
\n",
+ "
0
\n",
+ "
...
\n",
+ "
Нет
\n",
+ "
Нет
\n",
+ "
NaN
\n",
+ "
Нет
\n",
+ "
Операционный и/ или технический риск
\n",
+ "
Нет
\n",
+ "
Нет
\n",
+ "
Не знаю
\n",
+ "
Не знаю
\n",
+ "
NaN
\n",
+ "
\n",
+ "
\n",
+ "
4
\n",
+ "
56
\n",
+ "
Другие Услуги
\n",
+ "
Малый
\n",
+ "
Центральный Федеральный округ
\n",
+ "
Другие услуги
\n",
+ "
Акционерная компания с неторгуемыми акциями ил...
\n",
+ "
2002
\n",
+ "
Нет
\n",
+ "
Оптовая Продажа Офисной Мебели
\n",
+ "
0
\n",
+ "
...
\n",
+ "
Да
\n",
+ "
Не применимо
\n",
+ "
Модернизация машин и оборудования
\n",
+ "
Нет
\n",
+ "
Нехватка финансовых ресурсов
\n",
+ "
Нет
\n",
+ "
Нет
\n",
+ "
100000
\n",
+ "
10000
\n",
+ "
Литры
\n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
5 rows × 48 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " id a4a a6a a2 \\\n",
+ "0 22 Готовые Металлические Изделия Малый Центральный Федеральный округ \n",
+ "1 29 Машины и оборудование Крупный Центральный Федеральный округ \n",
+ "2 34 Другое Производство Средний Центральный Федеральный округ \n",
+ "3 50 Готовые Металлические Изделия Малый Центральный Федеральный округ \n",
+ "4 56 Другие Услуги Малый Центральный Федеральный округ \n",
+ "\n",
+ " a0 b1 b5 \\\n",
+ "0 Производство Акционерная компания с неторгуемыми акциями ил... 2007 \n",
+ "1 Производство Акционерная компания с неторгуемыми акциями ил... 2002 \n",
+ "2 Производство Акционерная компания с неторгуемыми акциями ил... 2005 \n",
+ "3 Другие услуги Акционерная компания с неторгуемыми акциями ил... 2015 \n",
+ "4 Другие услуги Акционерная компания с неторгуемыми акциями ил... 2002 \n",
+ "\n",
+ " b7a d1a1x g1a ... BMGc23i \\\n",
+ "0 Нет Производство Готовых Строительных Металлически... 0 ... Да \n",
+ "1 Нет Производство Насосов И Компрессоров 0 ... Нет \n",
+ "2 Нет Производство Алюминиевых И Медных Проводов, Си... 100 ... Да \n",
+ "3 Нет Строительство жилых и нежилых зданий 0 ... Нет \n",
+ "4 Нет Оптовая Продажа Офисной Мебели 0 ... Да \n",
+ "\n",
+ " BMGc23j BMGc24 BMGc25 \\\n",
+ "0 Нет Модернизация машин и оборудования Да \n",
+ "1 Нет Модернизация машин и оборудования Нет \n",
+ "2 Не знаю NaN Нет \n",
+ "3 Нет NaN Нет \n",
+ "4 Не применимо Модернизация машин и оборудования Нет \n",
+ "\n",
+ " BMGc27 BMGd6 BMGd7 BMGe1 \\\n",
+ "0 NaN Нет Нет 100000 \n",
+ "1 Не является приоритетом по сравнению с другими... Нет Нет 160000 \n",
+ "2 Нехватка финансовых ресурсов Нет Нет Не знаю \n",
+ "3 Операционный и/ или технический риск Нет Нет Не знаю \n",
+ "4 Нехватка финансовых ресурсов Нет Нет 100000 \n",
+ "\n",
+ " BMGe2 BMGe2u \n",
+ "0 20000 Литры \n",
+ "1 18500 Литры \n",
+ "2 Не знаю NaN \n",
+ "3 Не знаю NaN \n",
+ "4 10000 Литры \n",
+ "\n",
+ "[5 rows x 48 columns]"
+ ]
+ },
+ "execution_count": 3,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "url = \"ecology.xlsx\"\n",
+ "df = pd.read_excel(url)\n",
+ "\n",
+ "df.head()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "Index(['id', 'a4a', 'a6a', 'a2', 'a0', 'b1', 'b5', 'b7a', 'd1a1x', 'g1a',\n",
+ " 'BMj4c', 'j30_environment_pos', 'BMj5', 'n2a', 'n2e', 'n2b', 'n2f',\n",
+ " 'n2i', 'n2p', 'BMGa1', 'BMGa2', 'BMGa4', 'BMGb1', 'BMGb2', 'BMGc2',\n",
+ " 'BMGc5', 'BMGc7', 'BMGc8', 'BMGc16', 'BMGc18', 'BMGc23a', 'BMGc23b',\n",
+ " 'BMGc23c', 'BMGc23d', 'BMGc23e', 'BMGc23f', 'BMGc23g', 'BMGc23h',\n",
+ " 'BMGc23i', 'BMGc23j', 'BMGc24', 'BMGc25', 'BMGc27', 'BMGd6', 'BMGd7',\n",
+ " 'BMGe1', 'BMGe2', 'BMGe2u'],\n",
+ " dtype='object')"
+ ]
+ },
+ "execution_count": 15,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.columns"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "exc = ['id', 'b5', 'g1a', 'j30_environment_pos']"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " ____ _ _ _ _ \n",
+ "/ ___| ___ | | ___ ___ | |_ ___ __| | ___ ___ | | ___ _ \n",
+ "\\___ \\ / _ \\| | / _ \\ / __|| __| / _ \\ / _` | / __| / _ \\ | |/ __|(_)\n",
+ " ___) || __/| || __/| (__ | |_ | __/| (_| | | (__ | (_) || |\\__ \\ _ \n",
+ "|____/ \\___||_| \\___| \\___| \\__| \\___| \\__,_| \\___| \\___/ |_||___/(_)\n",
+ " \n",
+ "\n",
+ "\n",
+ "n2a | n2e | n2b | n2f | n2i | n2p | BMGe1 | BMGe2\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " _____ _____ _____ _____ _____ _____ _____ _____ _____ _____ \n",
+ "|_____||_____||_____||_____||_____||_____||_____||_____||_____||_____|\n",
+ "\n",
+ "column: n2a => deleted: 154\n",
+ "column: n2e => deleted: 76\n",
+ "column: n2b => deleted: 72\n",
+ "column: n2f => deleted: 25\n",
+ "column: n2i => deleted: 8\n",
+ "column: n2p => deleted: 18\n",
+ "column: BMGe1 => deleted: 29\n",
+ "column: BMGe2 => deleted: 63\n",
+ "__ __ _ ____ \n",
+ "\\ \\ / / / \\ / ___| _ \n",
+ " \\ \\ /\\ / / / _ \\ \\___ \\ (_)\n",
+ " \\ V V / / ___ \\ ___) | _ \n",
+ " \\_/\\_/ /_/ \\_\\|____/ (_)\n",
+ " \n",
+ "\n"
+ ]
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA94AAAUJCAYAAACWhtuGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeVgV9fv/8dcB2QQBlwApXDM197AMUzE1ccncyo9FhUtipZVabn1MXCpz+bqkpZmpmZqmlZqZRm6YmTtqZma5puISAeICCvP7ox/z8XhAATkcwOfjus51MTPv8557Duec+9wz75mxGIZhCAAAAAAA2IWTowMAAAAAAKAoo/AGAAAAAMCOKLwBAAAAALAjCm8AAAAAAOyIwhsAAAAAADui8AYAAAAAwI4ovAEAAAAAsCMKbwAAAAAA7IjCGwAAAAAAO6LwBgDkq/nz5+vo0aPm9Ny5c3Xy5EnHBQQAAG6qoOXuChUqqFu3bg5bf25QeBdwc+fOlcViyfLx119/5Ws8Xl5ehe5NDqBg2bRpkwYNGqSjR49qzZo16tOnj5yc8jYdrV27Vj169NB9992n4sWLq1KlSnrhhRd0+vTpPF0PkBlyN4Cihtx9+4o5OgBkz6hRo1SxYkWb+aVKlXJANACQe/3791fTpk3N77QBAwaobNmyebqOwYMHKz4+Xk899ZSqVKmiw4cPa9q0aVq5cqViY2MVEBCQp+sDMkPuBlBUFLTcffDgwTwv/O2NwruQaN26terXr+/oMADgtlWrVk1//vmnfvnlF5UpU0aVK1fO83VMnDhRjRo1skrKrVq1UmhoqKZNm6a33347z9cJ3IjcDaCoKGi5283NLc/Xb2+FazcBspQxrC0mJka9e/dW6dKl5e3treeff17//POPVdvly5erbdu2CgwMlJubmypXrqzRo0crLS3Nql16eroGDhwoHx8fVahQQatXrzaXDR48WCVKlFCVKlX03XffWT2vW7duqlChgtW8EydOyMPDQxaLxer8kMzOz4iMjJS7u7s2bNhw023u1q2bvLy8dPjwYYWFhcnT01OBgYEaNWqUDMOwajthwgQ1bNhQpUuXloeHh4KDg7V06dJM+50/f74eeughFS9eXCVLllSTJk30/fffW8V8syGE17NYLOrbt68WLFigqlWryt3dXcHBwYqJibFZ78mTJ9WjRw/5+/vLzc1NNWrU0OzZszONccSIEZmuu2nTpjZtt27dqlatWsnHx0fFixdXaGioNm/enGm/WW3bjf+L7777To0bN5anp6dKlCihtm3bav/+/VZtMv4/N1q6dKlNn02bNrWJffv27Zm+psnJyXr99ddVqVIlubi4WMV5/vz5TLfr+vXc7H93/Xszp9uZnfdhenq6Jk+erBo1asjd3V3+/v7q3bu3zWc04//Qr18/m20ICwuTxWLR448/bjU/JSVFUVFRuvfee+Xm5qagoCANGjRIKSkpVu0y3pM3evzxx60+t0ePHpXFYtGECRNs2tasWdPm/3X27Fn17NlT/v7+cnd3V506dfTpp59atcnoc+7cufL09FSDBg1UuXJl9enTRxaL5ZZDYa+PaebMmapcubLc3Nz04IMPavv27VZtmzRpYrMnvEmTJipVqpQOHDhgNX/OnDlq1qyZ/Pz85Obmpvvvv1/Tp0+/aSxAXiB3k7vJ3eRucvf/5CR3F8ZzvDniXcT07dtXvr6+GjFihA4ePKjp06fr2LFj2rBhg/klOHfuXHl5eWnAgAHy8vLSunXrNHz4cCUlJWn8+PFmX2PHjtWECRP03HPPKTg4WP3791dqaqq+/fZb1a1bV++8845mzZqlTp066ddff810OF2G4cOH68qVK7eMPyoqSp988okWL16caSK6UVpamlq1aqWHH35Y48aN0+rVqxUVFaVr165p1KhRZrspU6boiSeeUHh4uFJTU7Vo0SI99dRTWrlypdq2bWu2GzlypEaMGKGGDRtq1KhRcnV11datW7Vu3Tq1bNnSbFe3bl29/vrrVrHMmzdP0dHRNjFu3LhRixcv1quvvio3Nzd9+OGHatWqlbZt26aaNWtKks6cOaOHH37Y/GK966679N1336lnz55KSkrK9EtckqZPn24myKFDh9osX7dunVq3bq3g4GBFRUXJycnJLDI2bdqkhx56yOY5jRs3VmRkpCTpwIEDevfdd62Wf/bZZ4qIiFBYWJjGjh2rS5cuafr06WrUqJF2795t88MttwYPHpzp/IEDB2rGjBnq2bOnHnnkEbm4uOirr77S119/na1+77nnHo0ZM8Zq3qpVq/T5559bzcvJdmb3fdi7d2/NnTtX3bt316uvvqojR45o2rRp2r17tzZv3iwXFxezrbu7uxYsWKDx48eb8//66y+tXbtW7u7uVrGmp6friSee0I8//qjIyEhVr15d+/bt06RJk/T7779r2bJl2Xptcuvy5ctq2rSp/vjjD/Xt21cVK1bUkiVL1K1bNyUkJOi1117L8rl//PGHPv744xytb+HChbpw4YJ69+4ti8WicePGqVOnTjp8+LDVa3ij5ORkJScnq0yZMlbzp0+frho1auiJJ55QsWLF9M033+jll19Wenq6+vTpk6PYgNwgd5O7r0futkXuznuFPXcXSgYKtDlz5hiSjO3bt2erXXBwsJGammrOHzdunCHJWL58uTnv0qVLNs/v3bu3Ubx4cePKlSuGYRjGlStXDD8/P+Ppp5822+zZs8dwdnY26tSpY6SkpBiGYRjnz583SpQoYbz22mtmu4iICKN8+fLm9C+//GI4OTkZrVu3NiQZR44cMZeVL1/eiIiIMAzDMD766CNDkjF16tRbvi4Z65FkvPLKK+a89PR0o23btoarq6tx7ty5LLc5NTXVqFmzptGsWTNz3qFDhwwnJyejY8eORlpamlX79PR0q5jbtm1rE0+fPn2MGz9SkgxJxo4dO8x5x44dM9zd3Y2OHTua83r27GmULVvWOH/+vNXzu3btavj4+NjE/+abbxqSrNrXqFHDCA0NtYq5SpUqRlhYmFX8ly5dMipWrGg89thjNttw9913G927dzen169fb0gy1q9fbxiGYVy4cMHw9fU1evXqZfW8uLg4w8fHx2p+RESE4enpabOOJUuWWPVpGIYRGhpqFfuqVasMSUarVq1sXtOyZcsaYWFhVvOioqIMSVb/88yEhoYaNWrUsJk/fvx4q/dmTrczO+/DTZs2GZKMBQsWWPW5evVqm/nly5c3HnvsMaNMmTLG0qVLzfmjR482GjZsaPMe/OyzzwwnJydj06ZNVn3PmDHDkGRs3rzZnCfJ6NOnj81r0LZtW6vP7ZEjRwxJxvjx423a3vhemzx5siHJmD9/vjkvNTXVCAkJMby8vIykpCSrPufMmWO269Kli1GzZk0jKCjI/C7ISsbzS5cubcTHx5vzly9fbkgyvvnmm5s+f/To0YYkY+3atVbzM/tODAsLMypVqnTT/oCskLuzRu4md2cgd5O7byd3X/89VFgw1LyIiYyMtNpr9NJLL6lYsWJatWqVOc/Dw8P8+8KFCzp//rwaN26sS5cu6bfffpMk7du3T2fPnlWnTp3MtrVr15a7u7vq1q0rV1dXSVLp0qXVpEkTrV27NsuYhg4dqgceeEBPPfVUlm2WL1+ul19+WQMHDsx0KM3NXN8+Y69zamqqfvjhh0y3+Z9//lFiYqIaN26sXbt2mfOXLVum9PR0DR8+3GaYy41DpnIiJCREwcHB5nS5cuXUvn17rVmzRmlpaTIMQ19++aXatWsnwzB0/vx58xEWFqbExESrOCWZRyBu3Ht6vdjYWB06dEjPPPOM/v77b7PPixcvqnnz5oqJiVF6errVc1JTU296zkx0dLQSEhL09NNPW8Xp7OysBg0aaP369TbPub7d+fPndeHChZu+XoZhaOjQoercubMaNGhgs/zChQsqXbr0Tfu4XbnZzlu9D5csWSIfHx899thjVn0GBwfLy8vLpk9XV1eFh4drzpw55ryMPe43WrJkiapXr65q1apZ9d2sWTNJsun7ypUrNv+Xq1evZvpaXLp0yabtjUNbV61apYCAAD399NPmPBcXF7366qtKTk7Wxo0bM+17586dWrJkicaMGZOjC6T85z//UcmSJc3pxo0bS5IOHz6c5XNiYmI0cuRIdenSxXxdMlz//ZCYmKjz588rNDRUhw8fVmJiYrbjAnKL3E3uzkDuzj1y9//cCbm7MGKoeRFTpUoVq2kvLy+VLVvW6vyX/fv3a9iwYVq3bp2SkpKs2mf8yDxx4oQk6e67777lOu+++279+OOPmS778ccf9c0332jt2rU6fvx4pm1iY2P1xRdfKC0tTfHx8bdc3/WcnJxUqVIlq3n33XefJFlt88qVK/X2228rNjbW6ryZ65Pyn3/+KScnJ91///05iuFWbvyfZMR46dIlnTt3Tk5OTkpISNDMmTM1c+bMTPs4e/as1fT58+fl4uKi4sWLZ7neQ4cOSZIiIiKybJOYmGj1JZiYmJjpuV039pnVl5+3t7fV9MWLF3XXXXdl2V9mFixYoP379+uLL77QwoULbZaHhITo66+/1tKlS83hapcuXcrROm4lp9uZnffhoUOHlJiYKD8/v0z7vPF/LEndu3dXcHCwTp8+rd9//12nT59Wly5dbC4MdujQIR04cCDL1/rGvj/55BN98sknNu3Kly9vMy8qKkpRUVE28/39/c2/jx07pipVqtgk4OrVq5vLMzNkyBA1btxYjz/+eI5+tJcrV85qOuM9fOP5dhl+++03dezYUTVr1tSsWbNslm/evFlRUVHasmWLzXspMTFRPj4+2Y4NyA1yN7k7A7k798jd/3Mn5O7CiML7DpOQkKDQ0FB5e3tr1KhRqly5stzd3bVr1y4NHjzY3IuanXO6rnf58uVM5w8ePFhhYWFq1qyZ5s6dm2mbPXv2qHXr1mrevLkGDhyoZ599NlvniGXXpk2b9MQTT6hJkyb68MMPVbZsWbm4uGjOnDmZJof8lvGaP/vss1km2tq1a1tNHz16VOXKlbvp3vyMfsePH6+6detm2ub6RB0fH6/U1NSb3mYpo8/PPvss03bFill/pbi7u+ubb76xmrdp0yarc6eul5qaqrfeeks9e/Y0k9+NZs6cqaeffvqmR2FuV063M7t9+vn5acGCBZkuzyzx1qlTR3Xq1NG8efN04MABde7c2eaHQ0bftWrV0sSJEzPtOygoyGq6ffv2Nsly2LBhiouLs3luZGSkzWvdq1evTNeTE99//71++OEHbdmyJcfPdXZ2znS+ccMFcaR/C5GWLVvKx8dHq1atUokSJayW//nnn2revLmqVaumiRMnKigoSK6urlq1apUmTZpkc2QJcARyN7n7euTuzJG7/6eo5+7CisK7iDl06JAeffRRczo5OVmnT59WmzZtJEkbNmzQ33//ra+++kpNmjQx2x05csSqn4z78p06deqW6zx58qQCAwNt5i9btkxbtmyxGWp1o1q1amnJkiXy8PDQkiVLFBkZqb179950KFaG9PR0HT582OqL/vfff5ck8wIaX375pdzd3bVmzRqroVjXDwOSpMqVKys9PV2//vprlskuNzL2wF7v999/V/Hixc0v7BIlSigtLU0tWrS4ZX/Xrl3Tnj171KpVq5u2y7jNg7e3d7b6/fXXXyX9b0/nzfr08/PLVp/Ozs427RISErJs/+GHH+rs2bMaMWJElm0qVKig+fPnq1atWurRo4c6dOigefPm6bPPPrtlPNmV0+3MzvuwcuXK+uGHH/TII49YDZ+8lR49emjSpEmKi4uz+SF0fbx79uxR8+bNszW08p577rHZrsmTJ2eavKtUqWLT1tPT02q6fPny2rt3r9LT0632nGcMf71xb7xhGBoyZIg6duyohx9++Jbx5tbff/+tli1bKiUlRWvXrs30fqPffPONUlJStGLFCqu98ZkNSQTshdxN7s5A7s49cvf/FPXcXVhxjncRM3PmTKvzPaZPn65r166pdevWkv63t+n6vUupqan68MMPrfp58MEH5eHhYXW1yb179+rKlSuKjY1VamqqpH/3tMbExFj9EJD+vVLkm2++qWeeeeaWifCBBx6Qp6ennJycNGvWLB09ejTLvaqZmTZtmvm3YRiaNm2aXFxc1Lx5c3ObLRaL1bktR48etblaZIcOHeTk5KRRo0bZHOXKbG9cdt34A+bEiRNavny5WrZsKWdnZzk7O6tz58768ssv9csvv9g8/9y5c1bT33//vRITE9W+ffubrjc4OFiVK1fWhAkTlJycfMt+Fy1aJFdXVzVq1CjLPsPCwuTt7a1333030/OKbuwzJy5cuKB33nlH/fv3v+me+2vXrik8PFw1atTQpEmT1KJFC5uhYrcrN9t5q/dhly5dlJaWptGjR9s899q1a1n+qHnmmWd08uRJ+fn5ZXk0qUuXLjp58mSmVxi9fPmyLl68mOnz8kqbNm0UFxenxYsXm/OuXbumqVOnysvLS6GhoVbtFy1apL1799pcoTYvXbx4UW3atNHJkye1atWqTIeNSpl/JyYmJtr8uAfsidxN7s5A7s49cnfOFObcXVhxxLuISU1NVfPmzdWlSxcdPHhQH374oRo1aqQnnnhCktSwYUOVLFlSERERevXVV2WxWPTZZ5/ZJCdPT0+99tpreu+991SsWDE98MADmjFjhpycnHT69Gm1bdtWTzzxhGbNmqWUlBS98cYbVs//66+/zOGaOVGzZk0NHjxY7733nrp27WozTOtG7u7uWr16tSIiItSgQQN99913+vbbb/Xmm2+ae6Tbtm2riRMnqlWrVnrmmWd09uxZffDBB7r33nu1d+9es697771X//3vfzV69Gg1btxYnTp1kpubm7Zv367AwMBcf9HUrFlTYWFhVrckkf69/UmG9957T+vXr1eDBg3Uq1cv3X///YqPj9euXbv0ww8/mOfPLV68WG+88Ybc3Nx0+fJlzZ8/3+wjMTFRaWlpWrZsmflDZNasWWrdurVq1Kih7t276+6779bJkye1fv16eXt765tvvtGhQ4cUFRWlzz//XEOGDMl0OFQGb29vTZ8+Xc8995weeOABde3aVXfddZeOHz+ub7/9Vo888ohVEsuJXbt2qUyZMho0aNBN240cOVL79u3T7t27b3r7iduR0+3MzvswNDRUvXv31pgxYxQbG6uWLVvKxcVFhw4d0pIlSzRlyhQ9+eSTNrGULFlSp0+fNn+EZua5557TF198oRdffFHr16/XI488orS0NP3222/64osvtGbNGtWvX98ur5X075C2jz76SN26ddPOnTtVoUIFLV26VJs3b9bkyZNthoh9//336tWrl6pWrWq3mMLDw7Vt2zb16NFDBw4csLr/p5eXlzp06CBJatmypVxdXdWuXTv17t1bycnJ+vjjj+Xn56fTp0/bLT7geuRucje5+/aRu3OmMOfuQitfr6GOHMvpLUk2btxoREZGGiVLljS8vLyM8PBw4++//7Zqu3nzZuPhhx82PDw8jMDAQGPQoEHGmjVrbG4TcfXqVaNfv35GiRIljHLlyhmrV682PD09jYiICGPw4MGGl5eXUalSJWPFihVW/WfcouH625RcH2NWtyTJcOXKFaNatWrGgw8+aFy7di3Lbc645cWff/5ptGzZ0ihevLjh7+9vREVF2dxS5JNPPjGqVKliuLm5GdWqVTPmzJlj3sbiRrNnzzbq1atnuLm5GSVLljRCQ0ON6Ohoq5hzckuSPn36GPPnzzfXX69ePavXOcOZM2eMPn36GEFBQYaLi4sREBBgNG/e3Jg5c6bVuvX/b3OS1eP620oYhmHs3r3b6NSpk1G6dGnDzc3NKF++vNGlSxfztgyff/65UbNmTWPKlClWty4xDNtbklw/PywszPDx8THc3d2NypUrG926dbO69UpOb0kiyZg0aZJV2xv/R5s2bTKcnZ2Njz76KNN2eXVLktxsZ3beh4ZhGDNnzjSCg4MNDw8Po0SJEkatWrWMQYMGGadOnTLbZPUeu9ny1NRUY+zYsUaNGjXM925wcLAxcuRIIzEx0WyX8Z680e3cksQw/n3/du/e3ShTpozh6upq1KpVy+rWI9f36eHhYZw8edJmm7J7S5LMYpJkREVFWfWX3c/IihUrjNq1axvu7u5GhQoVjLFjxxqzZ8/O9D0BZAe5m9xN7iZ334jcnbe5uzDeTozCu4jIbpK/XRnJuyDIKjkUJFl9UeZW+fLlbb4Qr7d+/XqbLybYV2F4HwIomMjdBRO5u+grDO9DFD2c4w0AAAAAgB1ReAOFSMeOHc2rdmbG399fHTt2zMeIAADAzZC7AUhcXA0oVCZNmnTT5dWrV79lGwAAkH/I3QAkyWIYt3GvBQAAAAAAcFMMNQcAAAAAwI4Yap4N6enpOnXqlEqUKJHlvfgAAMgrhmHowoULCgwMlJMT+8hzgpwNAMgvOcnXFN7ZcOrUKQUFBTk6DADAHebEiRO65557HB1GoULOBgDkt+zkawrvbChRooSkf19Qb29vB0cDACjqkpKSFBQUZOYfZB85GwCQX3KSrym8syFjqJq3tzdJHACQbxgqnXPkbABAfstOvubEMQAAAAAA7IjCGwAAAAAAO6LwBgAAAADAjii8AQAAAACwIwpvAAAAAADsiMIbAAAAAAA7ovAGAAAAAMCOKLwBAAAAALAjCm8AAAAAAOyomKMDuBNVGPKt1fTR99o6KBIAAHAz1+ds8jUAILc44g0AAAAAgB1ReAMAAAAAYEcU3gAAAAAA2BGFNwAAAAAAdkThDQAAAACAHVF4AwAAAABgRxTeAAAAAADYEYU3AAAAAAB2ROENAAAAAIAdObTwjomJUbt27RQYGCiLxaJly5aZy65evarBgwerVq1a8vT0VGBgoJ5//nmdOnXKqo/4+HiFh4fL29tbvr6+6tmzp5KTk63a7N27V40bN5a7u7uCgoI0bty4/Ng8AAAAAAAcW3hfvHhRderU0QcffGCz7NKlS9q1a5feeust7dq1S1999ZUOHjyoJ554wqpdeHi49u/fr+joaK1cuVIxMTGKjIw0lyclJally5YqX768du7cqfHjx2vEiBGaOXOm3bcPAAAAAIBijlx569at1bp160yX+fj4KDo62mretGnT9NBDD+n48eMqV66cDhw4oNWrV2v79u2qX7++JGnq1Klq06aNJkyYoMDAQC1YsECpqamaPXu2XF1dVaNGDcXGxmrixIlWBfr1UlJSlJKSYk4nJSXl0RYDAAAAAO40heoc78TERFksFvn6+kqStmzZIl9fX7PolqQWLVrIyclJW7duNds0adJErq6uZpuwsDAdPHhQ//zzT6brGTNmjHx8fMxHUFCQ/TYKAAAAAFCkFZrC+8qVKxo8eLCefvppeXt7S5Li4uLk5+dn1a5YsWIqVaqU4uLizDb+/v5WbTKmM9rcaOjQoUpMTDQfJ06cyOvNAQAAAADcIQpF4X316lV16dJFhmFo+vTpdl+fm5ubvL29rR4AANzJuCAqAAC5V+AL74yi+9ixY4qOjrYqggMCAnT27Fmr9teuXVN8fLwCAgLMNmfOnLFqkzGd0QYAANwcF0QFACD3HHpxtVvJKLoPHTqk9evXq3Tp0lbLQ0JClJCQoJ07dyo4OFiStG7dOqWnp6tBgwZmm//+97+6evWqXFxcJEnR0dGqWrWqSpYsmb8bBABAIVVQL4gKAEBh4NAj3snJyYqNjVVsbKwk6ciRI4qNjdXx48d19epVPfnkk9qxY4cWLFigtLQ0xcXFKS4uTqmpqZKk6tWrq1WrVurVq5e2bdumzZs3q2/fvuratasCAwMlSc8884xcXV3Vs2dP7d+/X4sXL9aUKVM0YMAAR202AABFXn5dEDUlJUVJSUlWDwAAChqHFt47duxQvXr1VK9ePUnSgAEDVK9ePQ0fPlwnT57UihUr9Ndff6lu3boqW7as+fjpp5/MPhYsWKBq1aqpefPmatOmjRo1amQ1JM3Hx0fff/+9jhw5ouDgYL3++usaPnw4e84BALCT/LwgKnciAQAUBg4dat60aVMZhpHl8psty1CqVCktXLjwpm1q166tTZs25Tg+AACQM/l9QdShQ4dajWJLSkqi+AYAFDgF+hxvAABQeFx/QdR169blywVR3dzc5ObmlpebAQBAnivwVzUHAAAF3/UXRP3hhx9uekHUDJldEDUmJkZXr14123BBVABAUUDhDQAAbokLogIAkHsMNQcAALe0Y8cOPfroo+Z0RjEcERGhESNGaMWKFZKkunXrWj1v/fr1atq0qaR/L4jat29fNW/eXE5OTurcubPef/99s23GBVH79Omj4OBglSlThguiAgCKBApvAABwS1wQFQCA3GOoOQAAAAAAdkThDQAAAACAHVF4AwAAAABgRxTeAAAAAADYEYU3AAAAAAB2ROENAAAAAIAdUXgDAAAAAGBHFN4AAAAAANgRhTcAAAAAAHZE4Q0AAAAAgB1ReAMAAAAAYEcU3gAAAAAA2BGFNwAAAAAAdkThDQAAAACAHVF4AwAAAABgRxTeAAAAAADYEYU3AAAAAAB2ROENAAAAAIAdUXgDAAAAAGBHFN4AAAAAANiRQwvvmJgYtWvXToGBgbJYLFq2bJnVcsMwNHz4cJUtW1YeHh5q0aKFDh06ZNUmPj5e4eHh8vb2lq+vr3r27Knk5GSrNnv37lXjxo3l7u6uoKAgjRs3zt6bBgAAAACAJAcX3hcvXlSdOnX0wQcfZLp83Lhxev/99zVjxgxt3bpVnp6eCgsL05UrV8w24eHh2r9/v6Kjo7Vy5UrFxMQoMjLSXJ6UlKSWLVuqfPny2rlzp8aPH68RI0Zo5syZdt8+AAAAAACKOXLlrVu3VuvWrTNdZhiGJk+erGHDhql9+/aSpHnz5snf31/Lli1T165ddeDAAa1evVrbt29X/fr1JUlTp05VmzZtNGHCBAUGBmrBggVKTU3V7Nmz5erqqho1aig2NlYTJ060KtCvl5KSopSUFHM6KSkpj7ccAAAAAHCnKLDneB85ckRxcXFq0aKFOc/Hx0cNGjTQli1bJElbtmyRr6+vWXRLUosWLeTk5KStW7eabZo0aSJXV1ezTVhYmA4ePKh//vkn03WPGTNGPj4+5iMoKMgemwgAAAAAuAMU2MI7Li5OkuTv728139/f31wWFxcnPz8/q+XFihVTqVKlrNpk1sf167jR0KFDlZiYaD5OnDhx+xsEAEAhxnVZAADIvQJbeDuSm5ubvL29rR4AANzJuC4LAAC559BzvG8mICBAknTmzBmVLVvWnH/mzBnVrVvXbHP27Fmr5127dk3x8fHm8wMCAnTmzBmrNhnTGW0AAMDNFdTrsgAAUBgU2CPeFStWVEBAgNauXWvOS0pK0tatWxUSEiJJCgkJUUJCgnbu3Gm2WbdundLT09WgQQOzTUxMjK5evWq2iY6OVtWqVVWyZMl82hoAAIouR16XJSUlRUlJSVYPAAAKGocW3snJyYqNjVVsbKykfxN3bGysjh8/LovFon79+untt9/WihUrtG/fPj3//PMKDAxUhw4dJEnVq1dXq1at1KtXL23btk2bN29W37591bVrVwUGBkqSnnnmGbm6uqpnz57av3+/Fi9erClTpmjAgAEO2moAAIoWR16XhQuiAgAKA4cONd+xY4ceffRRczqjGI6IiNDcuXM1aNAgXbx4UZGRkUpISFCjRo20evVqubu7m89ZsGCB+vbtq+bNm8vJyUmdO3fW+++/by738fHR999/rz59+ig4OFhlypTR8OHDGbIGAEARMHToUKud6UlJSRTfAIACx6GFd9OmTWUYRpbLLRaLRo0apVGjRmXZplSpUlq4cOFN11O7dm1t2rQp13ECAICsOfK6LG5ubnJzc8uT7QAAwF4K7DneAACgcOC6LAAA3ByFNwAAuCWuywIAQO4V2NuJAQCAgoPrsgAAkHsU3gAA4Ja4LgsAALnHUHMAAAAAAOyIwhsAAAAAADui8AYAAAAAwI4ovAEAAAAAsCMKbwAAAAAA7IjCGwAAAAAAO6LwBgAAAADAjii8AQAAAACwIwpvAAAAAADsiMIbAAAAAAA7ovAGAAAAAMCOKLwBAAAAALAjCm8AAAAAAOyIwhsAAAAAADui8AYAAAAAwI4ovAEAAAAAsCMKbwAAAAAA7IjCGwAAAAAAO6LwBgAAAADAjii8AQAAAACwIwpvAAAAAADsqEAX3mlpaXrrrbdUsWJFeXh4qHLlyho9erQMwzDbGIah4cOHq2zZsvLw8FCLFi106NAhq37i4+MVHh4ub29v+fr6qmfPnkpOTs7vzQEAAAAA3IEKdOE9duxYTZ8+XdOmTdOBAwc0duxYjRs3TlOnTjXbjBs3Tu+//75mzJihrVu3ytPTU2FhYbpy5YrZJjw8XPv371d0dLRWrlypmJgYRUZGOmKTAAAAAAB3mGK5feLFixe1ceNGHT9+XKmpqVbLXn311dsOTJJ++ukntW/fXm3btpUkVahQQZ9//rm2bdsm6d+j3ZMnT9awYcPUvn17SdK8efPk7++vZcuWqWvXrjpw4IBWr16t7du3q379+pKkqVOnqk2bNpowYYICAwNt1puSkqKUlBRzOikpKU+2BwAAR8iPnA0AALKWq8J79+7datOmjS5duqSLFy+qVKlSOn/+vIoXLy4/P788S+INGzbUzJkz9fvvv+u+++7Tnj179OOPP2rixImSpCNHjiguLk4tWrQwn+Pj46MGDRpoy5Yt6tq1q7Zs2SJfX1+z6JakFi1ayMnJSVu3blXHjh1t1jtmzBiNHDkyT7YBAABHyq+cnZaWphEjRmj+/PmKi4tTYGCgunXrpmHDhslisUj6d4d5VFSUPv74YyUkJOiRRx7R9OnTVaVKFbOf+Ph4vfLKK/rmm2/k5OSkzp07a8qUKfLy8sqTOAEAcIRcDTXv37+/2rVrp3/++UceHh76+eefdezYMQUHB2vChAl5FtyQIUPUtWtXVatWTS4uLqpXr5769eun8PBwSVJcXJwkyd/f3+p5/v7+5rK4uDj5+flZLS9WrJhKlSpltrnR0KFDlZiYaD5OnDiRZ9sEAEB+yq+czelhAABkLVdHvGNjY/XRRx/JyclJzs7OSklJUaVKlTRu3DhFRESoU6dOeRLcF198oQULFmjhwoWqUaOGYmNj1a9fPwUGBioiIiJP1pEZNzc3ubm52a1/AADyS37lbEedHgYAQGGQqyPeLi4ucnL696l+fn46fvy4pH+Heefl0eGBAweaR71r1aql5557Tv3799eYMWMkSQEBAZKkM2fOWD3vzJkz5rKAgACdPXvWavm1a9cUHx9vtgEAoKjKr5zdsGFDrV27Vr///rskmaeHtW7dWtKtTw+TdMvTwzKTkpKipKQkqwcAAAVNro5416tXT9u3b1eVKlUUGhqq4cOH6/z58/rss89Us2bNPAvu0qVL5o+FDM7OzkpPT5ckVaxYUQEBAVq7dq3q1q0r6d8LoW3dulUvvfSSJCkkJEQJCQnauXOngoODJUnr1q1Tenq6GjRokGexAgBQEOVXzh4yZIiSkpJUrVo1OTs7Ky0tTe+8847dTw/juiwAgMIgV0e83333XZUtW1aS9M4776hkyZJ66aWXdO7cOc2cOTPPgmvXrp3eeecdffvttzp69Ki+/vprTZw40bwgmsViUb9+/fT2229rxYoV2rdvn55//nkFBgaqQ4cOkqTq1aurVatW6tWrl7Zt26bNmzerb9++6tq1K0PWAABFXn7l7OtPD9u1a5c+/fRTTZgwQZ9++mmerSMzXJcFAFAY5OqI9/VDwPz8/LR69eo8C+h6U6dO1VtvvaWXX35ZZ8+eVWBgoHr37q3hw4ebbQYNGqSLFy8qMjJSCQkJatSokVavXi13d3ezzYIFC9S3b181b97cvELq+++/b5eYAQAoSPIrZ19/epgk1apVS8eOHdOYMWMUERFhdXpYxo6AjOmMUWu5OT2M67IAAAqDXB3xbtasmRISEvI4FFslSpTQ5MmTdezYMV2+fFl//vmn3n77bbm6upptLBaLRo0apbi4OF25ckU//PCD7rvvPqt+SpUqpYULF+rChQtKTEzU7NmzuS0JAOCOkF85Oyenh2XIOD0sJCREkvXpYRk4PQwAUBTk6oj3hg0blJqamtexAACAPJZfOTvj9LBy5cqpRo0a2r17tyZOnKgePXpIsj49rEqVKqpYsaLeeuutLE8PmzFjhq5evcrpYQCAIiFXhbf0bwIFAAAFX37kbE4PAwAgaxbDMIycPsnJyUkNGza0GvJ9vXXr1t12YAVJUlKSfHx8lJiYKG9v79vur8KQb62mj77X9rb7BAAUHXmZd8jZt+f6nE2+BgBcLyc5J9dHvENCQjhPGgCAQoCcDQCAY+Wq8LZYLBo4cKDNvTYBAEDBQs4GAMDxcnVV81yMTgcAAA5AzgYAwPFyVXhHRUUxZA0AgEKAnA0AgOPlaqh5VFSUJOncuXM6ePCgJKlq1aq666678i4yAABw28jZAAA4Xq6OeF+6dEk9evRQYGCgmjRpoiZNmigwMFA9e/bUpUuX8jpGAACQS+RsAAAcL1eFd//+/bVx40atWLFCCQkJSkhI0PLly7Vx40a9/vrreR0jAADIJXI2AACOl6uh5l9++aWWLl2qpk2bmvPatGkjDw8PdenSRdOnT8+r+AAAwG0gZwMA4Hi5Hmru7+9vM9/Pz49hawAAFCDkbAAAHC9XhXdISIiioqJ05coVc97ly5c1cuRIhYSE5FlwAADg9pCzAQBwvFwNNZ88ebJatWqle+65R3Xq1JEk7dmzR+7u7lqzZk2eBggAAHKPnA0AgOPlqvCuVauWDh06pAULFui3336TJD399NMKDw+Xh4dHngYIAAByj5wNAIDj5arwjomJUcOGDdWrV6+8jgcAAOQhcjYAAI6Xq3O8H330UcXHx+d1LAAAII+RswEAcLxcFd6GYeR1HAAAwA7I2QAAOF6uhppL0pYtW1SyZMlMlzVp0iTXAQEAgLxFzgYAwLFyXXh37Ngx0/kWi0VpaWm5DggAAOQtcjYAAI6Vq6HmkhQXF6f09HSbBwkcAICChZwNAIBj5arwtlgseR0HAACwA3I2AACOx8XVAAAowsjZAAA4Xq7O8U5PT8/rOAAAgB2QswEAcLxcHfEeM2aMZs+ebTN/9uzZGjt27G0HBQAA8gY5GwAAx8tV4f3RRx+pWrVqNvNr1KihGTNm3HZQ1zt58qSeffZZlS5dWh4eHqpVq5Z27NhhLjcMQ8OHD1fZsmXl4eGhFi1a6NChQ1Z9xMfHKzw8XN7e3vL19VXPnj2VnJycp3ECAFAQ5WfOBgAAmctV4R0XF6eyZcvazL/rrrt0+vTp2w4qwz///KNHHnlELi4u+u677/Trr7/q//7v/6zuRTpu3Di9//77mjFjhrZu3SpPT0+FhYXpypUrZpvw8HDt379f0dHRWrlypWJiYhQZGZlncQIAUFDlV84GAABZy1XhHRQUpM2bN9vM37x5swIDA287qAxjx45VUFCQ5syZo4ceekgVK1ZUy5YtVblyZUn/Hu2ePHmyhg0bpvbt26t27dqaN2+eTp06pWXLlkmSDhw4oNWrV2vWrFlq0KCBGjVqpKlTp2rRokU6depUputNSUlRUlKS1QMAgMIov3K2xCg1AACykqvCu1evXurXr5/mzJmjY8eO6dixY5o9e7b69++vXr165VlwK1asUP369fXUU0/Jz89P9erV08cff2wuP3LkiOLi4tSiRQtzno+Pjxo0aKAtW7ZIkrZs2SJfX1/Vr1/fbNOiRQs5OTlp69atma53zJgx8vHxMR9BQUF5tk0AAOSn/MrZjFIDACBrubqq+cCBA/X333/r5ZdfVmpqqiTJ3d1dgwcP1tChQ/MsuMOHD2v69OkaMGCA3nzzTW3fvl2vvvqqXF1dFRERobi4OEmSv7+/1fP8/f3NZXFxcfLz87NaXqxYMZUqVcpsc6OhQ4dqwIAB5nRSUhLFNwCgUMqvnH39KLUMFStWNP++cZSaJM2bN0/+/v5atmyZunbtao5S2759u7nDfOrUqWrTpo0mTJiQ50foAQDIL7k64m2xWDR27FidO3dOP//8s/bs2aP4+HgNHz48T4NLT0/XAw88oHfffVf16tVTZGSkevXqZfeLwbi5ucnb29vqAQBAYZRfOdtRo9Q4PQwAUBjkqvDO4OXlpQcffFA1a9aUm5tbXsVkKlu2rO6//36redWrV9fx48clSQEBAZKkM2fOWLU5c+aMuSwgIEBnz561Wn7t2jXFx8ebbQAAKOrsnbMzRqlVqVJFa9as0UsvvaRXX31Vn376qSTZbZQap4cBAAqDXA01l6QdO3boiy++0PHjx82haxm++uqr2w5Mkh555BEdPHjQat7vv/+u8uXLS/p3CFtAQIDWrl2runXrSvp3WPjWrVv10ksvSZJCQkKUkJCgnTt3Kjg4WJK0bt06paenq0GDBnkSJwAABVl+5Oz09HTVr19f7777riSpXr16+uWXXzRjxgxFRETkyToyw+lhAIDCIFdHvBctWqSGDRvqwIED+vrrr3X16lXt379f69atk4+PT54F179/f/38889699139ccff2jhwoWaOXOm+vTpI+nf4XP9+vXT22+/rRUrVmjfvn16/vnnFRgYqA4dOkj69wh5q1at1KtXL23btk2bN29W37591bVrV84VAwAUefmVsx01So3TwwAAhUGuCu93331XkyZN0jfffCNXV1dNmTJFv/32m7p06aJy5crlWXAPPvigvv76a33++eeqWbOmRo8ercmTJys8PNxsM2jQIL3yyiuKjIzUgw8+qOTkZK1evVru7u5mmwULFqhatWpq3ry52rRpo0aNGmnmzJl5FicAAAVVfuXsnIxSy5AxSi0kJESS9Si1DIxSAwAUBRbDMIycPsnT01P79+9XhQoVVLp0aW3YsEG1atXSgQMH1KxZM50+fdoesTpMUlKSfHx8lJiYmCd70isM+dZq+uh7bW+7TwBA0ZGXeSe/cvb27dvVsGFDjRw5Ul26dNG2bdvUq1cvzZw509xhPnbsWL333nv69NNPVbFiRb311lvau3evfv31V3OHeevWrXXmzBnNmDFDV69eVffu3VW/fn0tXLgwW3HYM2eTrwEA18tJzsnVEe+SJUvqwoULkqS7775bv/zyiyQpISFBly5dyk2XAADADvIrZzNKDQCArOXq4mpNmjRRdHS0atWqpaeeekqvvfaa1q1bp+joaDVv3jyvYwQAALmUnzn78ccf1+OPP57lcovFolGjRmnUqFFZtilVqlS2j24DAFBY5KrwnjZtmq5cuSJJ+u9//ysXFxf99NNP6ty5s4YNG5anAQIAgNwjZwMA4Hg5KryTkpL+fVKxYvLy8jKnX375Zb388st5Hx0AAMgVcjYAAAVHjgpvX19fWSyWW7ZLS0vLdUAAAOD2kbMBACg4clR4r1+/3mraMAy1adNGs2bN0t13352ngQEAgNwjZwMAUHDkqPAODQ21mefs7KyHH35YlSpVyrOgAADA7SFnAwBQcOTqdmIAAAAAACB7bqvwPnHihC5duqTSpUvnVTwAAMAOyNkAADhOjoaav//+++bf58+f1+eff65mzZrJx8cnzwMDAAC5R84GAKDgyFHhPWnSJEmSxWJRmTJl1K5dO+4BCgBAAUTOBgCg4MhR4X3kyBF7xQEAAPIQORsAgIKDi6sBAAAAAGBHFN4AAAAAANgRhTcAAAAAAHZE4Q0AAAAAgB1ReAMAAAAAYEcU3gAAAAAA2BGFNwAAAAAAdkThDQAAAACAHVF4AwAAAABgRxTeAAAAAADYEYU3AAAAAAB2ROENAAAAAIAdUXgDAAAAAGBHharwfu+992SxWNSvXz9z3pUrV9SnTx+VLl1aXl5e6ty5s86cOWP1vOPHj6tt27YqXry4/Pz8NHDgQF27di2fowcAAAAA3IkKTeG9fft2ffTRR6pdu7bV/P79++ubb77RkiVLtHHjRp06dUqdOnUyl6elpalt27ZKTU3VTz/9pE8//VRz587V8OHD83sTAAC4Y7CzHACA/ykUhXdycrLCw8P18ccfq2TJkub8xMREffLJJ5o4caKaNWum4OBgzZkzRz/99JN+/vlnSdL333+vX3/9VfPnz1fdunXVunVrjR49Wh988IFSU1MzXV9KSoqSkpKsHgAAIHvYWQ4AgLVCUXj36dNHbdu2VYsWLazm79y5U1evXrWaX61aNZUrV05btmyRJG3ZskW1atWSv7+/2SYsLExJSUnav39/pusbM2aMfHx8zEdQUJAdtgoAgKInv3eWAwBQGBT4wnvRokXatWuXxowZY7MsLi5Orq6u8vX1tZrv7++vuLg4s831RXfG8oxlmRk6dKgSExPNx4kTJ/JgSwAAKPrye2c5o9QAAIVBMUcHcDMnTpzQa6+9pujoaLm7u+fbet3c3OTm5pZv6wMAoCjI2Fm+fft2m2X22lk+ZswYjRw5Mg+iBwDAfgr0Ee+dO3fq7NmzeuCBB1SsWDEVK1ZMGzdu1Pvvv69ixYrJ399fqampSkhIsHremTNnFBAQIEkKCAiwuXBLxnRGGwAAcHsydpYvWLAgX3eWM0oNAFAYFOjCu3nz5tq3b59iY2PNR/369RUeHm7+7eLiorVr15rPOXjwoI4fP66QkBBJUkhIiPbt26ezZ8+abaKjo+Xt7a37778/37cJAICiyFE7y93c3OTt7W31AACgoCnQQ81LlCihmjVrWs3z9PRU6dKlzfk9e/bUgAEDVKpUKXl7e+uVV15RSEiIHn74YUlSy5Ytdf/99+u5557TuHHjFBcXp2HDhqlPnz4MJwcAII9k7Cy/Xvfu3VWtWjUNHjxYQUFB5s7yzp07S8p8Z/k777yjs2fPys/PTxI7ywEARUOBLryzY9KkSXJyclLnzp2VkpKisLAwffjhh+ZyZ2dnrVy5Ui+99JJCQkLk6empiIgIjRo1yoFRAwBQtLCzHACArBW6wnvDhg1W0+7u7vrggw/0wQcfZPmc8uXLa9WqVXaODAAA3Aw7ywEAd6pCV3gDAIDCgZ3lAAD8q0BfXA0AAAAAgMKOwhsAAAAAADui8AYAAAAAwI4ovAEAAAAAsCMKbwAAAAAA7IjCGwAAAAAAO6LwBgAAAADAjii8AQAAAACwIwpvAAAAAADsiMIbAAAAAAA7ovAGAAAAAMCOKLwBAAAAALAjCm8AAAAAAOyIwhsAAAAAADui8AYAAAAAwI4ovAEAAAAAsCMKbwAAAAAA7IjCGwAAAAAAO6LwBgAAAADAjii8AQAAAACwIwpvAAAAAADsiMIbAAAAAAA7ovAGAAAAAMCOKLwBAAAAALCjAl14jxkzRg8++KBKlCghPz8/dejQQQcPHrRqc+XKFfXp00elS5eWl5eXOnfurDNnzli1OX78uNq2bavixYvLz89PAwcO1LVr1/JzUwAAKNLI2QAAZK1AF94bN25Unz599PPPPys6OlpXr15Vy5YtdfHiRbNN//799c0332jJkiXauHGjTp06pU6dOpnL09LS1LZtW6Wmpuqnn37Sp59+qrlz52r48OGO2CQAAIokcjYAAFmzGIZhODqI7Dp37pz8/Py0ceNGNWnSRImJibrrrru0cOFCPfnkk5Kk3377TdWrV9eWLVv08MMP67vvvtPjjz+uU6dOyd/fX5I0Y8YMDR48WOfOnZOrq6vNelJSUpSSkmJOJyUlKSgoSImJifL29r7t7agw5Fur6aPvtb3tPgEARUdSUpJ8fHzyLO84Qn7l7Bvl9Wt3fc4mXwMArpeTnFOgj3jfKDExUZJUqlQpSdLOnTt19epVtWjRwmxTrVo1lStXTlu2bJEkbdmyRbVq1TITuCSFhYUpKSlJ+/fvz3Q9Y8aMkY+Pj/kICgqy1yYBAFAk5VfOTklJUVJSktUDAICCptAU3unp6erXr58eeeQR1axZU5IUFxcnV1dX+fr6WrX19/dXXFyc2eb6BJ6xPGNZZoYOHarExETzceLEiTzeGgAAiq78zNnsLAcAFAbFHB1AdvXp00e//PKLfvzxR7uvy83NTW5ubnZfDwAARVF+5uyhQ4dqwIAB5nTG6WEAABQkheKId9++fbVy5UqtX79e99xzjzk/ICBAqampSkhIsGp/5swZBQQEmG1uvGJqxnRGGwAAkDfyO2e7ubnJ29vb6gEAQEFToAtvwzDUt29fff3111q3bp0qVqxotTw4OFguLi5au3atOe/gwYM6fvy4QkJCJEkhISHat2+fzp49a7aJjo6Wt7e37r///vzZEAAAijhyNgAAWSvQQ8379OmjhQsXavny5SpRooR5fpePj488PDzk4+Ojnj17asCAASpVqpS8vb31yiuvKCQkRA8//LAkqWXLlrr//vv13HPPady4cYqLi9OwYcPUp08fhpMDAJBHyNkAAGStQBfe06dPlyQ1bdrUav6cOXPUrVs3SdKkSZPk5OSkzp07KyUlRWFhYfrwww/Nts7Ozlq5cqVeeuklhYSEyNPTUxERERo1alR+bQYAAEUeORsAgKwVqvt4O4o97wkqcV9QAIC1onAfb0fhPt4AgPxSZO/jDQAAAABAYUPhDQAAAACAHVF4AwAAAABgRxTeAAAAAADYEYU3AAAAAAB2ROENAAAAAIAdUXgDAAAAAGBHFN4AAAAAANgRhTcAAAAAAHZE4Q0AAAAAgB1ReAMAAAAAYEcU3gAAAAAA2BGFNwAAAAAAdkThDQAAAACAHVF4AwAAAABgRxTeAAAAAADYEYU3AAAAAAB2ROENAAAAAIAdUXgDAAAAAGBHFN4AAAAAANgRhTcAAAAAAHZE4Q0AAAAAgB0Vc3QAkCoM+dZq+uh7bR0UCQAAAAAgr3HEGwAAAAAAO7qjCu8PPvhAFSpUkLu7uxo0aKBt27Y5OiQAAHAD8jUAoKi5YwrvxYsXa8CAAYqKitKuXbtUp04dhYWF6ezZs44ODQAA/H/kawBAUXTHFN4TJ05Ur1691L17d91///2aMWOGihcvrtmzZzs6NAAA8P+RrwEARdEdcXG11NRU7dy5U0OHDjXnOTk5qUWLFtqyZYtN+5SUFKWkpJjTiYmJkqSkpKQ8iSc95dJNl5frv8T8+5eRYVbLakatsZq+cTkAoPDLyDeGYTg4kvyV03wt5W/Ovj4/S7fOwdfnbPI5ABQ9OcnXd0Thff78eaWlpcnf399qvr+/v3777Teb9mPGjNHIkSNt5gcFBdktxqz4TL695QCAwuvChQvy8fFxdBj5Jqf5WnJszs5JDiafA0DRlZ18fUcU3jk1dOhQDRgwwJxOT09XfHy8SpcuLYvFclt9JyUlKSgoSCdOnJC3t/fthlqk8VplH69VzvB6ZR+vVfbl5WtlGIYuXLigwMDAPIqu6CJn3x62sWhgG4sGtrHwyUm+viMK7zJlysjZ2Vlnzpyxmn/mzBkFBATYtHdzc5Obm5vVPF9f3zyNydvbu0i82fIDr1X28VrlDK9X9vFaZV9evVZ30pHuDDnN1xI5O6+wjUUD21g0sI2FS3bz9R1xcTVXV1cFBwdr7dq15rz09HStXbtWISEhDowMAABkIF8DAIqqO+KItyQNGDBAERERql+/vh566CFNnjxZFy9eVPfu3R0dGgAA+P/I1wCAouiOKbz/85//6Ny5cxo+fLji4uJUt25drV692uYCLvbm5uamqKgom2FxsMVrlX28VjnD65V9vFbZx2uVNwpKvpbujP8p21g0sI1FA9tYtFmMO+1eJQAAAAAA5KM74hxvAAAAAAAchcIbAAAAAAA7ovAGAAAAAMCOKLwBAAAAALAjCm8AAAAAAOyIwjufffDBB6pQoYLc3d3VoEEDbdu2zdEhFTgxMTFq166dAgMDZbFYtGzZMkeHVGCNGTNGDz74oEqUKCE/Pz916NBBBw8edHRYBdL06dNVu3ZteXt7y9vbWyEhIfruu+8cHVah8N5778lisahfv36ODqXAGTFihCwWi9WjWrVqjg4LOZDTvLxkyRJVq1ZN7u7uqlWrllatWpVPkeZeTrZx7ty5Nu9pd3f3fIw2Z3Lzm2HDhg164IEH5ObmpnvvvVdz5861e5y3K6fbuWHDBpv/o8ViUVxcXP4EnEO5/T1TmD6PudnGwvZ5zM1vrcL0P7xdFN75aPHixRowYICioqK0a9cu1alTR2FhYTp79qyjQytQLl68qDp16uiDDz5wdCgF3saNG9WnTx/9/PPPio6O1tWrV9WyZUtdvHjR0aEVOPfcc4/ee+897dy5Uzt27FCzZs3Uvn177d+/39GhFWjbt2/XRx99pNq1azs6lAKrRo0aOn36tPn48ccfHR0Ssimnefmnn37S008/rZ49e2r37t3q0KGDOnTooF9++SWfI8++3Pz28Pb2tnpPHzt2LB8jzpmc/mY4cuSI2rZtq0cffVSxsbHq16+fXnjhBa1Zs8bOkd6e3P42OnjwoNX/0s/Pz04R3p7c/J4pbJ/H3P5mK0yfx5z+1ips/8PbZiDfPPTQQ0afPn3M6bS0NCMwMNAYM2aMA6Mq2CQZX3/9taPDKDTOnj1rSDI2btzo6FAKhZIlSxqzZs1ydBgF1oULF4wqVaoY0dHRRmhoqPHaa685OqQCJyoqyqhTp46jw0Au5TQvd+nSxWjbtq3VvAYNGhi9e/e2a5y3I6fbOGfOHMPHxyefostb2fnNMGjQIKNGjRpW8/7zn/8YYWFhdowsb2VnO9evX29IMv755598iSmvZef3TGH8PF4vO9tYmD+PGW72W6uw/w9ziiPe+SQ1NVU7d+5UixYtzHlOTk5q0aKFtmzZ4sDIUJQkJiZKkkqVKuXgSAq2tLQ0LVq0SBcvXlRISIijwymw+vTpo7Zt21p9b8HWoUOHFBgYqEqVKik8PFzHjx93dEjIhtzk5S1btth8HsLCwgpsHs/tb4/k5GSVL19eQUFBRW5kUGH7H96uunXrqmzZsnrssce0efNmR4eTbdn5PVPY/5fZ/c1WWD+P2fmtVdj/hzlF4Z1Pzp8/r7S0NPn7+1vN9/f3L7Dn26BwSU9PV79+/fTII4+oZs2ajg6nQNq3b5+8vLzk5uamF198UV9//bXuv/9+R4dVIC1atEi7du3SmDFjHB1KgdagQQPNnTtXq1ev1vTp03XkyBE1btxYFy5ccHRouIXc5OW4uLhClcdzs41Vq1bV7NmztXz5cs2fP1/p6elq2LCh/vrrr/wI2e6y+h8mJSXp8uXLDooq75UtW1YzZszQl19+qS+//FJBQUFq2rSpdu3a5ejQbim7v2cK2+fxetndxsL4eczJb63C/D/MjWKODgBA3ujTp49++eUXzi+9iapVqyo2NlaJiYlaunSpIiIitHHjRorvG5w4cUKvvfaaoqOjC/RFXAqC1q1bm3/Xrl1bDRo0UPny5fXFF1+oZ8+eDowMyJ2QkBCro1MNGzZU9erV9dFHH2n06NEOjAw5UbVqVVWtWtWcbtiwof78809NmjRJn332mQMju7U74fdMdrexMH4e+a2VNQrvfFKmTBk5OzvrzJkzVvPPnDmjgIAAB0WFoqJv375auXKlYmJidM899zg6nALL1dVV9957ryQpODhY27dv15QpU/TRRx85OLKCZefOnTp79qweeOABc15aWppiYmI0bdo0paSkyNnZ2YERFly+vr6677779Mcffzg6FNxCbvJyQEBAocrjefHbw8XFRfXq1Ssy7+ms/ofe3t7y8PBwUFT546GHHirwxWxOfs8Uts9jhtv5zVYYPo85+a1VWP+HucVQ83zi6uqq4OBgrV271pyXnp6utWvXco4pcs0wDPXt21dff/211q1bp4oVKzo6pEIlPT1dKSkpjg6jwGnevLn27dun2NhY81G/fn2Fh4crNjaWovsmkpOT9eeff6ps2bKODgW3kJu8HBISYtVekqKjowtsHs+L3x5paWnat29fkXlPF7b/YV6KjY0tsP/H3PyeKWz/y7z4zVYYP483+61V2P6Ht83BF3e7oyxatMhwc3Mz5s6da/z6669GZGSk4evra8TFxTk6tALlwoULxu7du43du3cbkoyJEycau3fvNo4dO+bo0Aqcl156yfDx8TE2bNhgnD592nxcunTJ0aEVOEOGDDE2btxoHDlyxNi7d68xZMgQw2KxGN9//72jQysUuKp55l5//XVjw4YNxpEjR4zNmzcbLVq0MMqUKWOcPXvW0aEhG26Vl5977jljyJAhZvvNmzcbxYoVMyZMmGAcOHDAiIqKMlxcXIx9+/Y5ahNuKafbOHLkSGPNmjXGn3/+aezcudPo2rWr4e7ubuzfv99Rm3BTt/rNMGTIEOO5554z2x8+fNgoXry4MXDgQOPAgQPGBx98YDg7OxurV6921CZkS063c9KkScayZcuMQ4cOGfv27TNee+01w8nJyfjhhx8ctQk3lZ3fM4X985ibbSxsn8db/dYq7P/D20Xhnc+mTp1qlCtXznB1dTUeeugh4+eff3Z0SAVOxi0wbnxEREQ4OrQCJ7PXSZIxZ84cR4dW4PTo0cMoX7684erqatx1111G8+bNKbpzgMI7c//5z3+MsmXLGq6ursbdd99t/Oc//zH++OMPR4eFHLhZXg4NDbXJPV988YVx3333Ga6urkaNGjWMb7/9Np8jzrmcbGO/fv3Mtv7+/kabNm2MXbt2OSDq7LnVb4aIiAgjNDTU5jl169Y1XF1djUqVKhWKnJnT7Rw7dqxRuXJlw93d3ShVqpTRtGlTY926dY4JPhuy83umsH8ec7ONhe3zeKvfWoX9f3i7LIZhGPY9pg4AAAAAwJ2Lc7wBAAAAALAjCm8AAAAAAOyIwhsAAAAAADui8AYAAAAAwI4ovAEAAAAAsCMKbwAAAAAA7IjCGwAAAAAAO6LwBoA8tG/fPrVu3Vqpqanau3evHnroIUeHhByKiYlRu3btFBgYKIvFomXLluXo+VeuXFG3bt1Uq1YtFStWTB06dMi03YYNG/TAAw/Izc1N9957r+bOnXvbsQMAcsZReXvEiBGqW7duvqzrTna7OV2SvvjiC9WtW1fFixdX+fLlNX78+FzFQuGNIu+FF15QlSpVVLx4cZUsWVIhISGaP3++o8NCEVWzZk25uLjI09NTDz30kAYMGHDbfe7Zs0dPP/20goKC5OHhoerVq2vKlCl5EC0yc/HiRdWpU0cffPBBrp6flpYmDw8Pvfrqq2rRokWmbY4cOaK2bdvq0UcfVWxsrPr166cXXnhBa9asuZ3QgSKBvI385Ki8/cYbb2jt2rW3vS7c3O3m9O+++07h4eF68cUX9csvv+jDDz/UpEmTNG3atBz3VSxXEQCFSOnSpTVr1izde++9unTpkrZs2aIXX3xRycnJevHFFx0dHooYi8WiFStW6OzZs/Ly8lLx4sVvu8+dO3fKz89P8+fPV1BQkH766SdFRkbK2dlZffv2zYOocb3WrVurdevWWS5PSUnRf//7X33++edKSEhQzZo1NXbsWDVt2lSS5OnpqenTp0uSNm/erISEBJs+ZsyYoYoVK+r//u//JEnVq1fXjz/+qEmTJiksLCzPtwkoTMjbyE+OytteXl7y8vK67XXh5m43p3/22Wfq0KGD+d1TqVIlDR06VGPHjlWfPn1ksViyHQtHvFHkjR07VqGhobr77rtVpUoVPf/882rZsqViYmLMNhUqVNDkyZOtntetWzerIaKrV69Wo0aN5Ovrq9KlS+vxxx/Xn3/+aS6fO3eufH19rfpo2rSp+vXrZ06npKTojTfe0N133y1PT081aNBAGzZsuGkfR48elcViUWxsrKR/h6daLBarH/PPPfeczfCZEydOqEuXLvL19VWpUqXUvn17HT16NMvXKaPfzB456TfjdRs5cqTuuusueXt768UXX1RqaqrZJj09XWPGjFHFihXl4eGhOnXqaOnSpTax1K5d2yrG5cuXy2KxmF+GOenrxuLn+u268TXOcOP74vjx42rfvr28vLzk7e2tLl266MyZM+by64eN+fn5qVixYrr33nszXf+NscyaNUsdO3ZU8eLFVaVKFa1YscJc3qNHD02ZMkWhoaGqVKmSnn32WXXv3l1fffWV2ebPP/9U+/bt5e/vLy8vLz344IP64Ycfslwncq9v377asmWLFi1apL179+qpp55Sq1atdOjQoWz3sWXLFpuj4WFhYdqyZUtehwsUOuRt8vadkLcZal4w3Cqnp6SkyN3d3eo5Hh4e+uuvv3Ts2LEcrYvCG3cUwzC0c+dO/fTTT2rVqlWOnnvx4kUNGDBAO3bs0Nq1a+Xk5KSOHTsqPT09233kxQ/2G+3cudPqy16Srl69qrCwMJUoUUKbNm3S5s2b5eXlpVatWlkl0swcPHhQp0+fNh+56Xft2rU6cOCANmzYoM8//1xfffWVRo4caS4fM2aM5s2bpxkzZmj//v3q37+/nn32WW3cuNFqffHx8fr555/N6Y8++kh33323VZvs9nW70tPT1b59e8XHx2vjxo2Kjo7W4cOH9Z///CfL50ybNs0qwd/MyJEj1aVLF+3du1dt2rRReHi44uPjs2yfmJioUqVKmdPJyclq06aN1q5dq927d6tVq1Zq166djh8/nv2NxC0dP35cc+bM0ZIlS9S4cWNVrlxZb7zxhho1aqQ5c+Zku5+4uDj5+/tbzfP391dSUpIuX76c12EDhRZ5m7ydWwU9b8PxspPTw8LC9NVXX2nt2rVKT0/X77//bo5Wu/HzdksGcAf4+uuvDU9PT6NYsWKGxWIxhg8fbrW8fPnyxqRJk6zmRUREGO3bt8+yz3PnzhmSjH379hmGYRiLFi0y3NzcrNqEhoYar732mmEYhnHs2DHD2dnZOHnypFWb5s2bG0OHDjUMwzDmzJlj+Pj4WC0/cuSIIcnYvXu3YRiGsX79ekOS8c8//xiGYRhNmjQxRo8ebUgyvv76a8MwDOOzzz4zqlataqSnp5v9pKSkGB4eHsaaNWsy3Z4b+82Q034jIiKMUqVKGRcvXjTbTJ8+3fDy8jLS0tKMK1euGMWLFzd++uknq/X07NnTePrpp61ieeutt4wePXqYr5+fn5/x0ksvGaGhoYZhGDnq62bbdeNrnOH698X3339vODs7G8ePHzeX79+/35BkbNu2zTAMw4iKijLq1KljGIZh/P3330bJkiXN/82N678xlmHDhpnTycnJhiTju+++y7T95s2bjWLFimX5v8xQo0YNY+rUqTdtg5u7/n1iGIaxcuVKQ5Lh6elp9ShWrJjRpUsXm+dn9T1SpUoV491337Wa9+233xqSjEuXLuX1ZgCFDnmbvF3U8/b160b+yE1OT09PNwYNGmS4u7sbzs7ORsmSJY0RI0YYkoyff/45R+vnHG/cER577DHFxsYqOTlZW7du1eDBg1W2bFmrc8UGDx6sYcOGmdMpKSlq27atOX3o0CENHz5cW7du1fnz58095sePH1fNmjVVo0YNpaSk6Msvv1Tnzp1tYti3b5/S0tJ03333Wc1PSUlR6dKlzenExESrc37+/Z7I3LJly3T48GG9/vrreuutt8z5e/bs0R9//KESJUpYtb9y5YrVMLucym6/derUsTpHKiQkRMnJyTpx4oSSk5N16dIlPfbYY1Z9pKamql69elbzIiIi9NBDD2nSpEmaNWuWnn32WaWlpZnL//jjj2z3dc8999xy+xo2bCgnp/8NBLp06ZL594EDBxQUFKSgoCBz3v333y9fX18dOHBADz74oFVfo0aN0qOPPqpGjRrdcr2SrIbneXp6ytvbW2fPnrVp98svv6h9+/aKiopSy5YtzfnJyckaMWKEvv32W50+fVrXrl3T5cuXOeKdx5KTk+Xs7KydO3fK2dnZallOztULCAiwOapy5swZeXt7y8PDI09iBQoz8va/yNs3V5jzNhwvOzndYrFo7NixevfddxUXF6e77rrLvChepUqVcrQ+Cm/cETw9PXXvvfdKkurWratz585pwoQJVgl84MCB6tatmzk9ePBgq2TRrl07lS9fXh9//LECAwOVnp6umjVrmkO1atasqcGDB+upp56Su7u7nJycdPnyZfP8nez+YC9RooR27dplTp88edLq3KgMV69e1aBBg/TOO+/Y/FBPTk5WcHCwFixYYPO8u+666xavVtbyot/k5GRJ0rfffmsz/MzNzc1qunTp0goLC9O8efM0e/Zs/fDDD5oxY0au+tq0aZPVD48qVarYxLZ48WJVr17dnM7sdc+OQ4cOadasWYqNjdVff/2Vree4uLhYTVssFpvhkL/++quaN2+uyMhIqx+b0r9XR42OjtaECRN07733ysPDQ08++eQthygiZ+rVq6e0tDSdPXtWjRs3znU/ISEhWrVqldW86OhohYSE3G6IQJFA3v4f8va/ilrehuPlJKc7Ozub79nPP/9cISEhOf5sUnjjjmQYhs2XY5kyZcwkL/2bSDMurPH333/r4MGD+vjjj80P5o8//mjT73vvvac333zT3OMZHh5uLsvuh9vJyckqjmLFMv+YTp8+XV5eXnruuedslj3wwANavHix/Pz85O3tneW6ciq7/e7Zs0eXL182f1j8/PPP8vLyUlBQkEqVKiU3NzcdP35coaGht1xn79691a5dO9WtW1fVqlWzWnb//fdnu6+KFSvaXADnRkFBQVm+9tWrV9eJEyd04sQJc+/5r7/+qoSEBN1///1W/QwePFgvvPCC7r333mwn8FvZv3+/mjVrpoiICL3zzjs2yzdv3qxu3bqpY8eOkv79cXOzi/Iga8nJyfrjjz/M6SNHjig2NlalSpXSfffdp/DwcD3//PP6v//7P9WrV0/nzp3T2rVrVbt2bfNo26+//qrU1FTFx8frwoUL5gWAMn7Qv/jii5o2bZoGDRqkHj16aN26dfriiy/07bff5vfmAoUCeTt3yNsFN28jf9xuTj9//ryWLl2qpk2b6sqVK+Y54bm5JgGFN4q0pKQkvfDCC4qMjFTVqlV1+fJlbdq0SePHj8/RnseSJUuqdOnSmjlzpsqWLavjx49ryJAhmbb19vY2k9v1e7Sz+4M9u8aNG6dvvvkm09sYhIeHa/z48Wrfvr1GjRqle+65R8eOHdNXX32lQYMGZWv4Vmay229qaqp69uypYcOG6ejRo4qKilLfvn3l5OSkEiVK6I033lD//v2Vnp6uRo0aKTExUZs3b5a3t7ciIiKs1hkaGqqRI0dmeiQwp33djhYtWqhWrVoKDw/X5MmTde3aNb388ssKDQ1V/fr1zXZ//PGHjh8/bvUlf7t++eUXNWvWTGFhYRowYIDi4uIk/bv3NWNva5UqVfTVV1+pXbt2slgseuutt3J0ASH8z44dO/Too4+a0xn3dI2IiNDcuXM1Z84cvf3223r99dd18uRJlSlTRg8//LAef/xx8zlt2rSxutppxhDKjCGoFStW1Lfffqv+/ftrypQpuueeezRr1ixuJYY7HnmbvJ1XCnreRv7Ii5z+6aef6o033pBhGAoJCdGGDRv00EMP5TgWCm8Uae7u7ipdurRef/11HT16VM7OzqpVq5Y++eQTPfXUU9nux8nJSYsWLdKrr76qmjVrqmrVqnr//fdzPKQpOx/u7Hr00UetvkiuV7x4ccXExGjw4MHq1KmTLly4oLvvvlvNmze/rT3p2e23efPmqlKlipo0aaKUlBQ9/fTTGjFihLl89OjRuuuuuzRmzBgdPnxYvr6+euCBB/Tmm29mut7+/ftnGVNO+8oti8Wi5cuX65VXXlGTJk3k5OSkVq1aaerUqVbtLl68qJEjR+bplUuXLl2qc+fOaf78+Zo/f745v3z58uZR7YkTJ6pHjx5q2LChypQpo8GDByspKSnPYriTNG3a9KbnaLq4uGjkyJFWV/y9UXZGGzRt2lS7d+/OTYhAkUXeJm/nlYKet5E/bjenlylTJs9u9WkxbhYJAORQt27dlJCQYHUPUQAAUDCRt4H8wX28AQAAAACwIwpvAAAAAADsiKHmAAAAAADYEUe8AQAAAACwIwpvAAAAAADsiMIbAAAAAAA7ovAGAAAAAMCOKLwBAAAAALAjCm8AAAAAAOyIwhsAAAAAADui8AYAAAAAwI4ovAEAAAAAsCMKbwAAAAAA7IjCGwAAAAAAO6LwBgAAAADAjii8AQAAAACwIwpvAAAAAADsiMIbAJCv5s+fr6NHj5rTc+fO1cmTJx0XEAAAsEG+zlsU3gXc3LlzZbFYsnz89ddf+RqPl5eXunXrlq/rBFC0bNq0SYMGDdLRo0e1Zs0a9enTR05OeZuO1q5dqx49eui+++5T8eLFValSJb3wwgs6ffp0nq4HyEC+BlDUkK/zVjFHB4DsGTVqlCpWrGgzv1SpUg6IBgByr3///mratKn5nTZgwACVLVs2T9cxePBgxcfH66mnnlKVKlV0+PBhTZs2TStXrlRsbKwCAgLydH1ABvI1gKKCfJ23KLwLidatW6t+/fqODgMAblu1atX0559/6pdfflGZMmVUuXLlPF/HxIkT1ahRI6s9861atVJoaKimTZumt99+O8/XCUjkawBFB/k6bzHUvIjIGOIWExOj3r17q3Tp0vL29tbzzz+vf/75x6rt8uXL1bZtWwUGBsrNzU2VK1fW6NGjlZaWZtUuPT1dAwcOlI+PjypUqKDVq1ebywYPHqwSJUqoSpUq+u6776ye161bN1WoUMFq3okTJ+Th4SGLxWJ1rkiFChVshsJFRkbK3d1dGzZsuOk2d+vWTV5eXjp8+LDCwsLk6empwMBAjRo1SoZhWLWdMGGCGjZsqNKlS8vDw0PBwcFaunRppv3Onz9fDz30kIoXL66SJUuqSZMm+v77761ivtlwwutZLBb17dtXCxYsUNWqVeXu7q7g4GDFxMTYrPfkyZPq0aOH/P395ebmpho1amj27NmZxjhixIhM1920aVObtlu3blWrVq3k4+Oj4sWLKzQ0VJs3b86036y27cb/xXfffafGjRvL09NTJUqUUNu2bbV//36rNhn/nxstXbrUps+mTZvaxL59+/ZMX9Pk5GS9/vrrqlSpklxcXKziPH/+fKbbdf16bva/u/69mdPtzM77MD09XZMnT1aNGjXk7u4uf39/9e7d2+YzmvF/6Nevn802hIWFyWKx6PHHH7ean5KSoqioKN17771yc3NTUFCQBg0apJSUFKt2Ge/JGz3++ONWn9ujR4/KYrFowoQJNm1r1qxp8/86e/asevbsKX9/f7m7u6tOnTr69NNPrdpk9Dl37lx5enqqQYMGqly5svr06SOLxXLLYbHXxzRz5kxVrlxZbm5uevDBB7V9+3artk2aNLEZDtekSROVKlVKBw4csOl7/vz5Cg4OloeHh0qVKqWuXbvqxIkTN40HyA3yNfmafE2+Jl//T07ydU4+pwURR7yLmL59+8rX11cjRozQwYMHNX36dB07dkwbNmwwvxDnzp0rLy8vDRgwQF5eXlq3bp2GDx+upKQkjR8/3uxr7NixmjBhgp577jkFBwerf//+Sk1N1bfffqu6devqnXfe0axZs9SpUyf9+uuvmQ6tyzB8+HBduXLllvFHRUXpk08+0eLFizNNSjdKS0tTq1at9PDDD2vcuHFavXq1oqKidO3aNY0aNcpsN2XKFD3xxBMKDw9XamqqFi1apKeeekorV65U27ZtzXYjR47UiBEj1LBhQ40aNUqurq7aunWr1q1bp5YtW5rt6tatq9dff90qlnnz5ik6Otomxo0bN2rx4sV69dVX5ebmpg8//FCtWrXStm3bVLNmTUnSmTNn9PDDD5tfKHfddZe+++479ezZU0lJSZl+oUvS9OnTzWQ5dOhQm+Xr1q1T69atFRwcrKioKDk5OWnOnDlq1qyZNm3apIceesjmOY0bN1ZkZKQk6cCBA3r33Xetln/22WeKiIhQWFiYxo4dq0uXLmn69Olq1KiRdu/ebfMjLrcGDx6c6fyBAwdqxowZ6tmzpx555BG5uLjoq6++0tdff52tfu+55x6NGTPGat6qVav0+eefW83LyXZm933Yu3dvzZ07V927d9err76qI0eOaNq0adq9e7c2b94sFxcXs627u7sWLFig8ePHm/P/+usvrV27Vu7u7laxpqen64knntCPP/6oyMhIVa9eXfv27dOkSZP0+++/a9myZdl6bXLr8uXLatq0qf744w/17dtXFStW1JIlS9StWzclJCTotddey/K5f/zxhz7++OMcrW/hwoW6cOGCevfuLYvFonHjxqlTp046fPiw1Wt4o+TkZCUnJ6tMmTJW89955x299dZb6tKli1544QWdO3dOU6dOVZMmTbR79275+vrmKD4gO8jX5Ovrka9tka/zXmHP11L2PqcFloECbc6cOYYkY/v27dlqFxwcbKSmpprzx40bZ0gyli9fbs67dOmSzfN79+5tFC9e3Lhy5YphGIZx5coVw8/Pz3j66afNNnv27DGcnZ2NOnXqGCkpKYZhGMb58+eNEiVKGK+99prZLiIiwihfvrw5/csvvxhOTk5G69atDUnGkSNHzGXly5c3IiIiDMMwjI8++siQZEydOvWWr0vGeiQZr7zyijkvPT3daNu2reHq6mqcO3cuy21OTU01atasaTRr1sycd+jQIcPJycno2LGjkZaWZtU+PT3dKua2bdvaxNOnTx/jxo+UJEOSsWPHDnPesWPHDHd3d6Njx47mvJ49exply5Y1zp8/b/X8rl27Gj4+Pjbxv/nmm4Ykq/Y1atQwQkNDrWKuUqWKERYWZhX/pUuXjIoVKxqPPfaYzTbcfffdRvfu3c3p9evXG5KM9evXG4ZhGBcuXDB8fX2NXr16WT0vLi7O8PHxsZofERFheHp62qxjyZIlVn0ahmGEhoZaxb5q1SpDktGqVSub17Rs2bJGWFiY1byoqChDktX/PDOhoaFGjRo1bOaPHz/e6r2Z0+3Mzvtw06ZNhiRjwYIFVn2uXr3aZn758uWNxx57zChTpoyxdOlSc/7o0aONhg0b2rwHP/vsM8PJycnYtGmTVd8zZswwJBmbN28250ky+vTpY/MatG3b1upze+TIEUOSMX78eJu2N77XJk+ebEgy5s+fb85LTU01QkJCDC8vLyMpKcmqzzlz5pjtunTpYtSsWdMICgoyvwuykvH80qVLG/Hx8eb85cuXG5KMb7755qbPHz16tCHJWLt2rTnv6NGjhrOzs/HOO+9Ytd23b59RrFgxm/lAVsjXWSNfk68zkK/J17nN14aR/c9pQcVQ8yImMjLSag/SSy+9pGLFimnVqlXmPA8PD/PvCxcu6Pz582rcuLEuXbqk3377TZK0b98+nT17Vp06dTLb1q5dW+7u7qpbt65cXV0lSaVLl1aTJk20du3aLGMaOnSoHnjgAT311FNZtlm+fLlefvllDRw4MNNhNTdzffuMPdCpqan64YcfMt3mf/75R4mJiWrcuLF27dplzl+2bJnS09M1fPhwmyEvNw6fyomQkBAFBweb0+XKlVP79u21Zs0apaWlyTAMffnll2rXrp0Mw9D58+fNR1hYmBITE63ilGQejbhxT+r1YmNjdejQIT3zzDP6+++/zT4vXryo5s2bKyYmRunp6VbPSU1NlZubW5Z9RkdHKyEhQU8//bRVnM7OzmrQoIHWr19v85zr250/f14XLly46etlGIaGDh2qzp07q0GDBjbLL1y4oNKlS9+0j9uVm+281ftwyZIl8vHx0WOPPWbVZ3BwsLy8vGz6dHV1VXh4uObMmWPOy9j7fqMlS5aoevXqqlatmlXfzZo1kySbvq9cuWLzf7l69Wqmr8WlS5ds2t44zHXVqlUKCAjQ008/bc5zcXHRq6++quTkZG3cuDHTvnfu3KklS5ZozJgxObpK6n/+8x+VLFnSnG7cuLEk6fDhw1k+JyYmRiNHjlSXLl3M10WSvvrqK6Wnp6tLly5W2xgQEKAqVapk+r8G8gL5mnydgXyde+Tr/ynq+TrDrT6nBRlDzYuYKlWqWE17eXmpbNmyVufC7N+/X8OGDdO6deuUlJRk1T4xMVGSzHMb77777luu8+6779aPP/6Y6bIff/xR33zzjdauXavjx49n2iY2NlZffPGF0tLSFB8ff8v1Xc/JyUmVKlWymnffffdJktU2r1y5Um+//bZiY2OtzqG5PkH/+eefcnJy0v3335+jGG7lxv9JRoyXLl3SuXPn5OTkpISEBM2cOVMzZ87MtI+zZ89aTZ8/f14uLi4qXrx4lus9dOiQJCkiIiLLNomJiVZfiImJiZme53Vjn5l9EUqSt7e31fTFixd11113ZdlfZhYsWKD9+/friy++0MKFC22Wh4SE6Ouvv9bSpUvNoWuXLl3K0TpuJafbmZ334aFDh5SYmCg/P79M+7zxfyxJ3bt3V3BwsE6fPq3ff/9dp0+fVpcuXWwuNHLo0CEdOHAgy9f6xr4/+eQTffLJJzbtypcvbzMvKipKUVFRNvP9/f3Nv48dO6YqVarYJOPq1aubyzMzZMgQNW7cWI8//niOfsCXK1fOajrjPXzjuXcZfvvtN3Xs2FE1a9bUrFmzrJYdOnRIhmFk+jmVdNOhcMDtIF+TrzOQr3OPfP0/RT1fZ7jV57QgXwWdwvsOk5CQoNDQUHl7e2vUqFGqXLmy3N3dtWvXLg0ePNjco5qd87uud/ny5UznDx48WGFhYWrWrJnmzp2baZs9e/aodevWat68uQYOHKhnn302W+eLZdemTZv0xBNPqEmTJvrwww9VtmxZubi4aM6cOZkmivyW8Zo/++yzWSbd2rVrW00fPXpU5cqVu+me/Yx+x48fr7p162ba5vqkHR8fr9TU1Jt+YWX0+dlnn2Xarlgx668Ud3d3ffPNN1bzNm3aZHUe1fVSU1P11ltvqWfPnmYivNHMmTP19NNP3/SIzO3K6XZmt08/Pz8tWLAg0+WZJeE6deqoTp06mjdvng4cOKDOnTvb/IjI6LtWrVqaOHFipn0HBQVZTbdv394mcQ4bNkxxcXE2z42MjLR5rXv16pXpenLi+++/1w8//KAtW7bk+LnOzs6ZzjduuDiO9G9R0rJlS/n4+GjVqlUqUaKE1fL09HRZLBZ99913mfZ7sx+2gD2Rr8nX1yNfZ458/T9FPV8XBRTeRcyhQ4f06KOPmtPJyck6ffq02rRpI0nasGGD/v77b3311Vdq0qSJ2e7IkSNW/WTco+/UqVO3XOfJkycVGBhoM3/ZsmXasmWLzbCrG9WqVUtLliyRh4eHlixZosjISO3du/emw7IypKen6/Dhw1Zf+r///rskmRfT+PLLL+Xu7q41a9ZYDcu6fkiQJFWuXFnp6en69ddfs0x8uZGxN/Z6v//+u4oXL25+eZcoUUJpaWlq0aLFLfu7du2a9uzZo1atWt20XcYtH7y9vbPV76+//irpf3s9b9ann59ftvp0dna2aZeQkJBl+w8//FBnz57ViBEjsmxToUIFzZ8/X7Vq1VKPHj3UoUMHzZs3T5999tkt48munG5ndt6HlStX1g8//KBHHnnEaijlrfTo0UOTJk1SXFyczY+i6+Pds2ePmjdvnq1hlvfcc4/Ndk2ePDnTRF6lShWbtp6enlbT5cuX1969e5Wenm61Fz1jKOyNe+YNw9CQIUPUsWNHPfzww7eMN7f+/vtvtWzZUikpKVq7dm2m9x6tXLmyDMNQxYoVs/zxCNgD+Zp8nYF8nXvk6/8p6vk6Q3Y+pwUV53gXMTNnzrQ692P69Om6du2aWrduLel/e56u39OUmpqqDz/80KqfBx98UB4eHlZXnty7d6+uXLmi2NhYpaamSvp3r2tMTIzVjwLp36tGvvnmm3rmmWdumRQfeOABeXp6ysnJSbNmzdLRo0ez3MOamWnTppl/G4ahadOmycXFRc2bNze32WKxWJ33cfToUZsrR3bo0EFOTk4aNWqUzblUme2Zy64bf8ycOHFCy5cvV8uWLeXs7CxnZ2d17txZX375pX755Reb5587d85q+vvvv1diYqLat29/0/UGBwercuXKmjBhgpKTk2/Z76JFi+Tq6qpGjRpl2WdYWJi8vb317rvvZnqO0Y195sSFCxf0zjvvqH///jfdi3/t2jWFh4erRo0amjRpklq0aGEzbOx25WY7b/U+7NKli9LS0jR69Gib5167di3LHzjPPPOMTp48KT8/vyyPLHXp0kUnT57M9Gqjly9f1sWLFzN9Xl5p06aN4uLitHjxYnPetWvXNHXqVHl5eSk0NNSq/aJFi7R3716bq9XmpYsXL6pNmzY6efKkVq1aleVQ8k6dOsnZ2VkjR460+ZwbhqG///7bbjHizka+Jl9nIF/nHvk6Zwpzvs5wq89pQcYR7yImNTVVzZs3V5cuXXTw4EF9+OGHatSokZ544glJUsOGDVWyZElFRETo1VdflcVi0WeffWaTqDw9PfXaa6/pvffeU7FixfTAAw9oxowZcnJy0unTp9W2bVs98cQTmjVrllJSUvTGG29YPf+vv/6Sq6ur1UVisqNmzZoaPHiw3nvvPXXt2tVmyNaN3N3dtXr1akVERKhBgwb67rvv9O233+rNN98093q1bdtWEydOVKtWrfTMM8/o7Nmz+uCDD3Tvvfdq7969Zl/33nuv/vvf/2r06NFq3LixOnXqJDc3N23fvl2BgYG5/tKpWbOmwsLCrG57IP17K5QM7733ntavX68GDRqoV69euv/++xUfH69du3bphx9+MM+lW7x4sd544w25ubnp8uXLmj9/vtlHYmKi0tLStGzZMvNHyaxZs9S6dWvVqFFD3bt31913362TJ09q/fr18vb21jfffKNDhw4pKipKn3/+uYYMGZLp0KgM3t7emj59up577jk98MAD6tq1q+666y4dP35c3377rR555BGrhJYTu3btUpkyZTRo0KCbths5cqT27dun3bt32+3825xuZ3beh6Ghoerdu7fGjBmj2NhYtWzZUi4uLjp06JCWLFmiKVOm6Mknn7SJpWTJkjp9+rT5gzQzzz33nL744gu9+OKLWr9+vR555BGlpaXpt99+0xdffKE1a9aofv36dnmtpH+Ht3300Ufq1q2bdu7cqQoVKmjp0qXavHmzJk+ebDNc7Pvvv1evXr1UtWpVu8UUHh6ubdu2qUePHjpw4IDVvUC9vLzUoUMHSf8efXj77bc1dOhQHT16VB06dFCJEiV05MgRff3114qMjLT5fgPyAvmafE2+vn3k65wpzPk6Q3Y+pwVW/l1AHbmR09uTbNy40YiMjDRKlixpeHl5GeHh4cbff/9t1Xbz5s3Gww8/bHh4eBiBgYHGoEGDjDVr1tjcMuLq1atGv379jBIlShjlypUzVq9ebXh6ehoRERHG4MGDDS8vL6NSpUrGihUrrPrPuF3D9bcsuT7GrG5PkuHKlStGtWrVjAcffNC4du1altuccfuLP//802jZsqVRvHhxw9/f34iKirK5vcgnn3xiVKlSxXBzczOqVatmzJkzx7ylxY1mz55t1KtXz3BzczNKlixphIaGGtHR0VYx5+T2JH369DHmz59vrr9evXpWr3OGM2fOGH369DGCgoIMFxcXIyAgwGjevLkxc+ZMq3Xr/99KIavH9beYMAzD2L17t9GpUyejdOnShpubm1G+fHmjS5cu5i0aPv/8c6NmzZrGlClTrG5jYhi2tye5fn5YWJjh4+NjuLu7G5UrVza6detmdXuHnN6eRJIxadIkq7Y3/o82bdpkODs7Gx999FGm7fLq9iS52c7svA8NwzBmzpxpBAcHGx4eHkaJEiWMWrVqGYMGDTJOnTpltsnqPXaz5ampqcbYsWONGjVqmO/d4OBgY+TIkUZiYqLZLuM9eaPbuT2JYfz7/u3evbtRpkwZw9XV1ahVq5bVbUiu79PDw8M4efKkzTZl9/YkmcUkyYiKirLqL7ufEcMwjC+//NJo1KiR4enpaXh6ehrVqlUz+vTpYxw8ePCmMQEZyNfka/I1+fpG5Ou8zdc5+ZwWRBTeRUR2E/7tykjkBUFWiaIgyepLM7fKly9v8+V4vfXr12daVMB+CsP7EEDBQb4umMjXRV9heB/i5vL6c5rfOMcbAAAAAAA7ovAGCpGOHTuaV/DMjL+/vzp27JiPEQEAgBuRrwHciIurAYXIpEmTbrq8evXqt2wDAADsi3wN4EYWw7iN+y4AAAAAAICbYqg5AAAAAAB2ROENAAAAAIAdcY53NqSnp+vUqVMqUaKELBaLo8MBABRxhmHowoULCgwMlJMT+8hzgpwNAMgvOcnXFN7ZcOrUKQUFBTk6DADAHebEiRO65557HB1GoULOBgDkt+zkawrvbChRooSkf19Qb29vB0cDACjqkpKSFBQUZOYfZB85GwCQX3KSrym8syFjqJq3tzdJHACQbxgqnXPkbABAfstOvubEMQAAAAAA7IjCGwAAAAAAO6LwBgAAAADAjii8AQAAAACwIwpvAAAAAADsiMIbAAAAAAA7ovAGAAAAAMCOKLwBAAAAALCjYo4O4E5UYci3VtNH32vroEgAAMDNXJ+zydcAgNziiDcAAAAAAHZE4Q0AAAAAgB1ReAMAAAAAYEcU3gAAAAAA2BGFNwAAAAAAdkThDQAAAACAHVF4AwAAAABgRxTeAAAAAADYkUML75iYGLVr106BgYGyWCxatmyZuezq1asaPHiwatWqJU9PTwUGBur555/XqVOnrPqIj49XeHi4vL295evrq549eyo5Odmqzd69e9W4cWO5u7srKChI48aNy4/NAwAAAADAsYX3xYsXVadOHX3wwQc2yy5duqRdu3bprbfe0q5du/TVV1/p4MGDeuKJJ6zahYeHa//+/YqOjtbKlSsVExOjyMhIc3lSUpJatmyp8uXLa+fOnRo/frxGjBihmTNn2n37AAAAAAAo5siVt27dWq1bt850mY+Pj6Kjo63mTZs2TQ899JCOHz+ucuXK6cCBA1q9erW2b9+u+vXrS5KmTp2qNm3aaMKECQoMDNSCBQuUmpqq2bNny9XVVTVq1FBsbKwmTpxoVaBfLyUlRSkpKeZ0UlJSHm0xAAAAAOBOU6jO8U5MTJTFYpGvr68kacuWLfL19TWLbklq0aKFnJyctHXrVrNNkyZN5OrqarYJCwvTwYMH9c8//2S6njFjxsjHx8d8BAUF2W+jAAAoBDg9DACA3Cs0hfeVK1c0ePBgPf300/L29pYkxcXFyc/Pz6pdsWLFVKpUKcXFxZlt/P39rdpkTGe0udHQoUOVmJhoPk6cOJHXmwMAQKHC6WEAAOSeQ4eaZ9fVq1fVpUsXGYah6dOn2319bm5ucnNzs/t6AAAoLDg9DACA3CvwR7wziu5jx44pOjraPNotSQEBATp79qxV+2vXrik+Pl4BAQFmmzNnzli1yZjOaAMAAPIWp4cBAPA/Bbrwzii6Dx06pB9++EGlS5e2Wh4SEqKEhATt3LnTnLdu3Tqlp6erQYMGZpuYmBhdvXrVbBMdHa2qVauqZMmS+bMhAADcQTg9DAAAaw4tvJOTkxUbG6vY2FhJ0pEjRxQbG6vjx4/r6tWrevLJJ7Vjxw4tWLBAaWlpiouLU1xcnFJTUyVJ1atXV6tWrdSrVy9t27ZNmzdvVt++fdW1a1cFBgZKkp555hm5urqqZ8+e2r9/vxYvXqwpU6ZowIABjtpsAACKLEecHubt7W31AACgoHHoOd47duzQo48+ak5nFMMREREaMWKEVqxYIUmqW7eu1fPWr1+vpk2bSpIWLFigvn37qnnz5nJyclLnzp31/vvvm219fHz0/fffq0+fPgoODlaZMmU0fPjwLM8VAwAAuXP96WHr1q3j9DAAAP4/hxbeTZs2lWEYWS6/2bIMpUqV0sKFC2/apnbt2tq0aVOO4wMAANlz/elh69evv+npYcHBwZIyPz3sv//9r65evSoXFxdJnB4GACgaCvQ53gAAoGDg9DAAAHKvUNxODAAAOBanhwEAkHsU3gAA4JY4PQwAgNxjqDkAAAAAAHZE4Q0AAAAAgB1ReAMAAAAAYEcU3gAAAAAA2BGFNwAAAAAAdkThDQAAAACAHVF4AwAAAABgRxTeAAAAAADYEYU3AAAAAAB2ROENAAAAAIAdUXgDAAAAAGBHFN4AAAAAANgRhTcAAAAAAHZE4Q0AAAAAgB1ReAMAAAAAYEcU3gAAAAAA2BGFNwAAAAAAdkThDQAAAACAHVF4AwAAAABgRxTeAAAAAADYEYU3AAAAAAB2ROENAAAAAIAdObTwjomJUbt27RQYGCiLxaJly5ZZLTcMQ8OHD1fZsmXl4eGhFi1a6NChQ1Zt4uPjFR4eLm9vb/n6+qpnz55KTk62arN37141btxY7u7uCgoK0rhx4+y9aQAAAAAASHJw4X3x4kXVqVNHH3zwQabLx40bp/fff18zZszQ1q1b5enpqbCwMF25csVsEx4erv379ys6OlorV65UTEyMIiMjzeVJSUlq2bKlypcvr507d2r8+PEaMWKEZs6cafftAwAAAADAoYV369at9fbbb6tjx442ywzD0OTJkzVs2DC1b99etWvX1rx583Tq1CnzyPiBAwe0evVqzZo1Sw0aNFCjRo00depULVq0SKdOnZIkLViwQKmpqZo9e7Zq1Kihrl276tVXX9XEiROzjCslJUVJSUlWDwAA7mSMUgMAIPcK7DneR44cUVxcnFq0aGHO8/HxUYMGDbRlyxZJ0pYtW+Tr66v69eubbVq0aCEnJydt3brVbNOkSRO5urqabcLCwnTw4EH9888/ma57zJgx8vHxMR9BQUH22EQAAAoNRqkBAJB7xRwdQFbi4uIkSf7+/lbz/f39zWVxcXHy8/OzWl6sWDGVKlXKqk3FihVt+shYVrJkSZt1Dx06VAMGDDCnk5KSKL4BAHe01q1bq3Xr1pkuu3GUmiTNmzdP/v7+WrZsmbp27WqOUtu+fbu5w3zq1Klq06aNJkyYoMDAQKtRaq6urqpRo4ZiY2M1ceJEqwIdAIDCpsAe8XYkNzc3eXt7Wz0AAEDmHDlKjdPDAACFQYEtvAMCAiRJZ86csZp/5swZc1lAQIDOnj1rtfzatWuKj4+3apNZH9evAwAA5F5ejlLLrI/r13EjTg8DABQGBbbwrlixogICArR27VpzXlJSkrZu3aqQkBBJUkhIiBISErRz506zzbp165Senq4GDRqYbWJiYnT16lWzTXR0tKpWrZrpMHMAAFB4DB06VImJiebjxIkTjg4JAAAbDi28k5OTFRsbq9jYWEn/DlWLjY3V8ePHZbFY1K9fP7399ttasWKF9u3bp+eff16BgYHq0KGDJKl69epq1aqVevXqpW3btmnz5s3q27evunbtqsDAQEnSM888I1dXV/Xs2VP79+/X4sWLNWXKFKtzuAEAQO45cpQap4cBAAoDhxbeO3bsUL169VSvXj1J0oABA1SvXj0NHz5ckjRo0CC98sorioyM1IMPPqjk5GStXr1a7u7uZh8LFixQtWrV1Lx5c7Vp00aNGjWyuvqpj4+Pvv/+ex05ckTBwcF6/fXXNXz4cC7SAgBAHmGUGgAAN2cxDMNwdBAFXVJSknx8fJSYmJgne9IrDPnWavroe21vu08AQNGR13knLyQnJ+uPP/6QJNWrV08TJ07Uo48+qlKlSqlcuXIaO3as3nvvPX366aeqWLGi3nrrLe3du1e//vqrucO8devWOnPmjGbMmKGrV6+qe/fuql+/vhYuXChJSkxMVNWqVdWyZUsNHjxYv/zyi3r06KFJkyZle4e5PXM2+RoAcL2c5JwCezsxAABQcOzYsUOPPvqoOZ1xylZERITmzp2rQYMG6eLFi4qMjFRCQoIaNWqU6Si1vn37qnnz5nJyclLnzp31/vvvm8szRqn16dNHwcHBKlOmDKPUAABFAoU3AAC4paZNm+pmg+QsFotGjRqlUaNGZdmmVKlS5tHtrNSuXVubNm3KdZwAABREBfaq5gAAAAAAFAUU3gAAAAAA2BGFNwAAAAAAdkThDQAAAACAHVF4AwAAAABgRxTeAAAAAADYEYU3AAAAAAB2ROENAAAAAIAdUXgDAAAAAGBHFN4AAAAAANgRhTcAAAAAAHZE4Q0AAAAAgB1ReAMAAAAAYEcU3gAAAAAA2BGFNwAAAAAAdkThDQAAAACAHVF4AwAAAABgRxTeAAAAAADYEYU3AAAAAAB2ROENAAAAAIAdUXgDAAAAAGBHFN4AAAAAANgRhTcAAAAAAHZUoAvvtLQ0vfXWW6pYsaI8PDxUuXJljR49WoZhmG0Mw9Dw4cNVtmxZeXh4qEWLFjp06JBVP/Hx8QoPD5e3t7d8fX3Vs2dPJScn5/fmAAAAAADuQAW68B47dqymT5+uadOm6cCBAxo7dqzGjRunqVOnmm3GjRun999/XzNmzNDWrVvl6empsLAwXblyxWwTHh6u/fv3Kzo6WitXrlRMTIwiIyMdsUkAAAAAgDtMgS68f/rpJ7Vv315t27ZVhQoV9OSTT6ply5batm2bpH+Pdk+ePFnDhg1T+/btVbt2bc2bN0+nTp3SsmXLJEkHDhzQ6tWrNWvWLDVo0ECNGjXS1KlTtWjRIp06dcqBWwcAQNHBKDUAALJWLLdPvHjxojZu3Kjjx48rNTXVatmrr75624FJUsOGDTVz5kz9/vvvuu+++7Rnzx79+OOPmjhxoiTpyJEjiouLU4sWLczn+Pj4qEGDBtqyZYu6du2qLVu2yNfXV/Xr1zfbtGjRQk5OTtq6das6duxos96UlBSlpKSY00lJSXmyPQAAOEJ+5OyMUWqffvqpatSooR07dqh79+7y8fEx15ExSu3TTz9VxYoV9dZbbyksLEy//vqr3N3dJf07Su306dOKjo7W1atX1b17d0VGRmrhwoV5EicAAI6Qq8J79+7datOmjS5duqSLFy+qVKlSOn/+vIoXLy4/P788S+JDhgxRUlKSqlWrJmdnZ6Wlpemdd95ReHi4JCkuLk6S5O/vb/U8f39/c1lcXJz8/PyslhcrVkylSpUy29xozJgxGjlyZJ5sAwAAjpRfOfv6UWqSVKFCBX3++edZjlKTpHnz5snf31/Lli1T165dzVFq27dvN3eYT506VW3atNGECRMUGBiYJ7ECAJDfcjXUvH///mrXrp3++ecfeXh46Oeff9axY8cUHBysCRMm5FlwX3zxhRYsWKCFCxdq165d+vTTTzVhwgR9+umnebaOzAwdOlSJiYnm48SJE3ZdHwAA9pJfObthw4Zau3atfv/9d0kyR6m1bt1a0q1HqUm65Si1zKSkpCgpKcnqAQBAQZOrI96xsbH66KOP5OTkJGdnZ6WkpKhSpUoaN26cIiIi1KlTpzwJbuDAgRoyZIi6du0qSapVq5aOHTumMWPGKCIiQgEBAZKkM2fOqGzZsubzzpw5o7p160qSAgICdPbsWat+r127pvj4ePP5N3Jzc5Obm1uebAMAAI6UXzmbUWoAAGQtV0e8XVxc5OT071P9/Px0/PhxSf/uuc7Lo8OXLl0y15PB2dlZ6enpkqSKFSsqICBAa9euNZcnJSVp69atCgkJkSSFhIQoISFBO3fuNNusW7dO6enpatCgQZ7FCgBAQZRfOZtRagAAZC1XR7zr1aun7du3q0qVKgoNDdXw4cN1/vx5ffbZZ6pZs2aeBdeuXTu98847KleunGrUqKHdu3dr4sSJ6tGjhyTJYrGoX79+evvtt1WlShXzQi2BgYHq0KGDJKl69epq1aqVevXqpRkzZujq1avq27evunbtyrliAIAiL79yNqPUAADIWq6OeL/77rtm0nznnXdUsmRJvfTSSzp37pxmzpyZZ8FNnTpVTz75pF5++WVVr15db7zxhnr37q3Ro0ebbQYNGqRXXnlFkZGRevDBB5WcnKzVq1ebV0eVpAULFqhatWpq3ry52rRpo0aNGuVpnAAAFFT5lbMZpQYAQNYsxvU32ESmkpKS5OPjo8TERHl7e992fxWGfGs1ffS9trfdJwCg6MjrvJMfunXrph9++EEfffSROUotMjJSPXr00NixYyX9e8ux9957z+p2Ynv37rW6nVjr1q115swZc5Ra9+7dVb9+/WzfTsyeOZt8DQC4Xk5yTq6OeDdr1kwJCQm5eSoAAMhH+ZWzGaUGAEDWcnXE28nJKdMrjxZVHPEGAOSnvMw75OzbwxFvAEBW7H7EW/r3wmYAAKDgI2cDAOBYubqquSR17NhRrq6umS5bt25drgMCAAB5i5wNAIBj5brwDgkJkZeXV17GAgAA7ICcDQCAY+Wq8LZYLBo4cOAdc74YAACFFTkbAADHy9U53tyBDACAwoGcDQCA4+Wq8I6KimLIGgAAhQA5GwAAx8vVUPOoqChJ0rlz53Tw4EFJUtWqVXXXXXflXWQAAOC2kbMBAHC8XB3xvnTpknr06KHAwEA1adJETZo0UWBgoHr27KlLly7ldYwAACCXyNkAADhergrv/v37a+PGjVqxYoUSEhKUkJCg5cuXa+PGjXr99dfzOkYAAJBL5GwAABwvV0PNv/zySy1dulRNmzY157Vp00YeHh7q0qWLpk+fnlfxAQCA20DOBgDA8XI91Nzf399mvp+fH8PWAAAoQMjZAAA4Xq4K75CQEEVFRenKlSvmvMuXL2vkyJEKCQnJs+AAAMDtIWcDAOB4uRpqPnnyZLVq1Ur33HOP6tSpI0nas2eP3N3dtWbNmjwNEP+PvTsPi6pu/zj+YZHFBXBjK1yzXHOPUNNSEpVM0ycfk4zKtAUrtcetVFLLLZ80lzS11MqlLLU0swhTS3FJxdwyS00fFcwMEE1AOL8/vDg/R0BhmGFA3q/rOtfF+Z7vnHN/h5m55z5zFgAArEfOBgDA8awqvBs1aqQjR45oyZIl+uWXXyRJjz32mCIiIuTp6WnTAAEAgPXI2QAAOJ5VhffmzZvVqlUr9e/f39bxAAAAGyJnAwDgeFad4/3AAw/o/Pnzto4FAADYGDkbAADHs6rwNgzD1nEAAAA7IGcDAOB4Vh1qLklxcXGqWLFirsvatm1rdUAAAMC2yNkAADiW1YX3I488kmu7k5OTMjMzrQ4IAADYFjkbAADHsupQc0lKSEhQVlZWjokEDgBA8ULOBgDAsawqvJ2cnGwdBwAAsANyNgAAjsfF1QAAuIWRswEAcDyrzvHOysqydRwAAMAOyNkAADieVb94T5w4UR988EGO9g8++ECTJ08udFDXOnXqlB5//HFVrlxZnp6eatSokX766SdzuWEYGjNmjAICAuTp6anQ0FAdOXLEYh3nz59XRESEvLy85OPjo379+ik1NdWmcQIAUBwVZc4GAAC5s6rwfu+991S3bt0c7Q0aNNDcuXMLHVS2v//+W61bt1aZMmX09ddf6+DBg/rvf/9rcUuUKVOmaMaMGZo7d662b9+ucuXKKSwsTJcvXzb7RERE6MCBA4qJidHatWu1efNmDRgwwGZxAgBQXBVVzgYAAHmzqvBOSEhQQEBAjvaqVavqzJkzhQ4q2+TJkxUUFKSFCxfqnnvuUc2aNdWxY0fVrl1b0tVfu6dPn65Ro0apW7duuvvuu/Xhhx/q9OnTWr16tSTp0KFDWr9+vRYsWKDg4GC1adNGM2fO1PLly3X69GmbxQoAQHFUVDlb4ig1AADyYlXhHRQUpC1btuRo37JliwIDAwsdVLYvv/xSLVq00KOPPipfX181bdpU8+fPN5cfO3ZMCQkJCg0NNdu8vb0VHBysuLg4SVJcXJx8fHzUokULs09oaKicnZ21ffv2XLeblpamlJQUiwkAgJKoqHI2R6kBAJA3qy6u1r9/fw0aNEgZGRlq3769JCk2NlbDhg3TK6+8YrPgjh49qjlz5mjIkCF69dVXtXPnTr300ktyc3NTZGSkEhISJEl+fn4Wj/Pz8zOXJSQkyNfX12K5q6urKlWqZPa53sSJEzV27FibjQMAAEcpqpx97VFq2WrWrGn+ff1RapL04Ycfys/PT6tXr1bv3r3No9R27txp7jCfOXOmunTpoqlTp+a6oyAtLU1paWnmPDvLAQDFkVWF99ChQ/XXX3/phRdeUHp6uiTJw8NDw4cP18iRI20WXFZWllq0aKEJEyZIkpo2bar9+/dr7ty5ioyMtNl2rjdy5EgNGTLEnE9JSVFQUJDdtgcAgL0UVc7+8ssvFRYWpkcffVSbNm3SbbfdphdeeEH9+/eXdPOj1Hr37n3To9QeeeSRHNtlZzkAoCSw6lBzJycnTZ48WX/++ae2bdumvXv36vz58xozZoxNgwsICFD9+vUt2urVq6cTJ05Ikvz9/SVJiYmJFn0SExPNZf7+/jp79qzF8itXruj8+fNmn+u5u7vLy8vLYgIAoCQqqpydfZRanTp19M033+j555/XSy+9pMWLF0uS3Y5SGzlypJKTk83p5MmTNh0XAAC2YNUv3tnKly+vli1b2iqWHFq3bq3Dhw9btP3666+qXr26pKuHsPn7+ys2NlZNmjSRdPXX6e3bt+v555+XJIWEhCgpKUm7du1S8+bNJUkbNmxQVlaWgoOD7RY7AADFib1ztqOOUnN3d5e7u7vd1g8AgC1YXXj/9NNP+vTTT3XixAnz0LVsK1euLHRgkjR48GC1atVKEyZMUK9evbRjxw7NmzdP8+bNk3R1L/6gQYP0xhtvqE6dOqpZs6ZGjx6twMBAde/eXdLVX8g7deqk/v37a+7cucrIyNDAgQPVu3dvm15UBgCA4qoocnZeR6l9/vnnkiyPUrv2KuuJiYnmznNrjlIDAKAksOpQ8+XLl6tVq1Y6dOiQVq1apYyMDB04cEAbNmyQt7e3zYJr2bKlVq1apWXLlqlhw4YaP368pk+froiICLPPsGHD9OKLL2rAgAFq2bKlUlNTtX79enl4eJh9lixZorp166pDhw7q0qWL2rRpYxbvAADcyooqZxfkKLVs2UephYSESLI8Si0bR6kBAG4FToZhGAV90N13361nn31WUVFRqlChgvbu3auaNWvq2WefVUBAwC13kZOUlBR5e3srOTnZJud71xjxlcX88UnhhV4nAODWYcu8U1Q5e+fOnWrVqpXGjh1rHqXWv39/zZs3z9xhPnnyZE2aNEmLFy82j1L7+eefdfDgQXOHeefOnZWYmGgepfbUU0+pRYsWWrp0ab7isGfOJl8DAK5VkJxj1S/ev//+u8LDryYfNzc3Xbx4UU5OTho8eDC/JAMAUIwUVc7mKDUAAPJm1TneFStW1IULFyRJt912m/bv369GjRopKSlJly5dsmmAAADAekWZsx966CE99NBDeS53cnLSuHHjNG7cuDz7VKpUKd+/bgMAUFJYVXi3bdtWMTExatSokR599FG9/PLL2rBhg2JiYtShQwdbxwgAAKxEzgYAwPGsKrxnzZqly5cvS5Jee+01lSlTRlu3blXPnj01atQomwYIAACsR84GAMDxClR4p6SkXH2Qq6vKly9vzr/wwgt64YUXbB8dAACwCjkbAIDio0CFt4+Pj5ycnG7aLzMz0+qAAABA4ZGzAQAoPgpUeH///fcW84ZhqEuXLlqwYIFuu+02mwYGAACsR84GAKD4KFDh3a5duxxtLi4uuvfee1WrVi2bBQUAAAqHnA0AQPFh1X28AQAAAABA/hSq8D558qQuXbqkypUr2yoeAABgB+RsAAAcp0CHms+YMcP8+9y5c1q2bJnat28vb29vmwcGAACsR84GAKD4KFDhPW3aNEmSk5OTqlSpoq5du3IPUAAAiiFyNgAAxUeBCu9jx47ZKw4AAGBD5GwAAIoPLq4GAAAAAIAdUXgDAAAAAGBHFN4AAAAAANgRhTcAAAAAAHZE4Q0AAAAAgB1ReAMAAAAAYEcU3gAAAAAA2BGFNwAAAAAAdkThDQAAAACAHVF4AwAAAABgRxTeAAAAAADYEYU3AAAAAAB2VKIK70mTJsnJyUmDBg0y2y5fvqyoqChVrlxZ5cuXV8+ePZWYmGjxuBMnTig8PFxly5aVr6+vhg4dqitXrhRx9AAAAACA0qjEFN47d+7Ue++9p7vvvtuiffDgwVqzZo1WrFihTZs26fTp0+rRo4e5PDMzU+Hh4UpPT9fWrVu1ePFiLVq0SGPGjCnqIQAAUGqwsxwAgP9XIgrv1NRURUREaP78+apYsaLZnpycrPfff19vv/222rdvr+bNm2vhwoXaunWrtm3bJkn69ttvdfDgQX388cdq0qSJOnfurPHjx2v27NlKT0931JAAALhlsbMcAABLJaLwjoqKUnh4uEJDQy3ad+3apYyMDIv2unXrqlq1aoqLi5MkxcXFqVGjRvLz8zP7hIWFKSUlRQcOHMh1e2lpaUpJSbGYAADAzbGzHACAnIp94b18+XLt3r1bEydOzLEsISFBbm5u8vHxsWj38/NTQkKC2efaojt7efay3EycOFHe3t7mFBQUZIORAABw62NnOQAAORXrwvvkyZN6+eWXtWTJEnl4eBTZdkeOHKnk5GRzOnnyZJFtGwCAkoqd5QAA5K5YF967du3S2bNn1axZM7m6usrV1VWbNm3SjBkz5OrqKj8/P6WnpyspKcnicYmJifL395ck+fv757hwS/Z8dp/rubu7y8vLy2ICAAB5Y2c5AAB5K9aFd4cOHbRv3z7Fx8ebU4sWLRQREWH+XaZMGcXGxpqPOXz4sE6cOKGQkBBJUkhIiPbt26ezZ8+afWJiYuTl5aX69esX+ZgAALgVsbMcAIC8uTo6gBupUKGCGjZsaNFWrlw5Va5c2Wzv16+fhgwZokqVKsnLy0svvviiQkJCdO+990qSOnbsqPr166tv376aMmWKEhISNGrUKEVFRcnd3b3IxwQAwK0oe2f5tZ566inVrVtXw4cPV1BQkLmzvGfPnpJy31n+5ptv6uzZs/L19ZXEznIAwK2hWBfe+TFt2jQ5OzurZ8+eSktLU1hYmN59911zuYuLi9auXavnn39eISEhKleunCIjIzVu3DgHRg0AwK2FneUAAOStxBXeGzdutJj38PDQ7NmzNXv27DwfU716da1bt87OkQEAgBthZzkAoLQqcYU3AAAoGdhZDgDAVcX64moAAAAAAJR0FN4AAAAAANgRhTcAAAAAAHZE4Q0AAAAAgB1ReAMAAAAAYEcU3gAAAAAA2BGFNwAAAAAAdkThDQAAAACAHVF4AwAAAABgRxTeAAAAAADYEYU3AAAAAAB2ROENAAAAAIAdUXgDAAAAAGBHFN4AAAAAANgRhTcAAAAAAHZE4Q0AAAAAgB1ReAMAAAAAYEcU3gAAAAAA2BGFNwAAAAAAdkThDQAAAACAHVF4AwAAAABgRxTeAAAAAADYEYU3AAAAAAB2ROENAAAAAIAdUXgDAAAAAGBHxbrwnjhxolq2bKkKFSrI19dX3bt31+HDhy36XL58WVFRUapcubLKly+vnj17KjEx0aLPiRMnFB4errJly8rX11dDhw7VlStXinIoAADc0sjZAADkrVgX3ps2bVJUVJS2bdummJgYZWRkqGPHjrp48aLZZ/DgwVqzZo1WrFihTZs26fTp0+rRo4e5PDMzU+Hh4UpPT9fWrVu1ePFiLVq0SGPGjHHEkAAAuCWRswEAyJuTYRiGo4PIrz///FO+vr7atGmT2rZtq+TkZFWtWlVLly7Vv/71L0nSL7/8onr16ikuLk733nuvvv76az300EM6ffq0/Pz8JElz587V8OHD9eeff8rNzS3HdtLS0pSWlmbOp6SkKCgoSMnJyfLy8ir0OGqM+Mpi/vik8EKvEwBw60hJSZG3t7fN8o4jFFXOvp6tn7trczb5GgBwrYLknGL9i/f1kpOTJUmVKlWSJO3atUsZGRkKDQ01+9StW1fVqlVTXFycJCkuLk6NGjUyE7gkhYWFKSUlRQcOHMh1OxMnTpS3t7c5BQUF2WtIAADckooqZ6elpSklJcViAgCguCkxhXdWVpYGDRqk1q1bq2HDhpKkhIQEubm5ycfHx6Kvn5+fEhISzD7XJvDs5dnLcjNy5EglJyeb08mTJ208GgAAbl1FmbPZWQ4AKAlcHR1AfkVFRWn//v368ccf7b4td3d3ubu72307AADciooyZ48cOVJDhgwx57NPDwMAoDgpEb94Dxw4UGvXrtX333+v22+/3Wz39/dXenq6kpKSLPonJibK39/f7HP9FVOz57P7AAAA2yjqnO3u7i4vLy+LCQCA4qZYF96GYWjgwIFatWqVNmzYoJo1a1osb968ucqUKaPY2Fiz7fDhwzpx4oRCQkIkSSEhIdq3b5/Onj1r9omJiZGXl5fq169fNAMBAOAWR84GACBvxfpQ86ioKC1dulRffPGFKlSoYJ7f5e3tLU9PT3l7e6tfv34aMmSIKlWqJC8vL7344osKCQnRvffeK0nq2LGj6tevr759+2rKlClKSEjQqFGjFBUVxeHkAADYCDkbAIC8FevCe86cOZKk+++/36J94cKFevLJJyVJ06ZNk7Ozs3r27Km0tDSFhYXp3XffNfu6uLho7dq1ev755xUSEqJy5copMjJS48aNK6phAABwyyNnAwCQtxJ1H29Hsec9QSXuCwoAsHQr3MfbUbiPNwCgqNyy9/EGAAAAAKCkofAGAAAAAMCOKLwBAAAAALAjCm8AAAAAAOyIwhsAAAAAADui8AYAAAAAwI4ovAEAAAAAsCMKbwAAAAAA7IjCGwAAAAAAO6LwBgAAAADAjii8AQAAAACwIwpvAAAAAADsiMIbAAAAAAA7ovAGAAAAAMCOKLwBAAAAALAjCm8AAAAAAOyIwhsAAAAAADui8AYAAAAAwI4ovAEAAAAAsCMKbwAAAAAA7IjCGwAAAAAAO6LwBgAAAADAjlwdHQCkGiO+spg/PincQZEAAAAAAGyNX7wBAAAAALAjCm8AAAAAAOyoVBXes2fPVo0aNeTh4aHg4GDt2LHD0SEBAIDrkK8BALeaUnOO9yeffKIhQ4Zo7ty5Cg4O1vTp0xUWFqbDhw/L19fX0eEBAAAV73x9/TVZrsc1WgAAeXEyDMNwdBBFITg4WC1bttSsWbMkSVlZWQoKCtKLL76oESNGWPRNS0tTWlqaOZ+cnKxq1arp5MmT8vLyKnQsDaO/sfqx+8eGFXr7AIDiLSUlRUFBQUpKSpK3t7ejwylSBcnXUvHK2eRoAChdCpKvS8Uv3unp6dq1a5dGjhxptjk7Oys0NFRxcXE5+k+cOFFjx47N0R4UFGTXOPPDe7qjIwAAFJULFy6UqsK7oPlaKl45mxwNAKVTfvJ1qSi8z507p8zMTPn5+Vm0+/n56ZdffsnRf+TIkRoyZIg5n5WVpfPnz6ty5cpycnIqVCzZe0VstSe+tOP5tB2eS9vi+bSd0vhcGoahCxcuKDAw0NGhFKmC5muJnJ0fjKN4YRzFC+MoXkraOAqSr0tF4V1Q7u7ucnd3t2jz8fGx6Ta8vLxKxIuppOD5tB2eS9vi+bSd0vZclqZfuguDnJ1/jKN4YRzFC+MoXkrSOPKbr0vFVc2rVKkiFxcXJSYmWrQnJibK39/fQVEBAIBrka8BALeqUlF4u7m5qXnz5oqNjTXbsrKyFBsbq5CQEAdGBgAAspGvAQC3qlJzqPmQIUMUGRmpFi1a6J577tH06dN18eJFPfXUU0Uah7u7u6Kjo3McFgfr8HzaDs+lbfF82g7PZelSXPK1dOu89hhH8cI4ihfGUbzcKuPITam5nZgkzZo1S2+99ZYSEhLUpEkTzZgxQ8HBwY4OCwAAXIN8DQC41ZSqwhsAAAAAgKJWKs7xBgAAAADAUSi8AQAAAACwIwpvAAAAAADsiMIbAAAAAAA7ovAuYrNnz1aNGjXk4eGh4OBg7dixw9EhlTgTJ05Uy5YtVaFCBfn6+qp79+46fPiwo8O6JUyaNElOTk4aNGiQo0MpsU6dOqXHH39clStXlqenpxo1aqSffvrJ0WGVSJmZmRo9erRq1qwpT09P1a5dW+PHjxfXBIUtFTQvr1ixQnXr1pWHh4caNWqkdevWFVGkN1aQccyfP1/33XefKlasqIoVKyo0NLTYfB+x9nvS8uXL5eTkpO7du9s3wHwq6DiSkpIUFRWlgIAAubu768477ywWr62CjmP69Om666675OnpqaCgIA0ePFiXL18uomhzt3nzZnXt2lWBgYFycnLS6tWrb/qYjRs3qlmzZnJ3d9cdd9yhRYsW2T3OmynoOFauXKkHH3xQVatWlZeXl0JCQvTNN98UTbA3YM3/I9uWLVvk6uqqJk2a2C0+e6LwLkKffPKJhgwZoujoaO3evVuNGzdWWFiYzp496+jQSpRNmzYpKipK27ZtU0xMjDIyMtSxY0ddvHjR0aGVaDt37tR7772nu+++29GhlFh///23WrdurTJlyujrr7/WwYMH9d///lcVK1Z0dGgl0uTJkzVnzhzNmjVLhw4d0uTJkzVlyhTNnDnT0aHhFlHQvLx161Y99thj6tevn/bs2aPu3bure/fu2r9/fxFHbqmg49i4caMee+wxff/994qLi1NQUJA6duyoU6dOFXHklqz9nnT8+HH95z//0X333VdEkd5YQceRnp6uBx98UMePH9dnn32mw4cPa/78+brtttuKOHJLBR3H0qVLNWLECEVHR+vQoUN6//339cknn+jVV18t4sgtXbx4UY0bN9bs2bPz1f/YsWMKDw/XAw88oPj4eA0aNEjPPPOMw4vWgo5j8+bNevDBB7Vu3Trt2rVLDzzwgLp27ao9e/bYOdIbK+g4siUlJemJJ55Qhw4d7BRZETBQZO655x4jKirKnM/MzDQCAwONiRMnOjCqku/s2bOGJGPTpk2ODqXEunDhglGnTh0jJibGaNeunfHyyy87OqQSafjw4UabNm0cHcYtIzw83Hj66act2nr06GFEREQ4KCLcagqal3v16mWEh4dbtAUHBxvPPvusXeO8mcJ+v7hy5YpRoUIFY/HixfYKMV+sGceVK1eMVq1aGQsWLDAiIyONbt26FUGkN1bQccyZM8eoVauWkZ6eXlQh5ktBxxEVFWW0b9/eom3IkCFG69at7RpnQUgyVq1adcM+w4YNMxo0aGDR9u9//9sICwuzY2QFk59x5KZ+/frG2LFjbR+QlQoyjn//+9/GqFGjjOjoaKNx48Z2jcte+MW7iKSnp2vXrl0KDQ0125ydnRUaGqq4uDgHRlbyJScnS5IqVark4EhKrqioKIWHh1u8PlFwX375pVq0aKFHH31Uvr6+atq0qebPn+/osEqsVq1aKTY2Vr/++qskae/evfrxxx/VuXNnB0eGW4E1eTkuLi7H52RYWJhD87gtvl9cunRJGRkZDs2j1o5j3Lhx8vX1Vb9+/YoizJuyZhxffvmlQkJCFBUVJT8/PzVs2FATJkxQZmZmUYWdgzXjaNWqlXbt2mUejn706FGtW7dOXbp0KZKYbaU4vs9tISsrSxcuXCiR35cXLlyoo0ePKjo62tGhFIqrowMoLc6dO6fMzEz5+flZtPv5+emXX35xUFQlX1ZWlgYNGqTWrVurYcOGjg6nRFq+fLl2796tnTt3OjqUEu/o0aOaM2eOhgwZoldffVU7d+7USy+9JDc3N0VGRjo6vBJnxIgRSklJUd26deXi4qLMzEy9+eabioiIcHRouAVYk5cTEhJy7Z+QkGC3OG/GFt8vhg8frsDAQIfufLVmHD/++KPef/99xcfHF0GE+WPNOI4ePaoNGzYoIiJC69at02+//aYXXnhBGRkZDis0rBlHnz59dO7cObVp00aGYejKlSt67rnnHH6oeUHl9T5PSUnRP//8I09PTwdFVjhTp05VamqqevXq5ehQCuTIkSMaMWKEfvjhB7m6luzStWRHj1IvKipK+/fv148//ujoUEqkkydP6uWXX1ZMTIw8PDwcHU6Jl5WVpRYtWmjChAmSpKZNm2r//v2aO3cuhbcVPv30Uy1ZskRLly5VgwYNzHPtAgMDeT4BG5k0aZKWL1+ujRs3lqg8cOHCBfXt21fz589XlSpVHB1OoWRlZcnX11fz5s2Ti4uLmjdvrlOnTumtt94qUb/wbdy4URMmTNC7776r4OBg/fbbb3r55Zc1fvx4jR492tHhlWpLly7V2LFj9cUXX8jX19fR4eRbZmam+vTpo7Fjx+rOO+90dDiFRuFdRKpUqSIXFxclJiZatCcmJsrf399BUZVsAwcO1Nq1a7V582bdfvvtjg6nRNq1a5fOnj2rZs2amW2ZmZnavHmzZs2apbS0NLm4uDgwwpIlICBA9evXt2irV6+ePv/8cwdFVLINHTpUI0aMUO/evSVJjRo10h9//KGJEydSeKPQrMnL/v7+xS6PF+b7xdSpUzVp0iR99913Dr+wZkHH8fvvv+v48ePq2rWr2ZaVlSVJcnV11eHDh1W7dm37Bp0La/4fAQEBKlOmjEW+rVevnhISEpSeni43Nze7xpwba8YxevRo9e3bV88884ykq5/ZFy9e1IABA/Taa6/J2blknOGa1/vcy8urRP7avXz5cj3zzDNasWJFiTul8MKFC/rpp5+0Z88eDRw4UNLV97lhGHJ1ddW3336r9u3bOzjK/CsZ74BbgJubm5o3b67Y2FizLSsrS7GxsQoJCXFgZCWPYRgaOHCgVq1apQ0bNqhmzZqODqnE6tChg/bt26f4+HhzatGihSIiIhQfH0/RXUCtW7fOcWu7X3/9VdWrV3dQRCXbpUuXcnxRc3FxMb9cA4VhTV4OCQmx6C9JMTExDs3j1n6/mDJlisaPH6/169erRYsWRRHqDRV0HHXr1s2Rvx5++GHzStRBQUFFGb7Jmv9H69at9dtvv1l8tv36668KCAhwSNEtWTeOvD6zJZWo20AWx/e5tZYtW6annnpKy5YtU3h4uKPDKTAvL68c7/PnnntOd911l+Lj4xUcHOzoEAvGsdd2K12WL19uuLu7G4sWLTIOHjxoDBgwwPDx8TESEhIcHVqJ8vzzzxve3t7Gxo0bjTNnzpjTpUuXHB3aLYGrmltvx44dhqurq/Hmm28aR44cMZYsWWKULVvW+Pjjjx0dWokUGRlp3HbbbcbatWuNY8eOGStXrjSqVKliDBs2zNGh4RZxs7zct29fY8SIEWb/LVu2GK6ursbUqVONQ4cOGdHR0UaZMmWMffv2OWoIhmEUfByTJk0y3NzcjM8++8wij164cMFRQzAMo+DjuF5xuap5Qcdx4sQJo0KFCsbAgQONw4cPG2vXrjV8fX2NN954w1FDMAyj4OOIjo42KlSoYCxbtsw4evSo8e233xq1a9c2evXq5aghGIZx9c4te/bsMfbs2WNIMt5++21jz549xh9//GEYhmGMGDHC6Nu3r9n/6NGjRtmyZY2hQ4cahw4dMmbPnm24uLgY69evd9QQDMMo+DiWLFliuLq6GrNnz7Z4nyclJTlqCIZhFHwc1yvJVzWn8C5iM2fONKpVq2a4ubkZ99xzj7Ft2zZHh1TiSMp1WrhwoaNDuyVQeBfOmjVrjIYNGxru7u5G3bp1jXnz5jk6pBIrJSXFePnll41q1aoZHh4eRq1atYzXXnvNSEtLc3RouIXcKC+3a9fOiIyMtOj/6aefGnfeeafh5uZmNGjQwPjqq6+KOOLcFWQc1atXzzWPRkdHF33g1yno/+NaxaXwNoyCj2Pr1q1GcHCw4e7ubtSqVct48803jStXrhRx1DkVZBwZGRnG66+/btSuXdvw8PAwgoKCjBdeeMH4+++/iz7wa3z//fe5vt6zY4+MjDTatWuX4zFNmjQx3NzcjFq1ahWL75gFHUe7du1u2N9RrPl/XKskF95OhlGCjv0AAAAAAKCE4RxvAAAAAADsiMIbAAAAAAA7ovAGAAAAAMCOKLwBAAAAALAjCm8AAAAAAOyIwhsAAAAAADui8AYAAAAAwI4ovAHAhvbt26fOnTsrPT1dP//8s+655x5Hh4QC2rx5s7p27arAwEA5OTlp9erVBXr85cuX9eSTT6pRo0ZydXVV9+7dc+23ceNGNWvWTO7u7rrjjju0aNGiQscOAMgf8nXJVxT5+syZM+rTp4/uvPNOOTs7a9CgQVbHS+GNW94zzzyjOnXqqGzZsqpYsaJCQkL08ccfOzos3KIaNmyoMmXKqFy5crrnnns0ZMiQQq9z7969euyxxxQUFCRPT0/Vq1dP77zzjg2iRW4uXryoxo0ba/bs2VY9PjMzU56ennrppZcUGhqaa59jx44pPDxcDzzwgOLj4zVo0CA988wz+uabbwoTOlCika9RlMjXJV9R5Ou0tDRVrVpVo0aNUuPGjQsTrlwL9WigBKhcubIWLFigO+64Q5cuXVJcXJyee+45paam6rnnnnN0eLjFODk56csvv9TZs2dVvnx5lS1bttDr3LVrl3x9ffXxxx8rKChIW7du1YABA+Ti4qKBAwfaIGpcq3PnzurcuXOey9PS0vTaa69p2bJlSkpKUsOGDTV58mTdf//9kqRy5cppzpw5kqQtW7YoKSkpxzrmzp2rmjVr6r///a8kqV69evrxxx81bdo0hYWF2XxMQElAvkZRIl+XfEWRr2vUqGHuPPnggw8KFS+/eOOWN3nyZLVr10633Xab6tSpoyeeeEIdO3bU5s2bzT41atTQ9OnTLR735JNPWhxysn79erVp00Y+Pj6qXLmyHnroIf3+++/m8kWLFsnHx8diHffff7/FISlpaWn6z3/+o9tuu03lypVTcHCwNm7ceMN1HD9+XE5OToqPj5d09fBUJycniw+Hvn375jjE5uTJk+rVq5d8fHxUqVIldevWTcePH8/zecpeb25TQdab/byNHTtWVatWlZeXl5577jmlp6ebfbKysjRx4kTVrFlTnp6eaty4sT777LMcsdx9990WMX7xxRdycnIyPzALsq7rP0yvHdf1z3G2618XJ06cULdu3VS+fHl5eXmpV69eSkxMNJe//vrratKkiSTJ19dXrq6uuuOOO3Ld/vWxLFiwQI888ojKli2rOnXq6MsvvzSXP/3003rnnXfUrl071apVS48//rieeuoprVy5Msfz06xZM3l4eKhWrVoaO3asrly5kud2YZ2BAwcqLi5Oy5cv188//6xHH31UnTp10pEjR/K9jri4uBx718PCwhQXF2frcIESg3xNvi4N+Tp72++9956CgoJUtmxZ9erVS8nJyXluF9axRb62JQpvlCqGYWjXrl3aunWrOnXqVKDHXrx4UUOGDNFPP/2k2NhYOTs765FHHlFWVla+12GPD4Bdu3ZZfOhLUkZGhsLCwlShQgX98MMP2rJli8qXL69OnTpZJNTcHD58WGfOnDEna9YbGxurQ4cOaePGjVq2bJlWrlypsWPHmssnTpyoDz/8UHPnztWBAwc0ePBgPf7449q0aZPF9s6fP69t27aZ8++9955uu+02iz75XVdhZWVlqVu3bjp//rw2bdqkmJgYHT16VP/+97/zfMysWbMsEv2NjB07Vr169dLPP/+sLl26KCIiQufPn8+zf3JysipVqmTO//DDD3riiSf08ssv6+DBg3rvvfe0aNEivfnmm/kfJG7qxIkTWrhwoVasWKH77rtPtWvX1n/+8x+1adNGCxcuzPd6EhIS5OfnZ9Hm5+enlJQU/fPPP7YOGyhxyNfka2sV93wtSb/99ps+/fRTrVmzRuvXr9eePXv0wgsv5G+AyBdb5WubMoBSYNWqVUa5cuUMV1dXw8nJyRgzZozF8urVqxvTpk2zaIuMjDS6deuW5zr//PNPQ5Kxb98+wzAMY/ny5Ya7u7tFn3bt2hkvv/yyYRiG8ccffxguLi7GqVOnLPp06NDBGDlypGEYhrFw4ULD29vbYvmxY8cMScaePXsMwzCM77//3pBk/P3334ZhGEbbtm2N8ePHG5KMVatWGYZhGB999JFx1113GVlZWeZ60tLSDE9PT+Obb77JdTzXrzdbQdcbGRlpVKpUybh48aLZZ86cOUb58uWNzMxM4/Lly0bZsmWNrVu3WmynX79+xmOPPWYRy+jRo42nn37afP58fX2N559/3mjXrp1hGEaB1nWjcV3/HGe79nXx7bffGi4uLsaJEyfM5QcOHDAkGTt27DAMwzCio6ONxo0bG4ZhGH/99ZdRsWJF839z/favj2XUqFHmfGpqqiHJ+Prrr3Ptv2XLFsPV1dXif9mhQwdjwoQJFv0++ugjIyAgIM/t4uaufZ0YhmGsXbvWkGSUK1fOYnJ1dTV69eqV4/F5fY7UqVMnx//rq6++MiQZly5dsvUwgBKDfE2+vtXzdXR0tOHi4mL873//M9u+/vprw9nZ2Thz5kye28aN2StfX+vazwlrcI43SoUHH3xQ8fHxSk1N1fbt2zV8+HAFBARYnDM2fPhwjRo1ypxPS0tTeHi4OX/kyBGNGTNG27dv17lz58w95ydOnFDDhg3VoEEDpaWl6fPPP1fPnj1zxLBv3z5lZmbqzjvvtGhPS0tT5cqVzfnk5GSVL1/enL/6WZK71atX6+jRo3rllVc0evRos33v3r367bffVKFCBYv+ly9ftjjcrqDyu97GjRtbnCsVEhKi1NRUnTx5Uqmpqbp06ZIefPBBi3Wkp6eradOmFm2RkZG65557NG3aNC1YsECPP/64MjMzzeW//fZbvtd1++2333R8rVq1krPz/x8IdOnSJfPvQ4cOKSgoSEFBQWZb/fr15ePjo0OHDqlly5YW6xo3bpweeOABtWnT5qbblWRxmF65cuXk5eWls2fP5ui3f/9+devWTdHR0erYsaPZvnfvXm3ZssXiF+7MzExdvnxZly5dssm5a5BSU1Pl4uKiXbt2ycXFxWLZte/bm/H398/x60piYqK8vLzk6elpk1iBkoh8fRX5+sZKcr6WpGrVqlkcERASEqKsrCwdPnxY/v7++YoDN2arfG1LFN4oFcqVK6c77rhDktSkSRP9+eefmjp1qkUiHzp0qJ588klzfvjw4RZJo2vXrqpevbrmz5+vwMBAZWVlqWHDhuYhWw0bNtTw4cP16KOPysPDQ87Ozvrnn3/Mc4jy+wFQoUIF7d6925w/deqUxTlS2TIyMjRs2DC9+eabOb6op6amqnnz5lqyZEmOx1WtWvUmz1bebLHe1NRUSdJXX32V4zA0d3d3i/nKlSsrLCxMH374oT744AN99913mjt3rlXr+uGHHyy+gNSpUydHbJ988onq1atnzuf2vOfHkSNHtGDBAsXHx+t///tfvh5TpkwZi3knJ6cch0UePHhQHTp00IABAyy+dEpXn4uxY8eqR48eOdbt4eFRwBEgL02bNlVmZqbOnj2r++67z+r1hISEaN26dRZtMTExCgkJKWyIQIlGvv5/5OurbrV8jaJhq3xtSxTeKJUMw8jxIVmlShUz2UtXE2r2BTb++usvHT58WPPnzzffvD/++GOO9U6aNEmvvvqqueczIiLCXJbfDwBnZ2eLOFxdc3+bzpkzR+XLl1ffvn1zLGvWrJk++eQT+fr6ysvLK89tFVR+17t37179888/5heMbdu2qXz58goKClKlSpXk7u6uEydOqF27djfd5rPPPquuXbuqSZMmqlu3rsWy+vXr53tdNWvWzHEhnOsFBQXl+dzXq1dPJ0+e1MmTJ8296AcPHlRSUpLq169vsZ7hw4frmWee0R133JHvRH4zBw4cUPv27RUZGZnredvNmjXT4cOHLeKHdVJTU/Xbb7+Z88eOHVN8fLwqVaqkO++8UxEREXriiSf03//+V02bNtWff/6p2NhY3X333eavbgcPHlR6errOnz+vCxcumBcCyv5i/9xzz2nWrFkaNmyYnn76aW3YsEGffvqpvvrqq6IeLlCska+tQ74uvvlaunr0xenTpxUYGCjp6vPu7Oysu+66yyYxlBZFka8lmW2pqan6888/FR8fLzc3txyvp5uh8MYtLSUlRc8884wGDBigu+66S//8849++OEHvfXWWwXaA1mxYkVVrlxZ8+bNU0BAgE6cOKERI0bk2tfLy8tMctfu2c7vB0B+TZkyRWvWrJGTk1OOZREREXrrrbfUrVs3jRs3Trfffrv++OMPrVy5UsOGDcvXYVy5ye9609PT1a9fP40aNUrHjx9XdHS0Bg4cKGdnZ1WoUEH/+c9/NHjwYGVlZalNmzZKTk7Wli1b5OXlpcjISItttmvXTmPHjs31l8CCrqswQkND1ahRI0VERGj69Om6cuWKXnjhBbVr104tWrQw+/322286ceKERSIorP3796t9+/YKCwvTkCFDlJCQIElycXExf7kYM2aMHnroIVWrVk3/+te/5OzsrL1792r//v164403bBZLafDTTz/pgQceMOez7+0aGRmpRYsWaeHChXrjjTf0yiuv6NSpU6pSpYruvfdePfTQQ+ZjunTpoj/++MOczz6UMvtQ1Jo1a+qrr77S4MGD9c477+j222/XggULuJUYSi3yNfnaVop7vpauHokWGRmpqVOnKiUlRS+99JJ69erFYeYFVBT5+to26epFEpcuXarq1avf8O4DuaHwxi3Nw8NDlStX1iuvvKLjx4/LxcVFjRo10vvvv69HH3003+txdnbW8uXL9dJLL6lhw4a66667NGPGjAIf2pSfD4D8euCBByw+bK5VtmxZbd68WcOHD1ePHj104cIF3XbbberQoUOh9qjnd70dOnRQnTp11LZtW6Wlpemxxx7T66+/bi4fP368qlatqokTJ+ro0aPy8fFRs2bN9Oqrr+a63cGDB+cZU0HXZS0nJyd98cUXevHFF9W2bVs5OzurU6dOmjlzpkW/ixcvauzYsTmuYFoYn332mf788099/PHH+vjjj832az/0w8LCtHbtWo0bN06TJ09WmTJlVLduXT3zzDM2i6O0uP/++294rmaZMmU0duxYiyv/Xi8/yfj+++/Xnj17rAkRuOWQr8nXtlLc87Uk3XHHHerRo4e6dOmi8+fP66GHHtK7775rszhKi6LK1zfaRkE4GbZaEwDo6n1Bk5KSLO4lCgAAihfytWO8/vrrWr16dY57kePWx328AQAAAACwIwpvAAAAAADsiEPNAQAAAACwI37xBgAAAADAjii8AQAAAACwIwpvAAAAAADsiMIbAAAAAAA7ovAGAAAAAMCOKLwBAAAAALAjCm8AAAAAAOyIwhsAAAAAADui8AYAAAAAwI4ovAEAAAAAsCMKbwAAAAAA7IjCGwAAAAAAO6LwBgAAAADAjii8AQAAAACwIwpvAECR+vjjj3X8+HFzftGiRTp16pTD4nFyctLAgQMdtn0AAOytuOXe0ojCu5hbtGiRnJyc8pz+97//FWk85cuX15NPPlmk2wRwa/nhhx80bNgwHT9+XN98842ioqLk7GzbdBQbG6unn35ad955p8qWLatatWrpmWee0ZkzZ2y6HdyayL0AbjWFyb3XfwaWK1dO9evX1xtvvKFLly5Z9H3yySfl5OQkLy8v/fPPPznWdeTIEXM9U6dOzbH87NmzGjFihBo1aqTy5cvLw8NDd9xxh5566in9+OOP1g1e0pw5c/Too4+qWrVqcnJycshnqmuRbxFWGTdunGrWrJmjvVKlSg6IBgCsN3jwYN1///3mZ9qQIUMUEBBg020MHz5c58+f16OPPqo6dero6NGjmjVrltauXav4+Hj5+/vbdHu4NZF7AdwqCpt7H3zwQT3xxBOSpNTUVP3www8aPXq09u7dqxUrVlj0dXV11aVLl7RmzRr16tXLYtmSJUvk4eGhy5cv59jGjh07FB4ergsXLqh379567rnn5O7urmPHjmn16tVatGiRNm3apLZt2xZ0+Jo8ebIuXLige+65x2E74Sm8S4jOnTurRYsWjg4DAAqtbt26+v3337V//35VqVJFtWvXtvk23n77bbVp08Zib36nTp3Url07zZo1S2+88YbNt4lbD7kXwK2isLn3zjvv1OOPP27OP/fcc0pPT9fKlSt1+fJleXh4mMvc3d3VunVrLVu2LEfhvXTpUoWHh+vzzz+3aP/777/VvXt3ubq6Kj4+XnXr1rVY/sYbb2j58uXy9PQsUNzZNm3aZP7aXb58eavWUVgcan6LyD4sbvPmzXr22WdVuXJleXl56YknntDff/9t0feLL75QeHi4AgMD5e7urtq1a2v8+PHKzMy06JeVlaWhQ4fK29tbNWrU0Pr1681lw4cPV4UKFVSnTh19/fXXFo978sknVaNGDYu2kydPytPTU05OThbnl9SoUSPHoR4DBgyQh4eHNm7ceMMxP/nkkypfvryOHj2qsLAwlStXToGBgRo3bpwMw7DoO3XqVLVq1UqVK1eWp6enmjdvrs8++yzX9X788ce65557VLZsWVWsWFFt27bVt99+axHzjQ5BvFb2uaNLlizRXXfdJQ8PDzVv3lybN2/Osd1Tp07p6aeflp+fn9zd3dWgQQN98MEHucb4+uuv57rt+++/P0ff7du3q1OnTvL29lbZsmXVrl07bdmyJdf15jW26/8XX3/9te677z6VK1dOFSpUUHh4uA4cOGDRJ/v/c73PPvssxzrvv//+HLHv3Lkz1+c0NTVVr7zyimrVqqUyZcpYxHnu3Llcx3Xtdm70v7v2tVnQcebndZiVlaXp06erQYMG8vDwkJ+fn5599tkc79Hs/8OgQYNyjCEsLExOTk566KGHLNrT0tIUHR2tO+64Q+7u7goKCtKwYcOUlpZm0S+v85kfeughi/ft8ePH8zwMrGHDhjn+X2fPnlW/fv3k5+cnDw8PNW7cWIsXL7bok73ORYsWqVy5cgoODlbt2rUVFRWVr8O+ro1p3rx5ql27ttzd3dWyZUvt3LnTom/btm1zHELXtm1bVapUSYcOHcp1/fl5nwLXIveSe8m95N5bPffeiL+/v5ycnOTqmvO33D59+ujrr79WUlKS2bZz504dOXJEffr0ydF/7ty5OnPmjKZPn56j6JauPoePPfaYWrZsadGe3/dw9erVc7yuixq/eN9iBg4cKB8fH73++us6fPiw5syZoz/++EMbN240X2yLFi1S+fLlNWTIEJUvX14bNmzQmDFjlJKSorfeestc1+TJkzV16lT17dtXzZs31+DBg5Wenq6vvvpKTZo00ZtvvqkFCxaoR48eOnjwYK6H42UbM2ZMroeUXC86Olrvv/++Pvnkk1wT2fUyMzPVqVMn3XvvvZoyZYrWr1+v6OhoXblyRePGjTP7vfPOO3r44YcVERGh9PR0LV++XI8++qjWrl2r8PBws9/YsWP1+uuvq1WrVho3bpzc3Ny0fft2bdiwQR07djT7NWnSRK+88opFLB9++KFiYmJyxLhp0yZ98skneumll+Tu7q53331XnTp10o4dO9SwYUNJUmJiou69917zg7lq1ar6+uuv1a9fP6WkpOSaBKSr56tkJ9iRI0fmWL5hwwZ17txZzZs3V3R0tJydnbVw4UK1b99eP/zwg+65554cj7nvvvs0YMAASdKhQ4c0YcIEi+UfffSRIiMjFRYWpsmTJ+vSpUuaM2eO2rRpoz179uT44met4cOH59o+dOhQzZ07V/369VPr1q1VpkwZrVy5UqtWrcrXem+//XZNnDjRom3dunVatmyZRVtBxpnf1+Gzzz6rRYsW6amnntJLL72kY8eOadasWdqzZ4+2bNmiMmXKmH09PDy0ZMkSvfXWW2b7//73P8XGxlrsVZaufql4+OGH9eOPP2rAgAGqV6+e9u3bp2nTpunXX3/V6tWr8/XcWOuff/7R/fffr99++00DBw5UzZo1tWLFCj355JNKSkrSyy+/nOdjf/vtN82fP79A21u6dKkuXLigZ599Vk5OTpoyZYp69Oiho0ePWjyH10tNTVVqaqqqVKmSY1l+3qdAXsi95N5rkXtzIvfaXlHn3suXL5s7WS5evKgtW7Zo8eLF6tOnT66Fd48ePfTcc89p5cqVevrppyVdzd9169ZVs2bNcvRfs2aNPD091aNHj3zHZO172GEMFGsLFy40JBk7d+7MV7/mzZsb6enpZvuUKVMMScYXX3xhtl26dCnH45999lmjbNmyxuXLlw3DMIzLly8bvr6+xmOPPWb22bt3r+Hi4mI0btzYSEtLMwzDMM6dO2dUqFDBePnll81+kZGRRvXq1c35/fv3G87Ozkbnzp0NScaxY8fMZdWrVzciIyMNwzCM9957z5BkzJw586bPS/Z2JBkvvvii2ZaVlWWEh4cbbm5uxp9//pnnmNPT042GDRsa7du3N9uOHDliODs7G4888oiRmZlp0T8rK8si5vDw8BzxREVFGde/pSQZkoyffvrJbPvjjz8MDw8P45FHHjHb+vXrZwQEBBjnzp2zeHzv3r0Nb2/vHPG/+uqrhiSL/g0aNDDatWtnEXOdOnWMsLAwi/gvXbpk1KxZ03jwwQdzjOG2224znnrqKXP++++/NyQZ33//vWEYhnHhwgXDx8fH6N+/v8XjEhISDG9vb4v2yMhIo1y5cjm2sWLFCot1GoZhtGvXziL2devWGZKMTp065XhOAwICjLCwMIu26OhoQ5LF/zw37dq1Mxo0aJCj/a233rJ4bRZ0nPl5Hf7www+GJGPJkiUW61y/fn2O9urVqxsPPvigUaVKFeOzzz4z28ePH2+0atUqx2vwo48+MpydnY0ffvjBYt1z5841JBlbtmwx2yQZUVFROZ6D8PBwi/ftsWPHDEnGW2+9laPv9a+16dOnG5KMjz/+2GxLT083QkJCjPLlyxspKSkW61y4cKHZr1evXkbDhg2NoKAg87MgL9mPr1y5snH+/Hmz/YsvvjAkGWvWrLnh48ePH29IMmJjYy3a8/s+RelB7s0buZfcm43cWzpyb3b8uU3du3c3P7+yXfsa/Ne//mV06NDBMAzDyMzMNPz9/Y2xY8fmOs6KFSsaTZo0ybHtlJQU488//zSn1NRUc1lB38PZypUrl69x2xqHmt9iBgwYYLHn7vnnn5erq6vWrVtntl17bsSFCxd07tw53Xfffbp06ZJ++eUXSdK+fft09uxZi71Od999tzw8PNSkSRO5ublJkipXrqy2bdsqNjY2z5hGjhypZs2a6dFHH82zzxdffKEXXnhBQ4cOLfBtfa7tn73HKz09Xd99912uY/7777+VnJys++67T7t37zbbV69eraysLI0ZMybHIaqFOTQlJCREzZs3N+erVaumbt266ZtvvlFmZqYMw9Dnn3+url27yjAMnTt3zpzCwsKUnJxsEack8xeM6/e+Xis+Pt48nOevv/4y13nx4kV16NBBmzdvVlZWlsVj0tPT5e7unuc6Y2JilJSUpMcee8wiThcXFwUHB+v777/P8Zhr+507d04XLly44fNlGIZGjhypnj17Kjg4OMfyCxcuqHLlyjdcR2FZM86bvQ5XrFghb29vPfjggxbrbN68ucqXL59jnW5uboqIiNDChQvNtuw99tdbsWKF6tWrp7p161qsu3379pKUY93Ze62vnTIyMnJ9Li5dupSj7/WHxq5bt07+/v567LHHzLYyZcropZdeUmpqqjZt2pTrunft2qUVK1Zo4sSJBbqq+b///W9VrFjRnL/vvvskSUePHs3zMZs3b9bYsWPVq1cv83m51s3ep8CNkHvJvdnIvdYj9/6/4ph7u3XrppiYGMXExOiLL77QyJEjtX79evXp0yfH4f3Z+vTpo40bNyohIUEbNmxQQkJCroeZS1JKSkqup0n07dtXVatWNafsozKseQ87Goea32Lq1KljMV++fHkFBARYnD9z4MABjRo1Shs2bFBKSopF/+TkZElXzwuTpNtuu+2m27ztttvyvLz/jz/+qDVr1ig2NlYnTpzItU98fLw+/fRTZWZm6vz58zfd3rWcnZ1Vq1Yti7Y777xTkizGvHbtWr3xxhuKj4+3OO/m2qT++++/y9nZWfXr1y9QDDdz/f8kO8ZLly7pzz//lLOzs5KSkjRv3jzNmzcv13WcPXvWYv7cuXMqU6aMypYtm+d2jxw5IkmKjIzMs09ycrJFAZOcnHzDC05krzO3wkWSvLy8LOYvXryoqlWr5rm+3CxZskQHDhzQp59+qqVLl+ZYHhISolWrVumzzz4zD3e7/lYWhVXQcebndXjkyBElJyfL19c313Ve/z+WpKeeekrNmzfXmTNn9Ouvv+rMmTPq1atXjguDHTlyRIcOHcrzub5+3e+//77ef//9HP2qV6+eoy06OlrR0dE52v38/My///jjD9WpUydHAq9Xr565PDcjRozQfffdp4ceeqhAX/qrVatmMZ/9Gr7+fL1sv/zyix555BE1bNhQCxYsyLXPzd6nXAUdN0LuJfdmI/daj9z7/4pj7r399tsVGhpqzj/88MOqXLmy/vOf/2jt2rXq2rVrjsd06dJFFSpU0CeffKL4+Hi1bNlSd9xxR47z+iWpQoUKSk1NzdE+btw4M84HH3zQbP/zzz8L/B52NArvUiYpKUnt2rWTl5eXxo0bp9q1a8vDw0O7d+/W8OHDzb2w+Tkn7Fq53adPunquUFhYmNq3b69Fixbl2mfv3r3q3LmzOnTooKFDh+rxxx/P1zlm+fXDDz/o4YcfVtu2bfXuu+8qICBAZcqU0cKFC3NNLkUt+zl//PHH80zUd999t8X88ePHzSsz3my9b731lpo0aZJrn2sT/fnz55Wenn7DAiN7nR999FGu/a4/x8fDw0Nr1qyxaPvhhx8szr26Vnp6ukaPHq1+/fqZyfN68+bN02OPPXbDX3EKq6DjzO86fX19tWTJklyX55a4GzdurMaNG+vDDz/UoUOH1LNnzxxfPLLX3ahRI7399tu5rjsoKMhivlu3bjmS7ahRo5SQkJDjsQMGDMjxXPfv3z/X7RTEt99+q++++05xcXEFfqyLi0uu7bntcT958qQ6duwob29vrVu3ThUqVCjw9oDCIveSe69F7s0duff/Fcfcm5sOHTpIunpUWW6Ft7u7u3r06KHFixfr6NGjev311/NcV926dbV3715lZGRYHEF0/fswmzXvYUej8L7FHDlyRA888IA5n5qaqjNnzqhLly6SpI0bN+qvv/7SypUrLe6Bd+zYMYv1ZN/X7/Tp0zfd5qlTpxQYGJijffXq1YqLi7vpYR6NGjXSihUr5OnpqRUrVmjAgAH6+eefb3goV7asrCwdPXrUIlH8+uuvkmRegOPzzz+Xh4eHvvnmG4tDua49jEiSateuraysLB08eDDPZGmN7D241/r1119VtmxZ8wO/QoUKyszMtNiTmJcrV65o79696tSp0w37Zd8mwsvLK1/rPXjwoKT/31N6o3X6+vrma50uLi45+l17dcvrvfvuuzp79uwNP5hr1Kihjz/+WI0aNdLTTz+t7t2768MPP9RHH31003jyq6DjzM/rsHbt2vruu+/UunXrAt0K4+mnn9a0adOUkJCQ44vUtfHu3btXHTp0yNehmdfvtZak6dOn55r869Spk6NvuXLlLOarV6+un3/+WVlZWRZ73rMPn71+b75hGBoxYoQeeeQR3XvvvTeN11p//fWXOnbsqLS0NMXGxt7wfqX5eZ8CeSH3knuzkXutR+79fyUl9165ckWScv2lOlufPn30wQcfyNnZWb17986z30MPPaRt27Zp1apVOW5BlpuqVasW6D1cHHCO9y1m3rx5FueLzJkzR1euXFHnzp0l/f8vRdf+MpSenq53333XYj0tW7aUp6enxdUqf/75Z12+fFnx8fFKT0+XdHVP7ebNm3PcyD4zM1Ovvvqq+vTpc9NE2qxZM5UrV07Ozs5asGCBjh8/nude2dzMmjXL/NswDM2aNUtlypQx98K5uLjIycnJ4tyY48eP57jaZPfu3eXs7Kxx48blOP8qr3NX8uP6L0AnT57UF198oY4dO8rFxUUuLi7q2bOnPv/8c+3fvz/H4//880+L+W+//VbJycnq1q3bDbfbvHlz1a5dW1OnTs31A/H69S5fvlxubm5q06ZNnusMCwuTl5eXJkyYkOt5SdevsyAuXLigN998U4MHD77hnv8rV64oIiJCDRo00LRp0xQaGprjULPCsmacN3sd9urVS5mZmRo/fnyOx165ciXPL0V9+vTRqVOn5Ovrm+evUb169dKpU6dyvULpP//8o4sXL+b6OFvp0qWLEhIS9Mknn5htV65c0cyZM1W+fHm1a9fOov/y5cv1888/57jCrS1dvHhRXbp00alTp7Ru3bpcDzu91s3ep8CNkHvJvdnIvdYj9xZMcci92TslGjdunGefBx54QOPHj9esWbNu+Bp7/vnn5efnp8GDB5s7UK51/edBQd/DxQG/eN9i0tPT1aFDB/Xq1UuHDx/Wu+++qzZt2ujhhx+WJLVq1UoVK1ZUZGSkXnrpJTk5Oemjjz7K8WIuV66cXn75ZU2aNEmurq5q1qyZ5s6dK2dnZ505c0bh4eF6+OGHtWDBAqWlpek///mPxeP/97//yc3NzeLCMvnRsGFDDR8+XJMmTVLv3r1veoiIh4eH1q9fr8jISAUHB+vrr7/WV199pVdffdXcox0eHq63335bnTp1Up8+fXT27FnNnj1bd9xxh37++WdzXXfccYdee+01jR8/Xvfdd5969Oghd3d37dy5U4GBgVZ/UDVs2FBhYWEWtzSRrt4+JdukSZP0/fffKzg4WP3791f9+vV1/vx57d69W9999515/t0nn3yi//znP3J3d9c///yjjz/+2FxHcnKyMjMztXr1avOLzIIFC9S5c2c1aNBATz31lG677TadOnVK33//vby8vLRmzRodOXJE0dHRWrZsmUaMGJHr4VTZvLy8NGfOHPXt21fNmjVT7969VbVqVZ04cUJfffWVWrdubZEEC2L37t2qUqWKhg0bdsN+Y8eO1b59+7Rnz54b3jqqMAo6zvy8Dtu1a6dnn31WEydOVHx8vDp27KgyZcroyJEjWrFihd555x3961//yhFLxYoVdebMGfNLbG769u2rTz/9VM8995y+//57tW7dWpmZmfrll1/06aef6ptvvlGLFi3s8lxJVw+Je++99/Tkk09q165dqlGjhj777DNt2bJF06dPz3F497fffqv+/fvrrrvusltMERER2rFjh55++mkdOnTI4t7d5cuXV/fu3S365+d9CuSF3EvuJfcWHrm3YIo69/7666/ma//SpUvatm2bFi9erDvuuEN9+/bN83HOzs4aNWrUTddfqVIlrVq1Sl27dlXjxo3Vu3dvtWzZUmXKlNHJkye1YsUKSZbXecnve1i6upNg7969kqSMjAz9/PPP5nn7Dz/8cNEcll6EV1CHFQp6S5NNmzYZAwYMMCpWrGiUL1/eiIiIMP766y+Lvlu2bDHuvfdew9PT0wgMDDSGDRtmfPPNNzluM5GRkWEMGjTIqFChglGtWjVj/fr15uX3hw8fbpQvX96oVauW8eWXX1qsP/sWD9fe5uTaGPO6pUm2y5cvG3Xr1jVatmxpXLlyJc8xZ9+u4Pfffzc6duxolC1b1vDz8zOio6Nz3JLk/fffN+rUqWO4u7sbdevWNRYuXGjeBuN6H3zwgdG0aVPD3d3dqFixotGuXTsjJibGIuaC3NIkKirK+Pjjj83tN23a1OJ5zpaYmGhERUUZQUFBRpkyZQx/f3+jQ4cOxrx58yy2rTxu6ZA9XXtbCsMwjD179hg9evQwKleubLi7uxvVq1c3evXqZd5SadmyZUbDhg2Nd955x+LWJ4aR85Ym17aHhYUZ3t7ehoeHh1G7dm3jySeftLh1S0FvaSLJmDZtmkXf6/9HP/zwg+Hi4mK89957ufaz1S1NrBlnfl6HhmEY8+bNM5o3b254enoaFSpUMBo1amQMGzbMOH36tNknr9fYjZanp6cbkydPNho0aGC+dps3b26MHTvWSE5ONvtlvyavV5hbmhjG1dfvU089ZVSpUsVwc3MzGjVqZHHrkmvX6enpaZw6dSrHmPJ7O7HcYpJkREdHW6wvv++RgrxPUTqQe8m95F5y7/VKa+7Njv/aycXFxbj99tuNAQMGGImJiRZ983oN5hZTbuM8c+aMMXToUKN+/fqGp6en4e7ubtSqVct44oknjM2bN+fon5/3cHZceb1/r3/O7IXC+xaR3y8JheWo+97lJj9vbEfL64PWWtWrV7/hh8P333+fI/nDvkrC6xCAfZB7iydy762vJLwOgetxjjcAAAAAAHZE4Q2UII888oh51c/c+Pn56ZFHHinCiAAAuLWRewHYAhdXA0qQadOm3XB5vXr1btoHAADkH7kXgC04GUYh7tUAAAAAAABuiEPNAQAAAACwIwpvAAAAAADsiHO88yErK0unT59WhQoV5OTk5OhwAAC3OMMwdOHCBQUGBsrZmX3kBUHOBgAUlYLkawrvfDh9+rSCgoIcHQYAoJQ5efKkbr/9dkeHUaKQswEARS0/+ZrCOx8qVKgg6eoT6uXl5eBoAAC3upSUFAUFBZn5B/lHzgYAFJWC5GsK73zIPlTNy8uLJA4AKDIcKl1w5GwAQFHLT77mxDEAAAAAAOyIwhsAAAAAADui8AYAAAAAwI4ovAEAAAAAsCMKbwAAAAAA7IjCGwAAAAAAO6LwBgAAAADAjii8AQAAAACwI1dHB1Aa1RjxlcX88UnhDooEAADcyLU5m3wNALAWv3gDAAAAAGBHFN4AAAAAANgRhTcAAAAAAHZE4Q0AAAAAgB1ReAMAAAAAYEcU3gAAAAAA2BGFNwAAAAAAdkThDQAAAACAHVF4AwAAAABgRxTeAAAAAADYEYU3AAAAAAB2ROENAAAAAIAdUXgDAAAAAGBHFN4AAAAAANgRhTcAAAAAAHZE4Q0AAG5q8+bN6tq1qwIDA+Xk5KTVq1ebyzIyMjR8+HA1atRI5cqVU2BgoJ544gmdPn3aYh3nz59XRESEvLy85OPjo379+ik1NdWiz88//6z77rtPHh4eCgoK0pQpU4pieAAA2BWFNwAAuKmLFy+qcePGmj17do5lly5d0u7duzV69Gjt3r1bK1eu1OHDh/Xwww9b9IuIiNCBAwcUExOjtWvXavPmzRowYIC5PCUlRR07dlT16tW1a9cuvfXWW3r99dc1b948u48PAAB7cnV0AAAAoPjr3LmzOnfunOsyb29vxcTEWLTNmjVL99xzj06cOKFq1arp0KFDWr9+vXbu3KkWLVpIkmbOnKkuXbpo6tSpCgwM1JIlS5Senq4PPvhAbm5uatCggeLj4/X2229bFOgAAJQ0/OINAABsLjk5WU5OTvLx8ZEkxcXFycfHxyy6JSk0NFTOzs7avn272adt27Zyc3Mz+4SFhenw4cP6+++/c91OWlqaUlJSLCYAAIobCm8AAGBTly9f1vDhw/XYY4/Jy8tLkpSQkCBfX1+Lfq6urqpUqZISEhLMPn5+fhZ9suez+1xv4sSJ8vb2NqegoCBbDwcAgEKj8AYAADaTkZGhXr16yTAMzZkzx+7bGzlypJKTk83p5MmTdt8mAAAF5dDC+0ZXSJUkwzA0ZswYBQQEyNPTU6GhoTpy5IhFH66QCgBA8ZBddP/xxx+KiYkxf+2WJH9/f509e9ai/5UrV3T+/Hn5+/ubfRITEy36ZM9n97meu7u7vLy8LCYAAIobhxbeN7pCqiRNmTJFM2bM0Ny5c7V9+3aVK1dOYWFhunz5stmHK6QCAOB42UX3kSNH9N1336ly5coWy0NCQpSUlKRdu3aZbRs2bFBWVpaCg4PNPps3b1ZGRobZJyYmRnfddZcqVqxYNAMBAMAOHHpV8xtdIdUwDE2fPl2jRo1St27dJEkffvih/Pz8tHr1avXu3dtuV0hNS0tTWlqaOc+FWgAApV1qaqp+++03c/7YsWOKj49XpUqVFBAQoH/961/avXu31q5dq8zMTPOc7EqVKsnNzU316tVTp06d1L9/f82dO1cZGRkaOHCgevfurcDAQElSnz59NHbsWPXr10/Dhw/X/v379c4772jatGkOGTMAALZSbM/xPnbsmBISEhQaGmq2eXt7Kzg4WHFxcZLsd4VULtQCAICln376SU2bNlXTpk0lSUOGDFHTpk01ZswYnTp1Sl9++aX+97//qUmTJgoICDCnrVu3mutYsmSJ6tatqw4dOqhLly5q06aNxRFo3t7e+vbbb3Xs2DE1b95cr7zyisaMGcOtxAAAJV6xvY939p7y3K5ueu3VT/NzhdSaNWvmWEf2stwOXRs5cqSGDBlizqekpFB8AwBKtfvvv1+GYeS5/EbLslWqVElLly69YZ+7775bP/zwQ4HjAwCgOCu2hbcjubu7y93d3dFhAAAAAABuAcX2UPPsq5fmdnXTa69+ao8rpAIAAAAAYCvFtvCuWbOm/P39FRsba7alpKRo+/btCgkJkcQVUgEAAAAAxZ9DC+/U1FTFx8crPj5e0v9fIfXEiRNycnLSoEGD9MYbb+jLL7/Uvn379MQTTygwMFDdu3eXJIsrpO7YsUNbtmzJ9Qqpbm5u6tevnw4cOKBPPvlE77zzjsU53AAAAAAA2ItDz/H+6aef9MADD5jz2cVwZGSkFi1apGHDhunixYsaMGCAkpKS1KZNG61fv14eHh7mY5YsWaKBAweqQ4cOcnZ2Vs+ePTVjxgxzefYVUqOiotS8eXNVqVKFK6QCAAAAAIqMQwvvm10h1cnJSePGjdO4cePy7MMVUgEAAAAAxVmxPccbAAAAAIBbAYU3AAAAAAB2ROENAAAAAIAdUXgDAAAAAGBHFN4AAAAAANgRhTcAAAAAAHZE4Q0AAAAAgB1ReAMAAAAAYEcU3gAAAAAA2BGFNwAAAAAAdkThDQAAAACAHVF4AwAAAABgRxTeAAAAAADYEYU3AAAAAAB2ROENAAAAAIAdUXgDAAAAAGBHFN4AAAAAANgRhTcAAAAAAHZE4Q0AAG5q8+bN6tq1qwIDA+Xk5KTVq1dbLDcMQ2PGjFFAQIA8PT0VGhqqI0eOWPQ5f/68IiIi5OXlJR8fH/Xr10+pqakWfX7++Wfdd9998vDwUFBQkKZMmWLvoQEAYHcU3gAA4KYuXryoxo0ba/bs2bkunzJlimbMmKG5c+dq+/btKleunMLCwnT58mWzT0REhA4cOKCYmBitXbtWmzdv1oABA8zlKSkp6tixo6pXr65du3bprbfe0uuvv6558+bZfXwAANiTq6MDAAAAxV/nzp3VuXPnXJcZhqHp06dr1KhR6tatmyTpww8/lJ+fn1avXq3evXvr0KFDWr9+vXbu3KkWLVpIkmbOnKkuXbpo6tSpCgwM1JIlS5Senq4PPvhAbm5uatCggeLj4/X2229bFOgAAJQ0/OINAAAK5dixY0pISFBoaKjZ5u3treDgYMXFxUmS4uLi5OPjYxbdkhQaGipnZ2dt377d7NO2bVu5ubmZfcLCwnT48GH9/fffuW47LS1NKSkpFhMAAMUNhTcAACiUhIQESZKfn59Fu5+fn7ksISFBvr6+FstdXV1VqVIliz65rePabVxv4sSJ8vb2NqegoKDCDwgAABuj8AYAACXWyJEjlZycbE4nT550dEgAAORA4Q0AAArF399fkpSYmGjRnpiYaC7z9/fX2bNnLZZfuXJF58+ft+iT2zqu3cb13N3d5eXlZTEBAFDcUHgDAIBCqVmzpvz9/RUbG2u2paSkaPv27QoJCZEkhYSEKCkpSbt27TL7bNiwQVlZWQoODjb7bN68WRkZGWafmJgY3XXXXapYsWIRjQYAANuj8AYAADeVmpqq+Ph4xcfHS7p6QbX4+HidOHFCTk5OGjRokN544w19+eWX2rdvn5544gkFBgaqe/fukqR69eqpU6dO6t+/v3bs2KEtW7Zo4MCB6t27twIDAyVJffr0kZubm/r166cDBw7ok08+0TvvvKMhQ4Y4aNQAANgGtxMDAAA39dNPP+mBBx4w57OL4cjISC1atEjDhg3TxYsXNWDAACUlJalNmzZav369PDw8zMcsWbJEAwcOVIcOHeTs7KyePXtqxowZ5nJvb299++23ioqKUvPmzVWlShWNGTOGW4kBAEo8Cm8AAHBT999/vwzDyHO5k5OTxo0bp3HjxuXZp1KlSlq6dOkNt3P33Xfrhx9+sDpOAACKIw41BwAAAADAjop14Z2ZmanRo0erZs2a8vT0VO3atTV+/HiLPe6GYWjMmDEKCAiQp6enQkNDdeTIEYv1nD9/XhEREfLy8pKPj4/69eun1NTUoh4OAAAAAKAUKtaF9+TJkzVnzhzNmjVLhw4d0uTJkzVlyhTNnDnT7DNlyhTNmDFDc+fO1fbt21WuXDmFhYXp8uXLZp+IiAgdOHBAMTExWrt2rTZv3sz5YgAAAACAIlGsz/HeunWrunXrpvDwcElSjRo1tGzZMu3YsUPS1V+7p0+frlGjRqlbt26SpA8//FB+fn5avXq1evfurUOHDmn9+vXauXOnWrRoIUmaOXOmunTpoqlTp5pXUr1WWlqa0tLSzPmUlBR7DxUAAAAAcIsq1r94t2rVSrGxsfr1118lSXv37tWPP/6ozp07S7p6K5OEhASFhoaaj/H29lZwcLDi4uIkSXFxcfLx8TGLbkkKDQ2Vs7Oztm/fnut2J06cKG9vb3MKCgqy1xABAAAAALe4Yv2L94gRI5SSkqK6devKxcVFmZmZevPNNxURESFJSkhIkCT5+flZPM7Pz89clpCQIF9fX4vlrq6uqlSpktnneiNHjrS4Z2hKSgrFNwAAAADAKsW68P7000+1ZMkSLV26VA0aNFB8fLwGDRqkwMBARUZG2m277u7ucnd3t9v6AQAAAAClR7EuvIcOHaoRI0aod+/ekqRGjRrpjz/+0MSJExUZGSl/f39JUmJiogICAszHJSYmqkmTJpIkf39/nT171mK9V65c0fnz583HAwAAAABgL8X6HO9Lly7J2dkyRBcXF2VlZUmSatasKX9/f8XGxprLU1JStH37doWEhEiSQkJClJSUpF27dpl9NmzYoKysLAUHBxfBKAAAAAAApVmx/sW7a9euevPNN1WtWjU1aNBAe/bs0dtvv62nn35akuTk5KRBgwbpjTfeUJ06dVSzZk2NHj1agYGB6t69uySpXr166tSpk/r376+5c+cqIyNDAwcOVO/evXO9ojkAAAAAALZUrAvvmTNnavTo0XrhhRd09uxZBQYG6tlnn9WYMWPMPsOGDdPFixc1YMAAJSUlqU2bNlq/fr08PDzMPkuWLNHAgQPVoUMHOTs7q2fPnpoxY4YjhgQAAAAAKGWcDMMwHB1EcZeSkiJvb28lJyfLy8ur0OurMeIri/njk8ILvU4AwK3D1nmnNLFnziZfAwCuVZCcU6zP8QYAAAAAoKSj8AYAAAAAwI4ovAEAAAAAsCMKbwAAAAAA7IjCGwAAAAAAO6LwBgAAAADAjii8AQAAAACwIwpvAAAAAADsiMIbAAAAAAA7ovAGAAAAAMCOKLwBAAAAALAjV2sfePHiRW3atEknTpxQenq6xbKXXnqp0IEBAADbIGcDAOBYVhXee/bsUZcuXXTp0iVdvHhRlSpV0rlz51S2bFn5+vqSxAEAKCaKKmdnZmbq9ddf18cff6yEhAQFBgbqySef1KhRo+Tk5CRJMgxD0dHRmj9/vpKSktS6dWvNmTNHderUMddz/vx5vfjii1qzZo2cnZ3Vs2dPvfPOOypfvrxN4gQAwBGsOtR88ODB6tq1q/7++295enpq27Zt+uOPP9S8eXNNnTrV1jECAAArFVXOnjx5subMmaNZs2bp0KFDmjx5sqZMmaKZM2eafaZMmaIZM2Zo7ty52r59u8qVK6ewsDBdvnzZ7BMREaEDBw4oJiZGa9eu1ebNmzVgwACbxQkAgCNYVXjHx8frlVdekbOzs1xcXJSWlqagoCBNmTJFr776qq1jBAAAViqqnL1161Z169ZN4eHhqlGjhv71r3+pY8eO2rFjh6Srv3ZPnz5do0aNUrdu3XT33Xfrww8/1OnTp7V69WpJ0qFDh7R+/XotWLBAwcHBatOmjWbOnKnly5fr9OnTNosVAICiZlXhXaZMGTk7X32or6+vTpw4IUny9vbWyZMnbRcdAAAolKLK2a1atVJsbKx+/fVXSdLevXv1448/qnPnzpKkY8eOKSEhQaGhoeZjvL29FRwcrLi4OElSXFycfHx81KJFC7NPaGionJ2dtX379ly3m5aWppSUFIsJAIDixqpzvJs2baqdO3eqTp06ateuncaMGaNz587po48+UsOGDW0dIwAAsFJR5ewRI0YoJSVFdevWlYuLizIzM/Xmm28qIiJCkpSQkCBJ8vPzs3icn5+fuSwhIUG+vr4Wy11dXVWpUiWzz/UmTpyosWPH2mwcAADYg1W/eE+YMEEBAQGSpDfffFMVK1bU888/rz///FPz5s2zaYAAAMB6RZWzP/30Uy1ZskRLly7V7t27tXjxYk2dOlWLFy+22TZyM3LkSCUnJ5sTR94BAIojq37xvvYQMF9fX61fv95mAQEAANspqpw9dOhQjRgxQr1795YkNWrUSH/88YcmTpyoyMhI+fv7S5ISExPNHQHZ802aNJEk+fv76+zZsxbrvXLlis6fP28+/nru7u5yd3e3w4gAALAdq37xbt++vZKSkmwcCgAAsLWiytmXLl0yzyXP5uLioqysLElSzZo15e/vr9jYWHN5SkqKtm/frpCQEElSSEiIkpKStGvXLrPPhg0blJWVpeDgYLuPAQAAe7HqF++NGzcqPT3d1rEAAAAbK6qc3bVrV7355puqVq2aGjRooD179ujtt9/W008/LUlycnLSoEGD9MYbb6hOnTqqWbOmRo8ercDAQHXv3l2SVK9ePXXq1En9+/fX3LlzlZGRoYEDB6p3794KDAy0+xgAALAXqwpv6WoCBQAAxV9R5OyZM2dq9OjReuGFF3T27FkFBgbq2Wef1ZgxY8w+w4YN08WLFzVgwAAlJSWpTZs2Wr9+vTw8PMw+S5Ys0cCBA9WhQwc5OzurZ8+emjFjht3jBwDAnpwMwzAK+iBnZ2e1atVKbm5uuS7fsGFDoQMrTlJSUuTt7a3k5GR5eXkVen01RnxlMX98Unih1wkAuHXYMu+Qswvn2pxNvgYAXKsgOcfqX7xDQkJUvnx5ax8OAACKCDkbAADHsqrwdnJy0tChQ3PcaxMAABQv5GwAABzPqquaW3F0OgAAcAByNgAAjmdV4R0dHc0hawAAlADkbAAAHM+qQ82jo6MlSX/++acOHz4sSbrrrrtUtWpV20UGAAAKjZwNAIDjWfWL96VLl/T0008rMDBQbdu2Vdu2bRUYGKh+/frp0qVLto4RAABYiZwNAIDjWVV4Dx48WJs2bdKXX36ppKQkJSUl6YsvvtCmTZv0yiuv2DTAU6dO6fHHH1flypXl6empRo0a6aeffjKXG4ahMWPGKCAgQJ6engoNDdWRI0cs1nH+/HlFRETIy8tLPj4+6tevn1JTU20aJwAAxVFR5mwAAJA7qwrvzz//XO+//746d+4sLy8veXl5qUuXLpo/f74+++wzmwX3999/q3Xr1ipTpoy+/vprHTx4UP/9739VsWJFs8+UKVM0Y8YMzZ07V9u3b1e5cuUUFhamy5cvm30iIiJ04MABxcTEaO3atdq8ebMGDBhgszgBACiuiipnAwCAvFl1jvelS5fk5+eXo93X19emh61NnjxZQUFBWrhwodlWs2ZN82/DMDR9+nSNGjVK3bp1kyR9+OGH8vPz0+rVq9W7d28dOnRI69ev186dO9WiRQtJ0syZM9WlSxdNnTpVgYGBNosXAIDipqhyNgAAyJtVv3iHhIQoOjra4lflf/75R2PHjlVISIjNgvvyyy/VokULPfroo/L19VXTpk01f/58c/mxY8eUkJCg0NBQs83b21vBwcGKi4uTJMXFxcnHx8csuiUpNDRUzs7O2r59e67bTUtLU0pKisUEAEBJVFQ5GwAA5M2qX7ynT5+uTp066fbbb1fjxo0lSXv37pWHh4e++eYbmwV39OhRzZkzR0OGDNGrr76qnTt36qWXXpKbm5siIyOVkJAgSTn25Pv5+ZnLEhIS5Ovra7Hc1dVVlSpVMvtcb+LEiRo7dqzNxgEAgKMUVc4GAAB5s6rwbtSokY4cOaIlS5bol19+kSQ99thjioiIkKenp82Cy8rKUosWLTRhwgRJUtOmTbV//37NnTtXkZGRNtvO9UaOHKkhQ4aY8ykpKQoKCrLb9gAAsJeiytkAACBvVhXemzdvVqtWrdS/f39bx2MhICBA9evXt2irV6+ePv/8c0mSv7+/JCkxMVEBAQFmn8TERDVp0sTsc/bsWYt1XLlyRefPnzcffz13d3e5u7vbahgAADhMUeVsAACQN6vO8X7ggQd0/vx5W8eSQ+vWrXX48GGLtl9//VXVq1eXdPVCa/7+/oqNjTWXp6SkaPv27eZ5ayEhIUpKStKuXbvMPhs2bFBWVpaCg4PtPgYAABypqHI2AADIm1W/eBuGYes4cjV48GC1atVKEyZMUK9evbRjxw7NmzdP8+bNkyQ5OTlp0KBBeuONN1SnTh3VrFlTo0ePVmBgoLp37y7p6i/knTp1Uv/+/TV37lxlZGRo4MCB6t27N1c0BwDc8ooqZwMAgLxZVXhLV68Wfu39tK/Vtm1bqwO6VsuWLbVq1SqNHDlS48aNU82aNTV9+nRFRESYfYYNG6aLFy9qwIABSkpKUps2bbR+/Xp5eHiYfZYsWaKBAweqQ4cOcnZ2Vs+ePTVjxgybxAgAQHFXFDkbAADkzcmwYle4s3PeR6g7OTkpMzOzUEEVNykpKfL29lZycrK8vLwKvb4aI76ymD8+KbzQ6wQA3DpsmXfI2YVzbc4mXwMArlWQnGPVOd7S1dt0ZWVl5ZhutQQOAEBJR84GAMCxrCq8nZycbB0HAACwA3I2AACOZ1XhzYVaAAAoGcjZAAA4nlUXV8vKyrJ1HAAAwA7I2QAAOJ5Vv3hPnDhRH3zwQY72Dz74QJMnTy50UAAAwDbI2QAAOJ5Vhfd7772nunXr5mhv0KCB5s6dW+igAACAbZCzAQBwPKsK74SEBAUEBORor1q1qs6cOVPooAAAgG2QswEAcDyrCu+goCBt2bIlR/uWLVsUGBhY6KAAAIBtFGXOPnXqlB5//HFVrlxZnp6eatSokX766SdzuWEYGjNmjAICAuTp6anQ0FAdOXLEYh3nz59XRESEvLy85OPjo379+ik1NdWmcQIAUNSsurha//79NWjQIGVkZKh9+/aSpNjYWA0bNkyvvPKKTQMEAADWK6qc/ffff6t169Z64IEH9PXXX6tq1ao6cuSIKlasaPaZMmWKZsyYocWLF6tmzZoaPXq0wsLCdPDgQXl4eEiSIiIidObMGcXExCgjI0NPPfWUBgwYoKVLl9osVgAAippVhffQoUP1119/6YUXXlB6erokycPDQ8OHD9fIkSNtGiAAALBeUeXsyZMnKygoSAsXLjTbatasaf5tGIamT5+uUaNGqVu3bpKkDz/8UH5+flq9erV69+6tQ4cOaf369dq5c6datGghSZo5c6a6dOmiqVOnclQdAKDEsupQcycnJ02ePFl//vmntm3bpr179+r8+fMaM2aMreMDAACFUFQ5+8svv1SLFi306KOPytfXV02bNtX8+fPN5ceOHVNCQoJCQ0PNNm9vbwUHBysuLk6SFBcXJx8fH7PolqTQ0FA5Oztr+/btuW43LS1NKSkpFhMAAMWNVYV3tvLly6tly5Zq2LCh3N3dbRUTAACwMXvn7KNHj2rOnDmqU6eOvvnmGz3//PN66aWXtHjxYklXL/ImSX5+fhaP8/PzM5clJCTI19fXYrmrq6sqVapk9rnexIkT5e3tbU5BQUG2HhoAAIVm1aHmkvTTTz/p008/1YkTJ8xD17KtXLmy0IEBAADbKIqcnZWVpRYtWmjChAmSpKZNm2r//v2aO3euIiMjbbKN3IwcOVJDhgwx51NSUii+AQDFjlW/eC9fvlytWrXSoUOHtGrVKmVkZOjAgQPasGGDvL29bR0jAACwUlHl7ICAANWvX9+irV69ejpx4oQkyd/fX5KUmJho0ScxMdFc5u/vr7Nnz1osv3Llis6fP2/2uZ67u7u8vLwsJgAAihurCu8JEyZo2rRpWrNmjdzc3PTOO+/ol19+Ua9evVStWjVbxwgAAKxUVDm7devWOnz4sEXbr7/+qurVq0u6eqE1f39/xcbGmstTUlK0fft2hYSESJJCQkKUlJSkXbt2mX02bNigrKwsBQcH2yxWAACKmlWF9++//67w8HBJkpubmy5evCgnJycNHjxY8+bNs2mAAADAekWVswcPHqxt27ZpwoQJ+u2337R06VLNmzdPUVFRkq5e5G3QoEF644039OWXX2rfvn164oknFBgYqO7du0u6+gt5p06d1L9/f+3YsUNbtmzRwIED1bt3b65oDgAo0awqvCtWrKgLFy5Ikm677Tbt379fkpSUlKRLly7ZLjoAAFAoRZWzW7ZsqVWrVmnZsmVq2LChxo8fr+nTpysiIsLsM2zYML344osaMGCAWrZsqdTUVK1fv968h7ckLVmyRHXr1lWHDh3UpUsXtWnThp36AIASz6qLq7Vt21YxMTFq1KiRHn30Ub388svasGGDYmJi1KFDB1vHCAAArFSUOfuhhx7SQw89lOdyJycnjRs3TuPGjcuzT6VKlbR06VKbxgUAgKNZVXjPmjVLly9fliS99tprKlOmjLZu3aqePXtq1KhRNg0QAABYj5wNAIDjFajwTklJufogV1eVL1/enH/hhRf0wgsv2D46AABgFXI2AADFR4EKbx8fHzk5Od20X2ZmptUBAQCAwiNnAwBQfBSo8P7+++8t5g3DUJcuXbRgwQLddtttNg0MAABYj5wNAEDxUaDCu127djnaXFxcdO+996pWrVo2CwoAABQOORsAgOLDqtuJAQAAAACA/ClU4X3y5EldunRJlStXtlU8AADADsjZAAA4ToEONZ8xY4b597lz57Rs2TK1b99e3t7eNg8MAABYj5wNAEDxUaDCe9q0aZIkJycnValSRV27duUeoAAAFEPkbAAAio8CFd7Hjh2zVxwAAMCGyNkAABQfXFwNAAAAAAA7ovAGAAAAAMCOSlThPWnSJDk5OWnQoEFm2+XLlxUVFaXKlSurfPny6tmzpxITEy0ed+LECYWHh6ts2bLy9fXV0KFDdeXKlSKOHgAAAABQGpWYwnvnzp167733dPfdd1u0Dx48WGvWrNGKFSu0adMmnT59Wj169DCXZ2ZmKjw8XOnp6dq6dasWL16sRYsWacyYMUU9BAAAAABAKVQiCu/U1FRFRERo/vz5qlixotmenJys999/X2+//bbat2+v5s2ba+HChdq6dau2bdsmSfr222918OBBffzxx2rSpIk6d+6s8ePHa/bs2UpPT3fUkAAAAAAApUSJKLyjoqIUHh6u0NBQi/Zdu3YpIyPDor1u3bqqVq2a4uLiJElxcXFq1KiR/Pz8zD5hYWFKSUnRgQMHct1eWlqaUlJSLCYAAAAAAKxRoNuJOcLy5cu1e/du7dy5M8eyhIQEubm5ycfHx6Ldz89PCQkJZp9ri+7s5dnLcjNx4kSNHTvWBtEDAAAAAEq7Yv2L98mTJ/Xyyy9ryZIl8vDwKLLtjhw5UsnJyeZ08uTJIts2AAAAAODWUqwL7127duns2bNq1qyZXF1d5erqqk2bNmnGjBlydXWVn5+f0tPTlZSUZPG4xMRE+fv7S5L8/f1zXOU8ez67z/Xc3d3l5eVlMQEAAAAAYI1iXXh36NBB+/btU3x8vDm1aNFCERER5t9lypRRbGys+ZjDhw/rxIkTCgkJkSSFhIRo3759Onv2rNknJiZGXl5eql+/fpGPCQAAAABQuhTrc7wrVKighg0bWrSVK1dOlStXNtv79eunIUOGqFKlSvLy8tKLL76okJAQ3XvvvZKkjh07qn79+urbt6+mTJmihIQEjRo1SlFRUXJ3dy/yMQEAAAAASpdiXXjnx7Rp0+Ts7KyePXsqLS1NYWFhevfdd83lLi4uWrt2rZ5//nmFhISoXLlyioyM1Lhx4xwYNQAAAACgtChxhffGjRst5j08PDR79mzNnj07z8dUr15d69ats3NkAAAAAADkVKzP8QYAAAAAoKSj8AYAADY3adIkOTk5adCgQWbb5cuXFRUVpcqVK6t8+fLq2bNnjjuPnDhxQuHh4Spbtqx8fX01dOhQXblypYijBwDAtii8AQCATe3cuVPvvfee7r77bov2wYMHa82aNVqxYoU2bdqk06dPq0ePHubyzMxMhYeHKz09XVu3btXixYu1aNEijRkzpqiHAACATVF4AwAAm0lNTVVERITmz5+vihUrmu3Jycl6//339fbbb6t9+/Zq3ry5Fi5cqK1bt2rbtm2SpG+//VYHDx7Uxx9/rCZNmqhz584aP368Zs+erfT09Fy3l5aWppSUFIsJAIDihsIbAADYTFRUlMLDwxUaGmrRvmvXLmVkZFi0161bV9WqVVNcXJwkKS4uTo0aNZKfn5/ZJywsTCkpKTpw4ECu25s4caK8vb3NKSgoyA6jAgCgcCi8AQCATSxfvly7d+/WxIkTcyxLSEiQm5ubfHx8LNr9/PyUkJBg9rm26M5enr0sNyNHjlRycrI5nTx50gYjAQDAtkrc7cQAAEDxc/LkSb388suKiYmRh4dHkW3X3d1d7u7uRbY9AACswS/eAACg0Hbt2qWzZ8+qWbNmcnV1laurqzZt2qQZM2bI1dVVfn5+Sk9PV1JSksXjEhMT5e/vL0ny9/fPcZXz7PnsPgAAlEQU3gAAoNA6dOigffv2KT4+3pxatGihiIgI8+8yZcooNjbWfMzhw4d14sQJhYSESJJCQkK0b98+nT171uwTExMjLy8v1a9fv8jHBACArXCoOQAAKLQKFSqoYcOGFm3lypVT5cqVzfZ+/fppyJAhqlSpkry8vPTiiy8qJCRE9957rySpY8eOql+/vvr27aspU6YoISFBo0aNUlRUFIeTAwBKNApvAABQJKZNmyZnZ2f17NlTaWlpCgsL07vvvmsud3Fx0dq1a/X8888rJCRE5cqVU2RkpMaNG+fAqAEAKDwKbwAAYBcbN260mPfw8NDs2bM1e/bsPB9TvXp1rVu3zs6RAQBQtDjHGwAAAAAAO6LwBgAAAADAjii8AQAAAACwIwpvAAAAAADsiMIbAAAAAAA7ovAGAAAAAMCOKLwBAAAAALAjCm8AAAAAAOyIwhsAAAAAADui8AYAAAAAwI4ovAEAAAAAsCMKbwAAAAAA7IjCGwAAAAAAO6LwBgAAAADAjii8AQAAAACwIwpvAAAAAADsiMIbAAAAAAA7ovAGAAAAAMCOinXhPXHiRLVs2VIVKlSQr6+vunfvrsOHD1v0uXz5sqKiolS5cmWVL19ePXv2VGJiokWfEydOKDw8XGXLlpWvr6+GDh2qK1euFOVQAAAAAAClVLEuvDdt2qSoqCht27ZNMTExysjIUMeOHXXx4kWzz+DBg7VmzRqtWLFCmzZt0unTp9WjRw9zeWZmpsLDw5Wenq6tW7dq8eLFWrRokcaMGeOIIQEAAAAAShlXRwdwI+vXr7eYX7RokXx9fbVr1y61bdtWycnJev/997V06VK1b99ekrRw4ULVq1dP27Zt07333qtvv/1WBw8e1HfffSc/Pz81adJE48eP1/Dhw/X666/Lzc3NEUMDAAAAAJQSxfoX7+slJydLkipVqiRJ2rVrlzIyMhQaGmr2qVu3rqpVq6a4uDhJUlxcnBo1aiQ/Pz+zT1hYmFJSUnTgwIFct5OWlqaUlBSLCQAAAAAAa5SYwjsrK0uDBg1S69at1bBhQ0lSQkKC3Nzc5OPjY9HXz89PCQkJZp9ri+7s5dnLcjNx4kR5e3ubU1BQkI1HAwAAAAAoLUpM4R0VFaX9+/dr+fLldt/WyJEjlZycbE4nT560+zYBAAAAALemElF4Dxw4UGvXrtX333+v22+/3Wz39/dXenq6kpKSLPonJibK39/f7HP9Vc6z57P7XM/d3V1eXl4WEwAAyBt3IgEAIG/FuvA2DEMDBw7UqlWrtGHDBtWsWdNiefPmzVWmTBnFxsaabYcPH9aJEycUEhIiSQoJCdG+fft09uxZs09MTIy8vLxUv379ohkIAAC3OO5EAgBA3or1Vc2joqK0dOlSffHFF6pQoYJ5Tra3t7c8PT3l7e2tfv36aciQIapUqZK8vLz04osvKiQkRPfee68kqWPHjqpfv7769u2rKVOmKCEhQaNGjVJUVJTc3d0dOTwAAG4ZjroTSVpamtLS0sx5LogKACiOivUv3nPmzFFycrLuv/9+BQQEmNMnn3xi9pk2bZoeeugh9ezZU23btpW/v79WrlxpLndxcdHatWvl4uKikJAQPf7443riiSc0btw4RwwJAIBSoajuRMIFUQEAJUGx/sXbMIyb9vHw8NDs2bM1e/bsPPtUr15d69ats2VoAAAgD0V5J5KRI0dqyJAh5nxKSgrFNwCg2CnWhTcAACh5su9E8uOPP9p9W+7u7pw6BgAo9or1oeYAAKBkKeo7kQAAUBJQeAMAgELjTiQAAOSNQ80BAEChcScSAADyRuENAAAKbc6cOZKk+++/36J94cKFevLJJyVdvROJs7OzevbsqbS0NIWFhendd981+2bfieT5559XSEiIypUrp8jISO5EAgAo8Si8AQBAoXEnEgAA8sY53gAAAAAA2BGFNwAAAAAAdkThDQAAAACAHVF4AwAAAABgRxTeAAAAAADYEYU3AAAAAAB2ROENAAAAAIAdUXgDAAAAAGBHro4OAFKNEV9ZzB+fFO6gSAAAAAAAtsYv3gAAAAAA2BGFNwAAAAAAdkThDQAAAACAHVF4AwAAAABgRxTeAAAAAADYEYU3AAAAAAB2ROENAAAAAIAdUXgDAAAAAGBHFN4AAAAAANiRq6MDQE41Rnxl/n18UrgDIwEAAAAAFBa/eAMAAAAAYEcU3gAAAAAA2BGFNwAAAAAAdkThDQAAAACAHVF4AwAAAABgR6Wq8J49e7Zq1KghDw8PBQcHa8eOHY4OqcBqjPjKYgIA4FZzK+RrAACuVWpuJ/bJJ59oyJAhmjt3roKDgzV9+nSFhYXp8OHD8vX1dXR4eaK4BgCUJiU1XwMAcCNOhmEYjg6iKAQHB6tly5aaNWuWJCkrK0tBQUF68cUXNWLECIu+aWlpSktLM+eTk5NVrVo1nTx5Ul5eXoWOpWH0N4VeR7b9Y8PyXPf1y24Wx836AwCKRkpKioKCgpSUlCRvb29Hh1OkCpKvJcfmbPImAJRuBcrXRimQlpZmuLi4GKtWrbJof+KJJ4yHH344R//o6GhDEhMTExMTk0OnkydPFlGmLB4Kmq8Ng5zNxMTExOT4KT/5ulQcan7u3DllZmbKz8/Pot3Pz0+//PJLjv4jR47UkCFDzPmsrCydP39elStXlpOTU6Fiyd4rYqs98SVFaRx3aRyzxLhL07hL45ilohm3YRi6cOGCAgMD7bL+4qqg+VoiZxcXPFf5x3OVfzxX+cdzlX+2fK4Kkq9LReFdUO7u7nJ3d7do8/Hxsek2vLy8SuWbojSOuzSOWWLcpUlpHLNk/3GXtkPMrUXOLl54rvKP5yr/eK7yj+cq/2z1XOU3X5eKq5pXqVJFLi4uSkxMtGhPTEyUv7+/g6ICAADXIl8DAG5VpaLwdnNzU/PmzRUbG2u2ZWVlKTY2ViEhIQ6MDAAAZCNfAwBuVaXmUPMhQ4YoMjJSLVq00D333KPp06fr4sWLeuqpp4o0Dnd3d0VHR+c4LO5WVxrHXRrHLDHu0jTu0jhmqfSOu6gUl3wt8b8uCJ6r/OO5yj+eq/zjuco/Rz1XpeZ2YpI0a9YsvfXWW0pISFCTJk00Y8YMBQcHOzosAABwDfI1AOBWU6oKbwAAAAAAilqpOMcbAAAAAABHofAGAAAAAMCOKLwBAAAAALAjCm8AAAAAAOyIwtsOZs+erRo1asjDw0PBwcHasWPHDfuvWLFCdevWlYeHhxo1aqR169YVUaS2VZBxz58/X/fdd58qVqyoihUrKjQ09KbPU3FU0P91tuXLl8vJyUndu3e3b4B2UtBxJyUlKSoqSgEBAXJ3d9edd95ZIl/nBR339OnTddddd8nT01NBQUEaPHiwLl++XETRFt7mzZvVtWtXBQYGysnJSatXr77pYzZu3KhmzZrJ3d1dd9xxhxYtWmT3OG2toONeuXKlHnzwQVWtWlVeXl4KCQnRN998UzTBotBKa862RmnM89Yqrd8PrFFav1NYo7R9D7FWsf3+YsCmli9fbri5uRkffPCBceDAAaN///6Gj4+PkZiYmGv/LVu2GC4uLsaUKVOMgwcPGqNGjTLKlClj7Nu3r4gjL5yCjrtPnz7G7NmzjT179hiHDh0ynnzyScPb29v43//+V8SRW6+gY8527Ngx47bbbjPuu+8+o1u3bkUTrA0VdNxpaWlGixYtjC5duhg//vijcezYMWPjxo1GfHx8EUdeOAUd95IlSwx3d3djyZIlxrFjx4xvvvnGCAgIMAYPHlzEkVtv3bp1xmuvvWasXLnSkGSsWrXqhv2PHj1qlC1b1hgyZIhx8OBBY+bMmYaLi4uxfv36ognYRgo67pdfftmYPHmysWPHDuPXX381Ro4caZQpU8bYvXt30QQMq5XWnG2N0pjnrVVavx9Yo7R+p7BGafweYq3i+v2FwtvG7rnnHiMqKsqcz8zMNAIDA42JEyfm2r9Xr15GeHi4RVtwcLDx7LPP2jVOWyvouK935coVo0KFCsbixYvtFaLNWTPmK1euGK1atTIWLFhgREZGlsjEWtBxz5kzx6hVq5aRnp5eVCHaRUHHHRUVZbRv396ibciQIUbr1q3tGqe95CdxDRs2zGjQoIFF27///W8jLCzMjpHZV37GnZv69esbY8eOtX1AsKnSmrOtURrzvLVK6/cDa5TW7xTWKO3fQ6xVnL6/cKi5DaWnp2vXrl0KDQ0125ydnRUaGqq4uLhcHxMXF2fRX5LCwsLy7F8cWTPu6126dEkZGRmqVKmSvcK0KWvHPG7cOPn6+qpfv35FEabNWTPuL7/8UiEhIYqKipKfn58aNmyoCRMmKDMzs6jCLjRrxt2qVSvt2rXLPAzs6NGjWrdunbp06VIkMTvCrfB5ZgtZWVm6cOFCifk8K61Ka862RmnM89Yqrd8PrFFav1NYg+8h9lVUn+2uNl1bKXfu3DllZmbKz8/Pot3Pz0+//PJLro9JSEjItX9CQoLd4rQ1a8Z9veHDhyswMDDHi764smbMP/74o95//33Fx8cXQYT2Yc24jx49qg0bNigiIkLr1q3Tb7/9phdeeEEZGRmKjo4uirALzZpx9+nTR+fOnVObNm1kGIauXLmi5557Tq+++mpRhOwQeX2epaSk6J9//pGnp6eDIitaU6dOVWpqqnr16uXoUHADpTVnW6M05nlrldbvB9Yord8prMH3EPsqqu8v/OINh5s0aZKWL1+uVatWycPDw9Hh2MWFCxfUt29fzZ8/X1WqVHF0OEUq+pJ4/gAAf+BJREFUKytLvr6+mjdvnpo3b65///vfeu211zR37lxHh2ZXGzdu1IQJE/Tuu+9q9+7dWrlypb766iuNHz/e0aHBjpYuXaqxY8fq008/la+vr6PDAYqF0pDnrVWavx9Yo7R+p7AG30OKH37xtqEqVarIxcVFiYmJFu2JiYny9/fP9TH+/v4F6l8cWTPubFOnTtWkSZP03Xff6e6777ZnmDZV0DH//vvvOn78uLp27Wq2ZWVlSZJcXV11+PBh1a5d275B24A1/+uAgACVKVNGLi4uZlu9evWUkJCg9PR0ubm52TVmW7Bm3KNHj1bfvn31zDPPSJIaNWqkixcvasCAAXrttdfk7Hzr7ffM6/PMy8urVPzavXz5cj3zzDNasWLFLf+r3q2gtOZsa5TGPG+t0vr9wBql9TuFNfgeYl9F9f2FZ9yG3Nzc1Lx5c8XGxpptWVlZio2NVUhISK6PCQkJsegvSTExMXn2L46sGbckTZkyRePHj9f69evVokWLogjVZgo65rp162rfvn2Kj483p4cfflgPPPCA4uPjFRQUVJThW82a/3Xr1q3122+/mV8kJOnXX39VQEBAiUmQ1oz70qVLOZJa9heFq9f6uPXcCp9n1lq2bJmeeuopLVu2TOHh4Y4OB/lQWnO2NUpjnrdWaf1+YI3S+p3CGnwPsa8i+2y36aXaYCxfvtxwd3c3Fi1aZBw8eNAYMGCA4ePjYyQkJBiGYRh9+/Y1RowYYfbfsmWL4erqakydOtU4dOiQER0dXSJvTVLQcU+aNMlwc3MzPvvsM+PMmTPmdOHCBUcNocAKOubrldSrlhZ03CdOnDAqVKhgDBw40Dh8+LCxdu1aw9fX13jjjTccNQSrFHTc0dHRRoUKFYxly5YZR48eNb799lujdu3aRq9evRw1hAK7cOGCsWfPHmPPnj2GJOPtt9829uzZY/zxxx+GYRjGiBEjjL59+5r9s2/HMXToUOPQoUPG7NmzS+TtxAo67iVLlhiurq7G7NmzLT7PkpKSHDUE5FNpzdnWKI153lql9fuBNUrrdwprlMbvIdYqrt9fKLztYObMmUa1atUMNzc345577jG2bdtmLmvXrp0RGRlp0f/TTz817rzzTsPNzc1o0KCB8dVXXxVxxLZRkHFXr17dkJRjio6OLvrAC6Gg/+trleTEWtBxb9261QgODjbc3d2NWrVqGW+++aZx5cqVIo668Aoy7oyMDOP11183ateubXh4eBhBQUHGCy+8YPz9999FH7iVvv/++1zfp9njjIyMNNq1a5fjMU2aNDHc3NyMWrVqGQsXLizyuAuroONu167dDfujeCutOdsapTHPW6u0fj+wRmn9TmGN0vY9xFrF9fuLk2FwrAEAAAAAAPbCOd4AAAAAANgRhTcAAAAAAHZE4Q0AAAAAgB1ReAMAAAAAYEcU3gAAAAAA2BGFNwAAAAAAdkThDQAAAACAHVF4AwBQQJs3b1bXrl0VGBgoJycnrV69usDr+Oabb3TvvfeqQoUKqlq1qnr27Knjx4/bPFYAAEqr4pSvKbzxf+3dd1gUV/s38C8L0jsKiCIaNSr2SlBjA0Ul9kcfFA1GIiZCrLFGQbEG/UVjicYSNRFLTOxRlGDBKDYUNUoUYwGNKxoEBKSf9w9f5mEEFJZdin4/17XXxcycOXOfZXfvvWdmZ4hITa5du4ZevXohMzMTV69eRbt27cpku3PmzEGLFi3KZFv0UmpqKpo3b47Vq1ertP7du3fRr18/dOvWDVFRUThy5AiePn2KgQMHqjlSIqJ3Q3nlYKrYKlK+ZuFNb7VPP/0U9evXh6GhISwsLODs7IytW7eWd1j0lmrSpAmqVKkCIyMjtGvXDpMmTSp1n1euXMHQoUNhb28PAwMDNGrUCN9++60aoqXS6NWrF+bPn48BAwYUujwjIwNffvklatSoASMjIzg5OeHEiRPS8sjISOTk5GD+/PmoW7cuWrVqhS+//BJRUVHIysoqo1EQaRZzMJUlVXJw7dq1oaWlBS0tLWhra8POzg7e3t549uyZ1ObEiRPQ0tKChYUF0tPTZetfuHBBWj8/IQTWr18PZ2dnmJqawtjYGI0bN8b48eNx+/btEo1rwYIFaN++PQwNDWFubl6idali5WsW3vRWs7KywoYNGxATE4Pz58/j888/x2effYa1a9eWd2j0FtLS0sL+/fvx8OFDJCQkwMPDo9R9RkZGwtraGlu3bsX169fx1VdfYcaMGVi1apUaIiZN8fPzQ0REBHbs2IGrV69i8ODB6NmzJ2JiYgAArVu3hkKhwKZNm5CTk4OkpCT89NNPcHV1RZUqVco5eiL1YA6msqRqDg4MDMSjR48QGxuL4OBghIeHY9y4cQXamZiYYM+ePbJ5GzduRK1atWTzhBAYNmwYxo0bh969e+Po0aO4ceMGNm7cCH19fcyfP79E48rMzMTgwYPx+eefl2g9Kp4yzdeC6B0zYMAAMXToUGnawcFBLFu2TNbGy8tL9OvXT5o+fPiw6NChgzAzMxOWlpbC3d1d3L59W1q+adMmYWZmJuujc+fOYvz48dJ0enq6mDx5srCzsxOGhoaiXbt24vjx46/t4+7duwKAuHz5shBCiOPHjwsA4tmzZ1Kb4cOHCwBiz5490rzY2FgxePBgYWZmJiwsLETfvn3F3bt3i3xO8vot7FGSfvOetzlz5oiqVasKExMTMWbMGJGRkSG1ycnJEQsXLhS1a9cW+vr6olmzZmLXrl0FYmnatKksxr179woAonPnziXuK//zJYSQjevV5zjPq6+L+/fvi759+wojIyNhYmIiBg8eLJRKpbQ8ICBANG/eXJrOyMgQdevWLXT7r8ayfv160b9/f2FgYCDq1asn9u3bV2R7IYQYO3as6Nq1a4Ftr127VtSsWVMYGBiIwYMHi8TExNf2Q+rx6vvk/v37QltbWzx8+FDWzsXFRcyYMUOaPnHihLC2thba2toCgHB2dn7ta4XobcAcXBBzcPnl4MJef/PmzROOjo4FxjFr1izh6uoqzU9LSxNmZmZi9uzZIn9JtX37dgGgyFyem5srm16/fr1o2LCh0NPTEw0aNBCrV68udL3CXqNUMuWdr3nEm94ZQghERkbizJkz6NmzZ4nWTU1NxaRJk3Dx4kWEhYVBoVBgwIAByM3NLXYfb9qjporIyEjs379fNi8rKwtubm4wMTHBqVOncPr0aRgbG6Nnz57IzMx8bX83b97Eo0ePpIcq/YaFhSE6OhonTpzA9u3bsXv3bsydO1davmjRIvz4449Yu3Ytrl+/jokTJ2L48OE4efKkbHsJCQk4e/asNP3999+jRo0asjbF7au0cnNz0a9fPyQkJODkyZMIDQ3FnTt38N///rfIdVatWoXHjx8Xq/+5c+diyJAhuHr1Knr37g1PT08kJCQU2T4pKQmWlpayebdv38bPP/+MAwcOICQkBJcvX8bYsWOLN0BSq2vXriEnJwfvv/8+jI2NpcfJkyfx999/AwCUSiVGjx4NLy8vXLhwASdPnoSuri7+85//4OV3A6K3C3Mwc7CqNJ2D83v48CEOHDgAJyenAstGjBiBU6dOITY2FgDw66+/onbt2mjVqpWs3fbt29GgQQP07du30G3kPy09ODgY/v7+WLBgAaKjo7Fw4ULMnj0bW7ZsKXHsVHJlnq9V2VtAVJns2bNHGBkZCR0dHaGlpSX8/f1ly4uzt/1VT548EQDEtWvXhBBC7NixQ+jp6cna5N/bXpw9aqrsbe/UqZOYN2+ebA/eTz/9JBo0aCDbo5qRkSEMDAzEkSNHCh1PcfZKF6dfLy8vYWlpKVJTU6U2a9asEcbGxiInJ0ekp6cLQ0NDcebMGdl2vL29pSMgebHMnj1bjBo1Snr+rK2txeeffy7tbS9JX6Xd23706FGhra0tYmNjpeXXr18XAMT58+eFEPK97f/++6+wsLCQ/jdvOuI9a9YsaTolJUUAEIcPHy60/enTp4WOjo7sfxkQECC0tbXFgwcPpHmHDx8WCoVCPHr0qMhtk3rglT3oO3bsENra2uKvv/4SMTExskfe/2PWrFmiTZs2sn7i4uIEABEREVGW4RNpFHMwc3BFzsEODg5CV1dXGBkZCX19fQFAODk5ydbJP47+/fuLuXPnCiGE6Nq1q/j222/Fnj17ZEe8GzZsKPr27Svbzvjx44WRkZEwMjISNWrUkObXrVtXbNu2TdZ23rx5wtnZuUCsPOJdeuWdr3VKvm+AqHLp3r07oqKikJKSgnPnzmHatGmoXr06PvvsM6nNtGnTMGvWLGk6IyMD7u7u0nRMTAz8/f1x7tw5PH36VNrLHhsbiyZNmqBx48bIyMjAr7/+ikGDBhWIIf8etfwyMjJgZWUlTSclJcHY2FiaFq/Zk7Z3717cuXMHkydPxuzZs6X5V65cwe3bt2FiYiJrn56eLu29U0Vx+23evDkMDQ2laWdnZ6SkpCAuLg4pKSlIS0tD9+7dZX1kZmaiZcuWsnleXl5o164dli1bhg0bNmD48OHIycmRlt++fbvYfdWsWfON42vfvj0Uiv+dBJSWlib9HR0dDXt7e9jb20vzHB0dYW5ujujoaLRt21bWV2BgILp27YqOHTu+cbsA0KxZM+lvIyMjmJqaIj4+vkC7P//8E/369UNAQAB69OghW1arVi3Z0QhnZ2fk5ubi5s2bsLW1LVYcpB4tW7ZETk4O4uPj8eGHHxbaJi0tTfZ6AwBtbW0AKNFRPKKKjjn4Jebg1yvPHDxlyhSMHDkSQgjExcVh5syZcHd3R3h4uPS5nGfUqFEYP348hg8fjoiICOzatQunTp164za++uor+Pn5Yffu3Vi4cCGAl2dy/P333/D29sbo0aOlttnZ2TAzMytW7FQ6ZZ2vWXjTW8/IyAj16tUDALRo0QJPnjzB0qVLZUk/70M3z7Rp02QJpk+fPnBwcMD69ethZ2eH3NxcNGnSRDq9q0mTJpg2bRoGDx4MfX19KBQKvHjxQrrFU0pKCrS1tREZGVngQzx/kjcxMcGlS5ek6YcPH6JLly4FxpSVlYWpU6diwYIFMDAwkC1LSUlB69atERwcXGC9atWqveHZKpo6+k1JSQEA/PbbbwVOWdPT05NNW1lZwc3NDT/++CN++OEH/P7777IL8pSkr1OnTsm+rNSvX79AbDt37kSjRo2k6cKe9+KIiYnBhg0bEBUVhQcPHhRrnVcvzqGlpVXgw/zGjRtwcXGBj4+P7AsqlY+UlBTZlWnv3r2LqKgoWFpa4v3334enpyc+/vhj/N///R9atmyJJ0+eICwsDM2aNYO7uzvc3d2xbNkyBAYGYujQoXj+/DlmzpwJBweHAl9aiSoz5uD/YQ5+qaLl4KpVq0qv0fr162P58uVwdnbG8ePH4erqKmvbq1cv+Pj4wNvbG3369JHtuMlTv3593Lx5UzavWrVqqFatGqytraV5ec/h+vXrC5za/urrlFRXkfI1C2965wghChQ1+T90gZfJNzExEQDw77//4ubNm1i/fr20N+yPP/4o0O/ixYsxc+ZM6Uilp6entKw4e9QAQKFQyOLQ0Sn8LbpmzRoYGxtjxIgRBZa1atUKO3fuhLW1NUxNTYvcVkkVt98rV67gxYsX0peRs2fPwtjYGPb29rC0tISenh5iY2PRuXPnN25zzJgx6NOnD1q0aIGGDRvKljk6Oha7rzp16rzxFhz29vZFPveNGjVCXFwc4uLipD3uN27cQGJiIhwdHWX9TJs2DZ9++inq1atX7KT/JtevX0e3bt3g5eWFBQsWFNomNjYW//zzD+zs7AC8fN4VCgUaNGiglhhI7uLFi+jatas0nXfbGi8vL2zevBmbNm3C/PnzMXnyZDx8+BBVq1bFBx98gI8++ggA0K1bN2zbtg1BQUEICgqCoaEhnJ2dERISUuCLPNHbhDlYNczBZZeD84reFy9eFFimo6ODjz/+GEFBQTh8+HCh6w8dOhTDhg3Dvn370K9fvyK3Y2NjAzs7O9y5c0f2eiX1qkj5moU3vbWSk5Px6aefwsfHBw0aNMCLFy9w6tQpLFmypERHDC0sLGBlZYV169ahevXqiI2NxfTp0wtta2pqKiXE/G/G4uxRK4mgoCAcOHCgwH0jgZdfNpYsWYJ+/fohMDAQNWvWxP3797F7925MnTq1WKd8Faa4/WZmZsLb2xuzZs3CvXv3EBAQAD8/PygUCpiYmODLL7/ExIkTkZubi44dOyIpKQmnT5+GqakpvLy8ZNvs3Lkz5s6dC2dn5wLxlLSv0nB1dUXTpk3h6emJ5cuXIzs7G2PHjkXnzp3Rpk0bqd3t27cRGxtb4nt0vs6ff/6Jbt26wc3NDZMmTYJSqQTw8otB/qMc+vr68PLywtKlS5GcnIxx48ZhyJAhPM1cQ7p06fLa01CrVKmCuXPnyi5q9CoPDw+13HKOqCJiDmYOVhdN5+Dnz59DqVRKp5pPnToV1apVQ/v27QttP2/ePEyZMqXQo93Ay8/23bt3w8PDAzNmzICbmxtsbGxw//597Ny5U3Y0e+7cuRg3bhzMzMzQs2dPZGRk4OLFi3j27JlUIMbGxiIhIQGxsbHIyclBVFQUAKBevXqyMzaocBUpX7PwpreWvr4+rKysMHnyZNy7dw/a2tpo2rQpNm7ciMGDBxe7H4VCgR07dmDcuHFo0qQJGjRogBUrVpT4NKg37VEria5du8r23uVnaGiI8PBwTJs2DQMHDsTz589Ro0YNuLi4lGrve3H7dXFxQf369dGpUydkZGRg6NChmDNnjrR83rx5qFatGhYtWoQ7d+7A3NwcrVq1wsyZMwvd7sSJE4uMqaR9qUpLSwv79u3DF198gU6dOkGhUKBnz55YuXKlrF1qairmzp1b4IrjpfHLL7/gyZMn2Lp1K7Zu3SrNd3BwwL1796TpevXqYeDAgejduzcSEhLw0Ucf4bvvvlNbHEREJcEczBysLprOwf7+/vD39wfw8pTwtm3b4ujRo0UW1rq6uqhatepr4925cyfWr1+PTZs2ISgoCFlZWahZsyZcXFzwzTffSG0//fRTGBoaYsmSJZgyZQqMjIzQtGlTTJgwQRZf/quc553efPz4cZVPyafyoSVetwuAiKgERo4cicTEROzdu7e8QyEiInqnMAcTVWy8jzcRERERERGRBrHwJiIiIiIiItIgnmpOREREREREpEE84k1ERERERESkQSy8iYiIiIiIiDSIhTcRERERERGRBrHwJiIiIiIiItIgFt5EREREREREGsTCm4iIiIiIiEiDWHgTERERERERaRALbyIiIiIiIiINYuFNREREREREpEEsvImIiIiIiIg0iIU3ERERERERkQax8CYiIiIiIiLSIBbeRERERERERBrEwpuIiIiIiIhIg1h4ExFRudi6dSvu3bsnTW/evBkPHz4st3iys7MxdepU2NvbQ6FQoH///uUWCxERkTpVtJz7LmLhXUls3rwZWlpaRT4ePHhQpvEYGxtj5MiRZbpNInq7nDp1ClOnTsW9e/dw5MgR+Pr6QqFQb1oKCwvDqFGj8P7778PQ0BDvvfcePv30Uzx69KhA2x9++AFLlizBf/7zH2zZsgUTJ05UayxUeTDnEtHbpjQ599XPQCMjIzg6OmL+/PlIS0uTtR05ciS0tLRgamqKFy9eFOgrJiZG6mfp0qUFlsfHx2P69Olo2rQpjI2Noa+vj3r16uGTTz7BH3/8odLY4+LiMHfuXLRr1w4WFhaoWrUqunTpgt9//12l/lSlU6Zbo1ILDAxEnTp1Csy3tLQsh2iIiFQ3ceJEdOnSRfpMmzRpEqpXr67WbUybNg0JCQkYPHgw6tevjzt37mDVqlU4ePAgoqKiYGtrK7U9duwYatSogWXLlqk1Bqq8mHOJ6G1R2pzbvXt3fPzxxwCAlJQUnDp1CrNnz8aVK1ewa9cuWVsdHR2kpaXhwIEDGDJkiGxZcHAw9PX1kZ6eXmAb58+fh7u7O54/fw4PDw989tln0NPTw927d7F3715s3rwZJ0+eRKdOnUo09n379uHrr79G//794eXlhezsbPz444/o3r07fvjhB3zyyScl6k9VLLwrmV69eqFNmzblHQYRUak1bNgQf//9N/78809UrVoVdevWVfs2vvnmG3Ts2FG2V79nz57o3LkzVq1ahfnz50vz4+PjYW5urvYYqPJiziWit0Vpc+7777+P4cOHS9OfffYZMjMzsXv3bqSnp0NfX19apqenhw4dOmD79u0FCu9t27bB3d0dv/76q2z+s2fP0L9/f+jo6CAqKgoNGzaULZ8/fz527NgBAwODEsUNAF27dkVsbCyqVq0qi79Fixbw9/cvs8Kbp5q/ZfJOjwsPD8eYMWNgZWUFU1NTfPzxx3j27Jms7b59++Du7g47Ozvo6emhbt26mDdvHnJycmTtcnNzMWXKFJiZmaF27doICQmRlk2bNg0mJiaoX78+Dh8+LFtv5MiRqF27tmxeXFwcDAwMoKWlJfudSe3atQucRufj4wN9fX2cOHHitWMeOXIkjI2NcefOHbi5ucHIyAh2dnYIDAyEEELWdunSpWjfvj2srKxgYGCA1q1b45dffim0361bt6Jdu3YwNDSEhYUFOnXqhKNHj8pift2piPlpaWnBz88PwcHBaNCgAfT19dG6dWuEh4cX2O7Dhw8xatQo2NjYQE9PD40bN8YPP/xQaIxz5swpdNtdunQp0PbcuXPo2bMnzMzMYGhoiM6dO+P06dOF9lvU2F79Xxw+fBgffvghjIyMYGJiAnd3d1y/fl3WJu//86pffvmlQJ9dunQpEPuFCxcKfU5TUlIwefJkvPfee6hSpYoszqdPnxY6rvzbed3/Lv9rs6TjLM7rMDc3F8uXL0fjxo2hr68PGxsbjBkzpsB7NO//MGHChAJjcHNzg5aWFj766CPZ/IyMDAQEBKBevXrQ09ODvb09pk6dioyMDFm7vNfkqz766CPZ+/bevXtFng7WpEmTAv+v+Ph4eHt7w8bGBvr6+mjevDm2bNkia5PX5+bNm2FkZAQnJyfUrVsXvr6+0NLSeuMptfljWrduHerWrQs9PT20bdsWFy5ckLXt1KlTgVPpOnXqBEtLS0RHR8v6O378OK5fv17k653oVcy5zLnMucy5b3vOfR1bW1toaWlBR6fgsdxhw4bh8OHDSExMlOZduHABMTExGDZsWIH2a9euxaNHj7B8+fICRTfw8jkcOnQo2rZtK5tfnPdw48aNZUU38HLnQO/evfHgwQM8f/68JMNWGY94v6X8/Pxgbm6OOXPm4ObNm1izZg3u37+PEydOSB+mmzdvhrGxMSZNmgRjY2McO3YM/v7+SE5OxpIlS6S+vv76ayxduhQjRoxA69atMXHiRGRmZuK3335DixYtsGDBAmzYsAEDBw7EjRs3Cj0tL4+/v3+hp5a8KiAgABs3bsTOnTsLTWivysnJQc+ePfHBBx8gKCgIISEhCAgIQHZ2NgIDA6V23377Lfr27QtPT09kZmZix44dGDx4MA4ePAh3d3ep3dy5czFnzhy0b98egYGB0NXVxblz53Ds2DH06NFDateiRQtMnjxZFsuPP/6I0NDQAjGePHkSO3fuxLhx46Cnp4fvvvsOPXv2xPnz59GkSRMAwOPHj/HBBx9IH9DVqlXD4cOH4e3tjeTk5EKTAQCsWbNGSrQzZswosPzYsWPo1asXWrdujYCAACgUCmzatAndunXDqVOn0K5duwLrfPjhh/Dx8QEAREdHY+HChbLlP/30E7y8vODm5oavv/4aaWlpWLNmDTp27IjLly8X+AKoqmnTphU6f8qUKVi7di28vb3RoUMHVKlSBbt378aePXuK1W/NmjWxaNEi2bxDhw5h+/btsnklGWdxX4djxozB5s2b8cknn2DcuHG4e/cuVq1ahcuXL+P06dOoUqWK1FZfXx/BwcFYsmSJNP/BgwcICwuT7V0GXn656Nu3L/744w/4+PigUaNGuHbtGpYtW4Zbt25h7969xXpuVPXixQt06dIFt2/fhp+fH+rUqYNdu3Zh5MiRSExMxPjx44tc9/bt21i/fn2Jtrdt2zY8f/4cY8aMgZaWFoKCgjBw4EDcuXNH9hy+KiUlBSkpKVISrlatGn766ScsWLAAKSkp0uuiUaNGJYqH3l3Mucy5+THnFsScq35lnXPT09OlnSypqak4ffo0tmzZgmHDhhVaeA8cOBCfffYZdu/ejVGjRgF4mbcbNmyIVq1aFWh/4MABGBgYYODAgcWOSdX3cB6lUglDQ0MYGhoWe5ulIqhS2LRpkwAgLly4UKx2rVu3FpmZmdL8oKAgAUDs27dPmpeWllZg/TFjxghDQ0ORnp4uhBAiPT1dWFtbi6FDh0ptrly5IrS1tUXz5s1FRkaGEEKIp0+fChMTEzF+/HipnZeXl3BwcJCm//zzT6FQKESvXr0EAHH37l1pmYODg/Dy8hJCCPH9998LAGLlypVvfF7ytgNAfPHFF9K83Nxc4e7uLnR1dcWTJ0+KHHNmZqZo0qSJ6NatmzQvJiZGKBQKMWDAAJGTkyNrn5ubK4vZ3d29QDy+vr7i1bcWAAFAXLx4UZp3//59oa+vLwYMGCDN8/b2FtWrVxdPnz6Vre/h4SHMzMwKxD9z5kwBQNa+cePGonPnzrKY69evL9zc3GTxp6WliTp16oju3bsXGEONGjXEJ598Ik0fP35cABDHjx8XQgjx/PlzYW5uLkaPHi1bT6lUCjMzM9l8Ly8vYWRkVGAbu3btkvUphBCdO3eWxX7o0CEBQPTs2bPAc1q9enXh5uYmmxcQECAAyP7nhencubNo3LhxgflLliyRvTZLOs7ivA5PnTolAIjg4GBZnyEhIQXmOzg4iO7du4uqVauKX375RZo/b9480b59+wKvwZ9++kkoFApx6tQpWd9r164VAMTp06eleQCEr69vgefA3d1d9r69e/euACCWLFlSoO2rr7Xly5cLAGLr1q3SvMzMTOHs7CyMjY1FcnKyrM9NmzZJ7YYMGSKaNGki7O3tpc+CouStb2VlJRISEqT5+/btEwDEgQMHXrv+vHnzBAARFhYmm1/U64LePcy5RWPOZc7Nw5z7buTcvPgLe/Tv31/6/MqT/zX4n//8R7i4uAghhMjJyRG2trZi7ty5hY7TwsJCtGjRosC2k5OTxZMnT6RHSkqKtKyk7+H8YmJihL6+vhgxYsQbx68uPNX8LeXj4yPbg/f5559DR0cHhw4dkubl/43E8+fP8fTpU3z44YdIS0vDX3/9BQC4du0a4uPjZXufmjVrBn19fbRo0QK6uroAACsrK3Tq1AlhYWFFxjRjxgy0atUKgwcPLrLNvn37MHbsWEyZMqXQU3JeJ3/7vD1fmZmZsisW5h/zs2fPkJSUhA8//BCXLl2S5u/duxe5ubnw9/cvcIrqq6delYSzszNat24tTdeqVQv9+vXDkSNHkJOTAyEEfv31V/Tp0wdCCDx9+lR6uLm5ISkpSRYnAOlIxqt7YfOLioqSTuv5999/pT5TU1Ph4uKC8PBw5ObmytbJzMyEnp5ekX2GhoYiMTERQ4cOlcWpra0NJycnHD9+vMA6+ds9ffr0jaf1CCEwY8YMDBo0CE5OTgWWP3/+HFZWVq/to7RUGeebXoe7du2CmZkZunfvLuuzdevWMDY2LtCnrq4uPD09sWnTJmle3p77V+3atQuNGjVCw4YNZX1369YNAAr0nbf3Ov8jKyur0OciLS2tQNtXT5E9dOgQbG1tMXToUGlelSpVMG7cOKSkpODkyZOF9h0ZGYldu3Zh0aJFJbqq+X//+19YWFhI0x9++CEA4M6dO0WuEx4ejrlz52LIkCHS80JUWsy5zLl5mHNVx5z7PxUx5/br1w+hoaEIDQ3Fvn37MGPGDISEhGDYsGEFTu/PM2zYMJw4cQJKpRLHjh2DUqks9DRzAEhOTi70ZxIjRoxAtWrVpEfeWRmqvIfzpKWlYfDgwTAwMMDixYuL/RyUFk81f0vVr19fNm1sbIzq1avLfkdz/fp1zJo1C8eOHUNycrKsfVJSEoCXvw8DgBo1arxxmzVq1CjyMv9//PEHDhw4gLCwMMTGxhbaJioqCj///DNycnKQkJDwxu3lp1Ao8N5778nmvf/++wAgG/PBgwcxf/58REVFyX5/kz+5//3331AoFHB0dCxRDG/y6v8kL8a0tDQ8efIECoUCiYmJWLduHdatW1doH/Hx8bLpp0+fokqVKq89RSYmJgYA4OXlVWSbpKQkWQGTlJRU6Iffq30WVbiYmprKplNTU1GtWrUi+ytMcHAwrl+/jp9//hnbtm0rsNzZ2Rl79uzBL7/8Ip329uotLUqrpOMszuswJiYGSUlJsLa2LrTPV//HAPDJJ5+gdevWePToEW7duoVHjx5hyJAhsguD5fUdHR1d5HP9at8bN27Exo0bC7RzcHAoMC8gIAABAQEF5tvY2Eh/379/H/Xr1y+QyPNO2b5//36hcU2fPh0ffvghPvrooxJ9+a9Vq5ZsOu81/Orv9vL89ddfGDBgAJo0aYINGzYUeztEb8Kcy5ybhzlXdcy5/1MRc27NmjXh6uoqTfft2xdWVlb48ssvcfDgQfTp06fAOr1794aJiQl27tyJqKgotG3bFvXq1Svwu34AMDExQUpKSoH5gYGBUpzdu3eX5j958qTE72Hg5U8UPDw8cOPGDRw+fBh2dnZvHLu6sPB+RyUmJqJz584wNTVFYGAg6tatC319fVy6dAnTpk2T9sYW57dh+RV2vz7g5W+G3Nzc0K1bN2zevLnQNleuXEGvXr3g4uKCKVOmYPjw4cX6rVlxnTp1Cn379kWnTp3w3XffoXr16qhSpQo2bdpUaJIpa3nP+fDhw4tM2M2aNZNN37t3D7Vq1XrtUYG8fpcsWYIWLVoU2iZ/wk9ISEBmZqbsNktF9fnTTz8V2u7V3/ro6+vjwIEDsnmnTp2S/QYrv8zMTMyePRve3t5SEn3VunXrMHTo0NcezSmtko6zuH1aW1sjODi40OWFJfDmzZujefPm+PHHHxEdHY1BgwYV+AKS13fTpk3xzTffFNq3vb29bLpfv34Fku6sWbOgVCoLrOvj41PguR49enSh2ymJo0eP4vfff0dERESJ19XW1i50fmF73uPi4tCjRw+YmZnh0KFDMDExKfH2iFTFnMucmx9zbuGYc/+nIubcwri4uAB4eTZZYYW3np4eBg4ciC1btuDOnTuYM2dOkX01bNgQV65cQVZWluwMolffh3lUeQ8DL5/HgwcPIjg4uMzPfGPh/ZaKiYlB165dpemUlBQ8evQIvXv3BgCcOHEC//77L3bv3i27F97du3dl/eTd3++ff/554zYfPnxY6F6jvXv3IiIiosjTPfI0bdoUu3btgoGBAXbt2gUfHx9cvXr1tad05cnNzcWdO3dkCePWrVsAIF2I49dff4W+vj6OHDkiO6Ur/+lEAFC3bl3k5ubixo0bRSZNVeTtyc3v1q1bMDQ0lD74TUxMkJOTI9ujWJTs7GxcuXIFPXv2fG27vNtFmJqaFqvfGzduAHj9haXy+rS2ti5Wn9ra2gXa5b/K5au+++47xMfHv/YDunbt2ti6dSuaNm2KUaNGoX///vjxxx/x008/vTGe4irpOIvzOqxbty5+//13dOjQoUS3xBg1ahSWLVsGpVJZ4AtV/nivXLkCFxeXYp2i+ereawBYvnx5oV8C6tevX6CtkZGRbNrBwQFXr15Fbm6ubA983mm0r+7VF0Jg+vTpGDBgAD744IM3xquqf//9Fz169EBGRgbCwsLUfq9wIuZc5tw8zLmqY879n8qSc7OzswGg0CPVeYYNG4YffvgBCoUCHh4eRbb76KOPcPbsWezZs6fALcgKU61atRK9h4GXFwnctGkTli9fLjtFv6zwN95vqXXr1sl+N7JmzRpkZ2ejV69eAP53pCj/kaHMzEx89913sn7atm0LAwMD2VUrr169ivT0dERFRSEzMxPAyz224eHhBW5on5OTg5kzZ2LYsGFvTKitWrWCkZERFAoFNmzYgHv37hW5d7Ywq1atkv4WQmDVqlWoUqWKtDdOW1sbWlpast/I3Lt3r8BVJ/v37w+FQoHAwMACv8Mq6jcsxfHqF6G4uDjs27cPPXr0gLa2NrS1tTFo0CD8+uuv+PPPPwus/+TJE9n00aNHkZSUhH79+r12u61bt0bdunWxdOnSQj8YX+13x44d0NXVRceOHYvs083NDaampli4cGGhv096tc+SeP78ORYsWICJEye+9ghAdnY2PD090bhxYyxbtgyurq4FTjkrLVXG+abX4ZAhQ5CTk4N58+YVWDc7O7vIL0fDhg3Dw4cPYW1tXeRRqSFDhuDhw4eFXqn0xYsXSE1NLXQ9denduzeUSiV27twpzcvOzsbKlSthbGyMzp07y9rv2LEDV69eLXClW3VKTU1F79698fDhQxw6dKjQ00+JSos5lzk3D3Ou6phzS6Yi5Ny8nRLNmzcvsk3Xrl0xb948rFq16rWvsc8//xw2NjaYOHGitAMlv1c/D0r6Hl6yZAmWLl2KmTNnvvaK75rEI95vqczMTLi4uGDIkCG4efMmvvvuO3Ts2BF9+/YFALRv3x4WFhbw8vLCuHHjoKWlhZ9++qnAi9rIyAjjx4/H4sWLoaOjg1atWmHt2rVQKBR49OgR3N3d0bdvX2zYsAEZGRn48ssvZes/ePAAurq6sgvMFEeTJk0wbdo0LF68GB4eHkWeZpJHX18fISEh8PLygpOTEw4fPozffvsNM2fOlPZsu7u745tvvkHPnj0xbNgwxMfHY/Xq1ahXrx6uXr0q9VWvXj189dVXmDdvHj788EMMHDgQenp6uHDhAuzs7FT+wGrSpAnc3NxktzYBXt5GJc/ixYtx/PhxODk5YfTo0XB0dERCQgIuXbqE33//Xfod3s6dO/Hll19CT08PL168wNatW6U+kpKSkJOTg71790pfaDZs2IBevXqhcePG+OSTT1CjRg08fPgQx48fh6mpKQ4cOICYmBgEBARg+/btmD59eqGnVeUxNTXFmjVrMGLECLRq1QoeHh6oVq0aYmNj8dtvv6FDhw6yZFgSly5dQtWqVTF16tTXtps7dy6uXbuGy5cvv/bWUaVR0nEW53XYuXNnjBkzBosWLUJUVBR69OiBKlWqICYmBrt27cK3336L//znPwVisbCwwKNHj6Qvs4UZMWIEfv75Z3z22Wc4fvw4OnTogJycHPz111/4+eefceTIEbRp00YjzxXw8tS477//HiNHjkRkZCRq166NX375BadPn8by5csLnN599OhRjB49Gg0aNNBYTJ6enjh//jxGjRqF6Oho6d7dwMvTPfv376+xbdO7gzmXOZc5t/SYc0umrHPurVu3pNd+Wloazp49iy1btqBevXoYMWJEkespFArMmjXrjf1bWlpiz5496NOnD5o3bw4PDw+0bdsWVapUQVxcHHbt2gVAfn2X4r6H9+zZg6lTp6J+/fpo1KiR7D0MvPzteP7fz2tMmV0/nUqlpLc2OXnypPDx8REWFhbC2NhYeHp6in///VfW9vTp0+KDDz4QBgYGws7OTkydOlUcOXKkwO0msrKyxIQJE4SJiYmoVauWCAkJEUZGRsLLy0tMmzZNGBsbi/fee0/s379f1n/erR7y3+4kf4xF3dokT3p6umjYsKFo27atyM7OLnLMebct+Pvvv0WPHj2EoaGhsLGxEQEBAQVuTbJx40ZRv359oaenJxo2bCg2bdok3Q7jVT/88INo2bKl0NPTExYWFqJz584iNDRUFnNJbm3i6+srtm7dKm2/ZcuWsuc5z+PHj4Wvr6+wt7cXVapUEba2tsLFxUWsW7dOtm0UcWuHvEf+21MIIcTly5fFwIEDhZWVldDT0xMODg5iyJAh0i2Vtm/fLpo0aSK+/fZb2S1QhCh4a5P8893c3ISZmZnQ19cXdevWFSNHjpTdwqWktzYBIJYtWyZr++r/6NSpU0JbW1t8//33hbZT161NVBlncV6HQgixbt060bp1a2FgYCBMTExE06ZNxdSpU8U///wjtSnqNfa65ZmZmeLrr78WjRs3ll67rVu3FnPnzhVJSUlSu7zX5KtKc2sTIV6+fj/55BNRtWpVoaurK5o2bSq7hUn+Pg0MDMTDhw8LjKm4txMrLCYAIiAgQNZfcd8jvJ0Y5WHOZc5lzmXOfdW7mnPz4s//0NbWFjVr1hQ+Pj7i8ePHsrZFvQYLi6mwcT569EhMmTJFODo6CgMDA6Gnpyfee+898fHHH4vw8PAC7YvzHs57rRb1KOyzQRNYeL9livtlobTyvgRUBMV5g5e3oj5wVeXg4FDggzW/48ePF/gSQJpVGV6HRKRezLkVE3Pu268yvA6JXsXfeBMRERERERFpEAtvokpowIAB0tU/C2NjY4MBAwaUYURERERvJ+ZcIlIHXlyNqBJatmzZa5c3atTojW2IiIjozZhziUgdtIQoxb0aSik8PBxLlixBZGQkHj16hD179khXmM3KysKsWbNw6NAh3LlzB2ZmZnB1dcXixYtl961MSEjAF198gQMHDkChUGDQoEH49ttvYWxsLLW5evUqfH19ceHCBVSrVg1ffPHFG6/eSERERERERKQO5XqqeWpqKpo3b47Vq1cXWJaWloZLly5h9uzZuHTpEnbv3o2bN29Kt+bI4+npievXryM0NBQHDx5EeHg4fHx8pOXJycno0aMHHBwcEBkZiSVLlmDOnDlYt26dxsdHREREREREVK5HvPPT0tKSHfEuzIULF9CuXTvcv38ftWrVQnR0NBwdHXHhwgXpPnkhISHo3bs3Hjx4ADs7O6xZswZfffUVlEoldHV1AQDTp0/H3r178ddffxUrttzcXPzzzz8wMTEp8l5+RERE6iKEwPPnz2FnZweFgpdjKQnmbCIiKislydeV6jfeSUlJ0NLSgrm5OQAgIiIC5ubmspvTu7q6QqFQ4Ny5cxgwYAAiIiLQqVMnqegGADc3N3z99dd49uwZLCwsCmwnIyMDGRkZ0vTDhw/h6OiouYEREREVIi4uDjVr1izvMCqVf/75B/b29uUdBhERvUOKk68rTeGdnp6OadOmYejQoTA1NQUAKJVKWFtby9rp6OjA0tISSqVSalOnTh1ZGxsbG2lZYYX3okWLMHfu3ALz4+LipG0TERFpSnJyMuzt7WFiYlLeoVQ6ec8ZczYREWlaSfJ1pSi8s7KyMGTIEAghsGbNGo1vb8aMGZg0aZI0nfeEmpqaMokTEVGZ4anSJZf3nDFnExFRWSlOvq7whXde0X3//n0cO3ZMlkRtbW0RHx8va5+dnY2EhATY2tpKbR4/fixrkzed1+ZVenp60NPTU+cwiIiIiIiI6B1Voa/Ykld0x8TE4Pfff4eVlZVsubOzMxITExEZGSnNO3bsGHJzc+Hk5CS1CQ8PR1ZWltQmNDQUDRo0KPQ0cyIiIiIiIiJ1KtfCOyUlBVFRUYiKigIA3L17F1FRUYiNjUVWVhb+85//4OLFiwgODkZOTg6USiWUSiUyMzMBAI0aNULPnj0xevRonD9/HqdPn4afnx88PDyke30PGzYMurq68Pb2xvXr17Fz5058++23slPJiYiIiIiIiDSlXG8nduLECXTt2rXAfC8vL8yZM6fARdHyHD9+HF26dAEAJCQkwM/PDwcOHIBCocCgQYOwYsUKGBsbS+2vXr0KX19fXLhwAVWrVsUXX3yBadOmFTvO5ORkmJmZISkpib8XIyIijWPeUR2fOyIiKislyTkV5j7eFRmTOBERlSXmHdXxuSMiorJSkpxToX/jTURERERERFTZsfAmIiIiIiIi0iAW3kREREREREQaxMKbiIiIiIiISIN0yjuAd1Ht6b/Jpu8tdi+nSIiIiOh18uds5msiIlIVj3gTERERERERaRALbyIiIiIiIiINYuFNREREREREpEEsvImIiIiIiIg0iIU3ERERERERkQax8CYiIiIiIiLSIBbeRERERERERBrEwpuIiIiIiIhIg1h4ExEREREREWkQC28iIiIiIiIiDWLhTURERERERKRBLLyJiIiIiIiINIiFNxEREREREZEGsfAmIiIiIiIi0iAW3kREREREREQaxMKbiIiIiIiISINYeBMREdEbhYeHo0+fPrCzs4OWlhb27t0rLcvKysK0adPQtGlTGBkZwc7ODh9//DH++ecfWR8JCQnw9PSEqakpzM3N4e3tjZSUFFmbq1ev4sMPP4S+vj7s7e0RFBRUFsMjIiLSKBbeRERE9Eapqalo3rw5Vq9eXWBZWloaLl26hNmzZ+PSpUvYvXs3bt68ib59+8raeXp64vr16wgNDcXBgwcRHh4OHx8faXlycjJ69OgBBwcHREZGYsmSJZgzZw7WrVun8fERERFpkk55B0BEREQVX69evdCrV69Cl5mZmSE0NFQ2b9WqVWjXrh1iY2NRq1YtREdHIyQkBBcuXECbNm0AACtXrkTv3r2xdOlS2NnZITg4GJmZmfjhhx+gq6uLxo0bIyoqCt98842sQM8vIyMDGRkZ0nRycrKaRkxERKQ+POJNREREapeUlAQtLS2Ym5sDACIiImBubi4V3QDg6uoKhUKBc+fOSW06deoEXV1dqY2bmxtu3ryJZ8+eFbqdRYsWwczMTHrY29trblBEREQqYuFNREREapWeno5p06Zh6NChMDU1BQAolUpYW1vL2uno6MDS0hJKpVJqY2NjI2uTN53X5lUzZsxAUlKS9IiLi1P3cIiIiEqNp5oTERGR2mRlZWHIkCEQQmDNmjUa356enh709PQ0vh0iIqLSYOFNREREapFXdN+/fx/Hjh2TjnYDgK2tLeLj42Xts7OzkZCQAFtbW6nN48ePZW3ypvPaEBERVUY81ZyIiIhKLa/ojomJwe+//w4rKyvZcmdnZyQmJiIyMlKad+zYMeTm5sLJyUlqEx4ejqysLKlNaGgoGjRoAAsLi7IZCBERkQaUa+H9unuCAoAQAv7+/qhevToMDAzg6uqKmJgYWRveE5SIiEjzUlJSEBUVhaioKADA3bt3ERUVhdjYWGRlZeE///kPLl68iODgYOTk5ECpVEKpVCIzMxMA0KhRI/Ts2ROjR4/G+fPncfr0afj5+cHDwwN2dnYAgGHDhkFXVxfe3t64fv06du7ciW+//RaTJk0qr2ETERGpRbkW3q+7JygABAUFYcWKFVi7di3OnTsHIyMjuLm5IT09XWrDe4ISERFp3sWLF9GyZUu0bNkSADBp0iS0bNkS/v7+ePjwIfbv348HDx6gRYsWqF69uvQ4c+aM1EdwcDAaNmwIFxcX9O7dGx07dpTlYzMzMxw9ehR3795F69atMXnyZPj7+xd5KzEiIqLKQksIIco7CADQ0tLCnj170L9/fwAvj3bb2dlh8uTJ+PLLLwG8vDWJjY0NNm/eDA8PD0RHR8PR0VF2T9CQkBD07t0bDx48gJ2dHdasWYOvvvoKSqVSuj3J9OnTsXfvXvz111/Fii05ORlmZmZISkqS/V5NVbWn/yabvrfYvdR9EhHR20PdeeddosmczXxNRET5lSTnVNjfeN+9exdKpRKurq7SPDMzMzg5OSEiIgKA5u4JmpGRgeTkZNmDiIiIiIiISBUVtvDOu19nYffzzH+/T03cE3TRokUwMzOTHvb29qUfEBEREREREb2TKmzhXZ5mzJiBpKQk6REXF1feIREREREREVElVWEL77z7dRZ2P8/89/vUxD1B9fT0YGpqKnsQERERERERqaLCFt516tSBra0twsLCpHnJyck4d+4cnJ2dAfCeoERERERERFTxlWvh/bp7gmppaWHChAmYP38+9u/fj2vXruHjjz+GnZ2ddOVz3hOUiIiIiIiIKjqd8tz4xYsX0bVrV2k6rxj28vLC5s2bMXXqVKSmpsLHxweJiYno2LEjQkJCoK+vL60THBwMPz8/uLi4QKFQYNCgQVixYoW0PO+eoL6+vmjdujWqVq3Ke4ISERERERFRmSnXwrtLly543W3EtbS0EBgYiMDAwCLbWFpaYtu2ba/dTrNmzXDq1CmV4yQiIiIiIiJSVYX9jTcRERERERHR24CFNxEREREREZEGsfAmIiIiIiIi0iAW3kREREREREQaxMKbiIiIiIiISINYeBMRERERERFpEAtvIiIiIiIiIg1i4U1ERERERESkQSy8iYiIiIiIiDSIhTcRERERERGRBrHwJiIiIiIiItIgFt5EREREREREGsTCm4iIiIiIiEiDWHgTERERERERaRALbyIiIiIiIiINYuFNREREbxQeHo4+ffrAzs4OWlpa2Lt3r2y5EAL+/v6oXr06DAwM4OrqipiYGFmbhIQEeHp6wtTUFObm5vD29kZKSoqszdWrV/Hhhx9CX18f9vb2CAoK0vTQiIiINI6FNxEREb1RamoqmjdvjtWrVxe6PCgoCCtWrMDatWtx7tw5GBkZwc3NDenp6VIbT09PXL9+HaGhoTh48CDCw8Ph4+MjLU9OTkaPHj3g4OCAyMhILFmyBHPmzMG6des0Pj4iIiJN0invAIiIiKji69WrF3r16lXoMiEEli9fjlmzZqFfv34AgB9//BE2NjbYu3cvPDw8EB0djZCQEFy4cAFt2rQBAKxcuRK9e/fG0qVLYWdnh+DgYGRmZuKHH36Arq4uGjdujKioKHzzzTeyAp2IiKiy4RFvIiIiKpW7d+9CqVTC1dVVmmdmZgYnJydEREQAACIiImBubi4V3QDg6uoKhUKBc+fOSW06deoEXV1dqY2bmxtu3ryJZ8+eFbrtjIwMJCcnyx5EREQVDQtvIiIiKhWlUgkAsLGxkc23sbGRlimVSlhbW8uW6+jowNLSUtamsD7yb+NVixYtgpmZmfSwt7cv/YCIiIjUjIU3ERERVVozZsxAUlKS9IiLiyvvkIiIiApg4U1ERESlYmtrCwB4/PixbP7jx4+lZba2toiPj5ctz87ORkJCgqxNYX3k38ar9PT0YGpqKnsQERFVNCy8iYiIqFTq1KkDW1tbhIWFSfOSk5Nx7tw5ODs7AwCcnZ2RmJiIyMhIqc2xY8eQm5sLJycnqU14eDiysrKkNqGhoWjQoAEsLCzKaDRERETqx8KbiIiI3iglJQVRUVGIiooC8PKCalFRUYiNjYWWlhYmTJiA+fPnY//+/bh27Ro+/vhj2NnZoX///gCARo0aoWfPnhg9ejTOnz+P06dPw8/PDx4eHrCzswMADBs2DLq6uvD29sb169exc+dOfPvtt5g0aVI5jZqIiEg9eDsxIiIieqOLFy+ia9eu0nReMezl5YXNmzdj6tSpSE1NhY+PDxITE9GxY0eEhIRAX19fWic4OBh+fn5wcXGBQqHAoEGDsGLFCmm5mZkZjh49Cl9fX7Ru3RpVq1aFv78/byVGRESVHgtvIiIieqMuXbpACFHkci0tLQQGBiIwMLDINpaWlti2bdtrt9OsWTOcOnVK5TiJiIgqIp5qTkRERERERKRBLLyJiIiIiIiINIiFNxEREREREZEGVejCOycnB7Nnz0adOnVgYGCAunXrYt68ebLfmAkh4O/vj+rVq8PAwACurq6IiYmR9ZOQkABPT0+YmprC3Nwc3t7eSElJKevhEBERERER0TuoQhfeX3/9NdasWYNVq1YhOjoaX3/9NYKCgrBy5UqpTVBQEFasWIG1a9fi3LlzMDIygpubG9LT06U2np6euH79OkJDQ3Hw4EGEh4fzCqlERERERERUJir0Vc3PnDmDfv36wd3dHQBQu3ZtbN++HefPnwfw8mj38uXLMWvWLPTr1w8A8OOPP8LGxgZ79+6Fh4cHoqOjERISggsXLqBNmzYAgJUrV6J3795YunSpdO9QIiIiIiIiIk2o0Ee827dvj7CwMNy6dQsAcOXKFfzxxx/o1asXAODu3btQKpVwdXWV1jEzM4OTkxMiIiIAABERETA3N5eKbgBwdXWFQqHAuXPnCt1uRkYGkpOTZQ8iIiIiIiIiVVToI97Tp09HcnIyGjZsCG1tbeTk5GDBggXw9PQEACiVSgCAjY2NbD0bGxtpmVKphLW1tWy5jo4OLC0tpTavWrRoEebOnavu4RAREREREdE7qEIf8f75558RHByMbdu24dKlS9iyZQuWLl2KLVu2aHS7M2bMQFJSkvSIi4vT6PaIiIiIiIjo7VWhj3hPmTIF06dPh4eHBwCgadOmuH//PhYtWgQvLy/Y2toCAB4/fozq1atL6z1+/BgtWrQAANja2iI+Pl7Wb3Z2NhISEqT1X6Wnpwc9PT0NjIiIiIiIiIjeNRX6iHdaWhoUCnmI2trayM3NBQDUqVMHtra2CAsLk5YnJyfj3LlzcHZ2BgA4OzsjMTERkZGRUptjx44hNzcXTk5OZTAKIiIiIiIiepdV6CPeffr0wYIFC1CrVi00btwYly9fxjfffINRo0YBALS0tDBhwgTMnz8f9evXR506dTB79mzY2dmhf//+AIBGjRqhZ8+eGD16NNauXYusrCz4+fnBw8ODVzQnIiIiIiIijavQhffKlSsxe/ZsjB07FvHx8bCzs8OYMWPg7+8vtZk6dSpSU1Ph4+ODxMREdOzYESEhIdDX15faBAcHw8/PDy4uLlAoFBg0aBBWrFhRHkMiIiIiIiKid4yWEEKUdxAVXXJyMszMzJCUlARTU9NS91d7+m+y6XuL3UvdJxERvT3UnXfeJZrM2czXRESUX0lyToX+jTcRERERERFRZcfCm4iIiIiIiEiDWHgTERERERERaRALbyIiIiIiIiINYuFNREREREREpEEsvImIiIiIiIg0iIU3ERERERERkQax8CYiIiIiIiLSIB1VV0xNTcXJkycRGxuLzMxM2bJx48aVOjAiIiJSD+ZsIiKi8qVS4X358mX07t0baWlpSE1NhaWlJZ4+fQpDQ0NYW1sziRMREVUQzNlERETlT6VTzSdOnIg+ffrg2bNnMDAwwNmzZ3H//n20bt0aS5cuVXeMREREpKKyytk5OTmYPXs26tSpAwMDA9StWxfz5s2DEEJqI4SAv78/qlevDgMDA7i6uiImJkbWT0JCAjw9PWFqagpzc3N4e3sjJSVFbXESERGVB5UK76ioKEyePBkKhQLa2trIyMiAvb09goKCMHPmTHXHSERERCoqq5z99ddfY82aNVi1ahWio6Px9ddfIygoCCtXrpTaBAUFYcWKFVi7di3OnTsHIyMjuLm5IT09XWrj6emJ69evIzQ0FAcPHkR4eDh8fHzUFicREVF5UKnwrlKlChSKl6taW1sjNjYWAGBmZoa4uDj1RUdERESlUlY5+8yZM+jXrx/c3d1Ru3Zt/Oc//0GPHj1w/vx5AC+Pdi9fvhyzZs1Cv3790KxZM/z444/4559/sHfvXgBAdHQ0QkJCsGHDBjg5OaFjx45YuXIlduzYgX/++UdtsRIREZU1lQrvli1b4sKFCwCAzp07w9/fH8HBwZgwYQKaNGmi1gCJiIhIdWWVs9u3b4+wsDDcunULAHDlyhX88ccf6NWrFwDg7t27UCqVcHV1ldYxMzODk5MTIiIiAAAREREwNzdHmzZtpDaurq5QKBQ4d+5codvNyMhAcnKy7EFERFTRqFR4L1y4ENWrVwcALFiwABYWFvj888/x5MkTrFu3Tq0BEhERkerKKmdPnz4dHh4eaNiwIapUqYKWLVtiwoQJ8PT0BAAolUoAgI2NjWw9GxsbaZlSqYS1tbVsuY6ODiwtLaU2r1q0aBHMzMykh729vdrGREREpC4qXdU8/55oa2trhISEqC0gIiIiUp+yytk///wzgoODsW3bNjRu3BhRUVGYMGEC7Ozs4OXlpZFtAsCMGTMwadIkaTo5OZnFNxERVTgqHfHu1q0bEhMT1RwKERERqVtZ5ewpU6ZIR72bNm2KESNGYOLEiVi0aBEAwNbWFgDw+PFj2XqPHz+Wltna2iI+Pl62PDs7GwkJCVKbV+np6cHU1FT2ICIiqmhUKrxPnDiBzMxMdcdCREREalZWOTstLU26iFsebW1t5ObmAgDq1KkDW1tbhIWFScuTk5Nx7tw5ODs7AwCcnZ2RmJiIyMhIqc2xY8eQm5sLJycnjY+BiIhIU1Q61RwAtLS01BkHERERaUhZ5Ow+ffpgwYIFqFWrFho3bozLly/jm2++wahRo6QYJkyYgPnz56N+/fqoU6cOZs+eDTs7O/Tv3x8A0KhRI/Ts2ROjR4/G2rVrkZWVBT8/P3h4eMDOzk7jYyAiItIUlQvvAQMGQFdXt9Blx44dUzkgIiIiUq+yyNkrV67E7NmzMXbsWMTHx8POzg5jxoyBv7+/1Gbq1KlITU2Fj48PEhMT0bFjR4SEhEBfX19qExwcDD8/P7i4uEChUGDQoEFYsWKFWmIkIiIqLyoX3s7OzjA2NlZnLERERKQBZZGzTUxMsHz5cixfvrzINlpaWggMDERgYGCRbSwtLbFt2zYNREhERFR+VCq8tbS0MGXKlAK3/CAiIqKKhTmbiIio/Kl0cTUhhLrjICIiIg1gziYiIip/KhXeAQEBPM2ciIioEmDOJiIiKn8qnWoeEBAAAHjy5Alu3rwJAGjQoAGqVaumvsiIiIio1JiziYiIyp9KR7zT0tIwatQo2NnZoVOnTujUqRPs7Ozg7e2NtLQ0dcdIREREKmLOJiIiKn8qFd4TJ07EyZMnsX//fiQmJiIxMRH79u3DyZMnMXnyZHXHSERERCpiziYiIip/Kp1q/uuvv+KXX35Bly5dpHm9e/eGgYEBhgwZgjVr1qgrPiIiIioF5mwiIqLyp/Kp5jY2NgXmW1tb87Q1IiKiCoQ5m4iIqPypVHg7OzsjICAA6enp0rwXL15g7ty5cHZ2VltwAPDw4UMMHz4cVlZWMDAwQNOmTXHx4kVpuRAC/v7+qF69OgwMDODq6oqYmBhZHwkJCfD09ISpqSnMzc3h7e2NlJQUtcZJRERUEZVlziYiIqLCqXSq+fLly9GzZ0/UrFkTzZs3BwBcuXIF+vr6OHLkiNqCe/bsGTp06ICuXbvi8OHDqFatGmJiYmBhYSG1CQoKwooVK7BlyxbUqVMHs2fPhpubG27cuAF9fX0AgKenJx49eoTQ0FBkZWXhk08+gY+PD7Zt26a2WImIiCqissrZREREVDQtIYRQZcW0tDQEBwfjr7/+AgA0atQInp6eMDAwUFtw06dPx+nTp3Hq1KlClwshYGdnh8mTJ+PLL78EACQlJcHGxgabN2+Gh4cHoqOj4ejoiAsXLqBNmzYAgJCQEPTu3RsPHjyAnZ3dG+NITk6GmZkZkpKSYGpqWupx1Z7+m2z63mL3UvdJRERvD3XnnbLI2RWFJnM28zUREeVXkpyj0hHv8PBwtG/fHqNHj1YpwOLav38/3NzcMHjwYJw8eRI1atTA2LFjpe3evXsXSqUSrq6u0jpmZmZwcnJCREQEPDw8EBERAXNzc6noBgBXV1coFAqcO3cOAwYMKLDdjIwMZGRkSNPJyckaHCUREZHmlFXOJiIioqKp9Bvvrl27IiEhQd2xFHDnzh2sWbMG9evXx5EjR/D5559j3Lhx2LJlCwBAqVQCQIGLxtjY2EjLlEolrK2tZct1dHRgaWkptXnVokWLYGZmJj3s7e3VPTQiIqIyUVY5m4iIiIqmUuGt4tnpJZabm4tWrVph4cKFaNmyJXx8fDB69GisXbtWo9udMWMGkpKSpEdcXJxGt0dERKQpZZWziYiIqGgqnWoOABEREbKLnOXXqVMnlQPKr3r16nB0dJTNa9SoEX799VcAgK2tLQDg8ePHqF69utTm8ePHaNGihdQmPj5e1kd2djYSEhKk9V+lp6cHPT09tYyBiIiovJVFziYiIqKiqVx4F/bbaADQ0tJCTk6OygHl16FDB9y8eVM279atW3BwcAAA1KlTB7a2tggLC5MK7eTkZJw7dw6ff/45gJe3UUlMTERkZCRat24NADh27Bhyc3Ph5OSkljiJiIgqsrLI2URERFQ0lU41B17+djo3N7fAQ50JfOLEiTh79iwWLlyI27dvY9u2bVi3bh18fX0BvPzCMGHCBMyfPx/79+/HtWvX8PHHH8POzg79+/cH8PIIec+ePTF69GicP38ep0+fhp+fHzw8PIp1RXMiIqLKrixyNhERERVNpSPeWlpa6o6jUG3btsWePXswY8YMBAYGok6dOli+fDk8PT2lNlOnTkVqaip8fHyQmJiIjh07IiQkRLqHNwAEBwfDz88PLi4uUCgUGDRoEFasWFEmYyAiIipPZZWziYiIqGgqFd5leaGWjz76CB999FGRy7W0tBAYGIjAwMAi21haWmLbtm2aCI+IiKhC48XViIiIyp9KhXdubq664yAiIiINYM4mIiIqfyr9xnvRokX44YcfCsz/4Ycf8PXXX5c6KCIiIlIP5mwiIqLyp1Lh/f3336Nhw4YF5jdu3Fjj99gmIiKi4mPOJiIiKn8qFd5KpVJ23+w81apVw6NHj0odFBEREakHczYREVH5U6nwtre3x+nTpwvMP336NG/RRUREVIEwZxMREZU/lQrv0aNHY8KECdi0aRPu37+P+/fv44cffsDEiRMxevRodcdIREREKirLnP3w4UMMHz4cVlZWMDAwQNOmTXHx4kVpuRAC/v7+qF69OgwMDODq6oqYmBhZHwkJCfD09ISpqSnMzc3h7e2NlJQUtcZJRERU1lS6qvmUKVPw77//YuzYscjMzAQA6OvrY9q0aZgxY4ZaAyQiIiLVlVXOfvbsGTp06ICuXbvi8OHDqFatGmJiYmBhYSG1CQoKwooVK7BlyxbUqVMHs2fPhpubG27cuAF9fX0AgKenJx49eoTQ0FBkZWXhk08+gY+PD28LSkRElZqWKMUNPlNSUhAdHQ0DAwPUr18fenp66oytwkhOToaZmRmSkpJgampa6v5qT/9NNn1vsXup+yQioreHuvMOoPmcPX36dJw+fRqnTp0qdLkQAnZ2dpg8eTK+/PJLAEBSUhJsbGywefNmeHh4IDo6Go6Ojrhw4QLatGkDAAgJCUHv3r3x4MGDQk+Nz8jIQEZGhjSdnJwMe3t7jeRs5msiIsqvJPlapVPN8xgbG6Nt27Zo0qTJW1t0ExERvQ00nbP379+PNm3aYPDgwbC2tkbLli2xfv16afndu3ehVCrh6uoqzTMzM4OTkxMiIiIAABERETA3N5eKbgBwdXWFQqHAuXPnCt3uokWLYGZmJj3s7e3VPjYiIqLSUulUcwC4ePEifv75Z8TGxkqnruXZvXt3qQMjIiIi9SiLnH3nzh2sWbMGkyZNwsyZM3HhwgWMGzcOurq68PLyglKpBADY2NjI1rOxsZGWKZVKWFtby5br6OjA0tJSavOqGTNmYNKkSdJ03hFvIiKiikSlI947duxA+/btER0djT179iArKwvXr1/HsWPHYGZmpu4YiYiISEVllbNzc3PRqlUrLFy4EC1btoSPjw9Gjx6t8XuF6+npwdTUVPYgIiKqaFQqvBcuXIhly5bhwIED0NXVxbfffou//voLQ4YMQa1atdQdIxEREamorHJ29erV4ejoKJvXqFEjxMbGAgBsbW0BAI8fP5a1efz4sbTM1tYW8fHxsuXZ2dlISEiQ2hAREVVGKhXef//9N9zdX15gRFdXF6mpqdDS0sLEiROxbt06tQZIREREqiurnN2hQwfcvHlTNu/WrVtwcHAAANSpUwe2trYICwuTlicnJ+PcuXNwdnYGADg7OyMxMRGRkZFSm2PHjiE3NxdOTk5qi5WIiKisqVR4W1hY4Pnz5wCAGjVq4M8//wQAJCYmIi0tTX3RERERUamUVc6eOHEizp49i4ULF+L27dvYtm0b1q1bB19fXwCAlpYWJkyYgPnz52P//v24du0aPv74Y9jZ2aF///4AXh4h79mzJ0aPHo3z58/j9OnT8PPzg4eHR6FXNCciIqosVLq4WqdOnRAaGoqmTZti8ODBGD9+PI4dO4bQ0FC4uLioO0YiIiJSUVnl7LZt22LPnj2YMWMGAgMDUadOHSxfvhyenp5Sm6lTpyI1NRU+Pj5ITExEx44dERISIt3DGwCCg4Ph5+cHFxcXKBQKDBo0CCtWrFBbnEREROVBpft4JyQkID09HXZ2dsjNzUVQUBDOnDmD+vXrY9asWbCwsNBErOWG9/EmIqKypM68w5xdOryPNxERFaUkOadER7yTk5NfrqSjA2NjY2l67NixGDt2rIrhEhERkboxZxMREVUcJSq8zc3NoaWl9cZ2OTk5KgdEREREpcecTUREVHGUqPA+fvy4bFoIgd69e2PDhg2oUaOGWgMjIiIi1TFnExERVRwlKrw7d+5cYJ62tjY++OADvPfee2oLioiIiEqHOZuIiKjiUOl2YkRERERERERUPKUqvOPi4pCWlgYrKyt1xUNEREQawJxNRERUfkp0qnn++2g+ffoU27dvR7du3WBmZqb2wIiIiEh1zNlEREQVR4kK72XLlgEAtLS0ULVqVfTp0wezZs3SSGBERESkOuZsIiKiiqNEhffdu3c1FQcRERGpEXM2ERFRxcGLqxERERERERFpEAtvIiIiIiIiIg1i4U1ERERERESkQSy8iYiIiIiIiDSoUhXeixcvhpaWFiZMmCDNS09Ph6+vL6ysrGBsbIxBgwbh8ePHsvViY2Ph7u4OQ0NDWFtbY8qUKcjOzi7j6ImIiIiIiOhdVGkK7wsXLuD7779Hs2bNZPMnTpyIAwcOYNeuXTh58iT++ecfDBw4UFqek5MDd3d3ZGZm4syZM9iyZQs2b94Mf3//sh4CERERERERvYMqReGdkpICT09PrF+/HhYWFtL8pKQkbNy4Ed988w26deuG1q1bY9OmTThz5gzOnj0LADh69Chu3LiBrVu3okWLFujVqxfmzZuH1atXIzMzs7yGRERERERERO+ISlF4+/r6wt3dHa6urrL5kZGRyMrKks1v2LAhatWqhYiICABAREQEmjZtChsbG6mNm5sbkpOTcf369UK3l5GRgeTkZNmDiIiIiIiISBU65R3Am+zYsQOXLl3ChQsXCixTKpXQ1dWFubm5bL6NjQ2USqXUJn/Rnbc8b1lhFi1ahLlz56oheiIiIiIiInrXVegj3nFxcRg/fjyCg4Ohr69fZtudMWMGkpKSpEdcXFyZbZuIiIiIiIjeLhW68I6MjER8fDxatWoFHR0d6Ojo4OTJk1ixYgV0dHRgY2ODzMxMJCYmytZ7/PgxbG1tAQC2trYFrnKeN53X5lV6enowNTWVPYiIiIiIiIhUUaELbxcXF1y7dg1RUVHSo02bNvD09JT+rlKlCsLCwqR1bt68idjYWDg7OwMAnJ2dce3aNcTHx0ttQkNDYWpqCkdHxzIfExEREREREb1bKvRvvE1MTNCkSRPZPCMjI1hZWUnzvb29MWnSJFhaWsLU1BRffPEFnJ2d8cEHHwAAevToAUdHR4wYMQJBQUFQKpWYNWsWfH19oaenV+ZjIiIiIiIiondLhS68i2PZsmVQKBQYNGgQMjIy4Obmhu+++05arq2tjYMHD+Lzzz+Hs7MzjIyM4OXlhcDAwHKMmoiIiIiIiN4Vla7wPnHihGxaX18fq1evxurVq4tcx8HBAYcOHdJwZEREREREREQFVejfeBMREVHltHjxYmhpaWHChAnSvPT0dPj6+sLKygrGxsYYNGhQgQugxsbGwt3dHYaGhrC2tsaUKVOQnZ1dxtETERGpFwtvIiIiUqsLFy7g+++/R7NmzWTzJ06ciAMHDmDXrl04efIk/vnnHwwcOFBanpOTA3d3d2RmZuLMmTPYsmULNm/eDH9//7IeAhERkVqx8CYiIiK1SUlJgaenJ9avXw8LCwtpflJSEjZu3IhvvvkG3bp1Q+vWrbFp0yacOXMGZ8+eBQAcPXoUN27cwNatW9GiRQv06tUL8+bNw+rVq5GZmVno9jIyMpCcnCx7EBERVTQsvImIiEhtfH194e7uDldXV9n8yMhIZGVlyeY3bNgQtWrVQkREBAAgIiICTZs2hY2NjdTGzc0NycnJuH79eqHbW7RoEczMzKSHvb29BkZFRERUOiy8iYiISC127NiBS5cuYdGiRQWWKZVK6OrqwtzcXDbfxsYGSqVSapO/6M5bnresMDNmzEBSUpL0iIuLU8NIiIiI1KvSXdWciIiIKp64uDiMHz8eoaGh0NfXL7Pt6unpQU9Pr8y2R0REpAoe8SYiIqJSi4yMRHx8PFq1agUdHR3o6Ojg5MmTWLFiBXR0dGBjY4PMzEwkJibK1nv8+DFsbW0BALa2tgWucp43ndeGiIioMmLhTURERKXm4uKCa9euISoqSnq0adMGnp6e0t9VqlRBWFiYtM7NmzcRGxsLZ2dnAICzszOuXbuG+Ph4qU1oaChMTU3h6OhY5mMiIiJSF55qTkRERKVmYmKCJk2ayOYZGRnByspKmu/t7Y1JkybB0tISpqam+OKLL+Ds7IwPPvgAANCjRw84OjpixIgRCAoKglKpxKxZs+Dr68vTyYmIqFJj4U1ERERlYtmyZVAoFBg0aBAyMjLg5uaG7777Tlqura2NgwcP4vPPP4ezszOMjIzg5eWFwMDAcoyaiIio9Fh4ExERkUacOHFCNq2vr4/Vq1dj9erVRa7j4OCAQ4cOaTgyIiKissXfeBMRERERERFpEAtvIiIiIiIiIg1i4U1ERERERESkQSy8iYiIiIiIiDSIhTcRERERERGRBrHwJiIiIiIiItIgFt5EREREREREGsTCm4iIiIiIiEiDWHgTERERERERaRALbyIiIiIiIiINYuFNREREREREpEEsvImIiIiIiIg0iIU3ERERERERkQax8CYiIiIiIiLSIBbeRERERERERBrEwpuIiIiIiIhIg1h4ExEREREREWkQC28iIiIiIiIiDarQhfeiRYvQtm1bmJiYwNraGv3798fNmzdlbdLT0+Hr6wsrKysYGxtj0KBBePz4saxNbGws3N3dYWhoCGtra0yZMgXZ2dllORQiIiIiIiJ6R1XowvvkyZPw9fXF2bNnERoaiqysLPTo0QOpqalSm4kTJ+LAgQPYtWsXTp48iX/++QcDBw6Ulufk5MDd3R2ZmZk4c+YMtmzZgs2bN8Pf3788hkRERERERETvGJ3yDuB1QkJCZNObN2+GtbU1IiMj0alTJyQlJWHjxo3Ytm0bunXrBgDYtGkTGjVqhLNnz+KDDz7A0aNHcePGDfz++++wsbFBixYtMG/ePEybNg1z5syBrq5ueQyNiIiIiIiI3hEV+oj3q5KSkgAAlpaWAIDIyEhkZWXB1dVVatOwYUPUqlULERERAICIiAg0bdoUNjY2Uhs3NzckJyfj+vXrhW4nIyMDycnJsgcRERERERGRKipN4Z2bm4sJEyagQ4cOaNKkCQBAqVRCV1cX5ubmsrY2NjZQKpVSm/xFd97yvGWFWbRoEczMzKSHvb29mkdDRERERERE74pKU3j7+vrizz//xI4dOzS+rRkzZiApKUl6xMXFaXybRERElRkviEpERFS0SlF4+/n54eDBgzh+/Dhq1qwpzbe1tUVmZiYSExNl7R8/fgxbW1upzatJPW86r82r9PT0YGpqKnsQERFR0XhBVCIioqJV6MJbCAE/Pz/s2bMHx44dQ506dWTLW7dujSpVqiAsLEyad/PmTcTGxsLZ2RkA4OzsjGvXriE+Pl5qExoaClNTUzg6OpbNQIiIiN5yISEhGDlyJBo3bozmzZtj8+bNiI2NRWRkJABIF0T95ptv0K1bN7Ru3RqbNm3CmTNncPbsWQCQLoi6detWtGjRAr169cK8efOwevVqZGZmlufwiIiISqVCF96+vr7YunUrtm3bBhMTEyiVSiiVSrx48QIAYGZmBm9vb0yaNAnHjx9HZGQkPvnkEzg7O+ODDz4AAPTo0QOOjo4YMWIErly5giNHjmDWrFnw9fWFnp5eeQ6PiIjorcULohIREf1PhS6816xZg6SkJHTp0gXVq1eXHjt37pTaLFu2DB999BEGDRqETp06wdbWFrt375aWa2tr4+DBg9DW1oazszOGDx+Ojz/+GIGBgeUxJCIiorceL4hKREQkV6Hv4y2EeGMbfX19rF69GqtXry6yjYODAw4dOqTO0IiIiKgIeRdE/eOPPzS+rRkzZmDSpEnSdHJyMotvIiKqcCp04U1ERESVS94FUcPDw4u8IGr+o96vXhD1/Pnzsv6Kc0FU/nSMiIgqugp9qjkRERFVDrwgKhERUdF4xJuIiIhKzdfXF9u2bcO+ffukC6ICLy+EamBgILsgqqWlJUxNTfHFF18UeUHUoKAgKJVKXhCViIjeCiy8iYiIqNTWrFkDAOjSpYts/qZNmzBy5EgALy+IqlAoMGjQIGRkZMDNzQ3fffed1Dbvgqiff/45nJ2dYWRkBC8vL14QlYiIKj0W3kRERFRqvCAqERFR0fgbbyIiIiIiIiINYuFNREREREREpEEsvImIiIiIiIg0iIU3ERERERERkQax8CYiIiIiIiLSIBbeRERERERERBrEwpuIiIiIiIhIg1h4ExEREREREWkQC28iIiIiIiIiDWLhTURERERERKRBLLyJiIiIiIiINIiFNxEREREREZEGsfAmIiIiIiIi0iAW3kREREREREQaxMKbiIiIiIiISIN0yjsAAmpP/002fW+xezlFQkREREREROrGI95EREREREREGsTCm4iIiIiIiEiDWHgTERERERERaRALbyIiIiIiIiINYuFNREREREREpEEsvImIiIiIiIg0iLcTq4Dy316MtxYjIiIiIiKq3Fh4VzK85zcREREREVHl8k6dar569WrUrl0b+vr6cHJywvnz58s7JCIiInoF8zUREb1t3pkj3jt37sSkSZOwdu1aODk5Yfny5XBzc8PNmzdhbW1d3uEV6dUj3ERERG+zypqviYiIXkdLCCHKO4iy4OTkhLZt22LVqlUAgNzcXNjb2+OLL77A9OnTX7tucnIyzMzMkJSUBFNT01LHosli+nWnnvM0dSKiykHdeacyKU2+BjSbs5k3iYgov5LknHfiiHdmZiYiIyMxY8YMaZ5CoYCrqysiIiIKtM/IyEBGRoY0nZSUBODlE6sOuRlpaumnMLUm7pL+/nOu22u3m7/tm7zaV0k0CTiitr4qo/Ia/7v+vBNVZnn55h3ZNy4pab4GyjZnv5o3+blKRPRuK0m+ficK76dPnyInJwc2Njay+TY2Nvjrr78KtF+0aBHmzp1bYL69vb3GYtQEs+Vvf1+VUXmN/11/3okqo+fPn8PMzKy8wygzJc3XQPnmbH6uEhERULx8/U4U3iU1Y8YMTJo0SZrOzc1FQkICrKysoKWlVaq+k5OTYW9vj7i4uHfu9MF3dezv6rgBjv1dHPu7Om5AvWMXQuD58+ews7NTU3RvL+bsionPner43KmOz53q+NyppiT5+p0ovKtWrQptbW08fvxYNv/x48ewtbUt0F5PTw96enqyeebm5mqNydTU9J19Ub+rY39Xxw1w7O/i2N/VcQPqG/u7dKQ7T0nzNcCcXdHxuVMdnzvV8blTHZ+7kituvn4nbiemq6uL1q1bIywsTJqXm5uLsLAwODs7l2NkRERElIf5moiI3lbvxBFvAJg0aRK8vLzQpk0btGvXDsuXL0dqaio++eST8g6NiIiI/j/mayIiehu9M4X3f//7Xzx58gT+/v5QKpVo0aIFQkJCClzARdP09PQQEBBQ4LS4d8G7OvZ3ddwAx/4ujv1dHTfwbo9dnSpKvgb4Py0NPneq43OnOj53quNzp3nvzH28iYiIiIiIiMrDO/EbbyIiIiIiIqLywsKbiIiIiIiISINYeBMRERERERFpEAtvIiIiIiIiIg1i4a0Bq1evRu3ataGvrw8nJyecP3/+te137dqFhg0bQl9fH02bNsWhQ4fKKFL1K8nY169fjw8//BAWFhawsLCAq6vrG5+riqqk//M8O3bsgJaWFvr376/ZADWopGNPTEyEr68vqlevDj09Pbz//vuV8jVf0nEvX74cDRo0gIGBAezt7TFx4kSkp6eXUbTqEx4ejj59+sDOzg5aWlrYu3fvG9c5ceIEWrVqBT09PdSrVw+bN2/WeJzqVtJx7969G927d0e1atVgamoKZ2dnHDlypGyCJbVQ9XP9XbZo0SK0bdsWJiYmsLa2Rv/+/XHz5s3yDqtSWrx4MbS0tDBhwoTyDqVSePjwIYYPHw4rKysYGBigadOmuHjxYnmHVeHl5ORg9uzZqFOnDgwMDFC3bl3MmzcPvPa2ZrDwVrOdO3di0qRJCAgIwKVLl9C8eXO4ubkhPj6+0PZnzpzB0KFD4e3tjcuXL6N///7o378//vzzzzKOvPRKOvYTJ05g6NChOH78OCIiImBvb48ePXrg4cOHZRx56ZR03Hnu3buHL7/8Eh9++GEZRap+JR17ZmYmunfvjnv37uGXX37BzZs3sX79etSoUaOMIy+dko5727ZtmD59OgICAhAdHY2NGzdi586dmDlzZhlHXnqpqalo3rw5Vq9eXaz2d+/ehbu7O7p27YqoqChMmDABn376aaUrQks67vDwcHTv3h2HDh1CZGQkunbtij59+uDy5csajpTUQdXP9XfdyZMn4evri7NnzyI0NBRZWVno0aMHUlNTyzu0SuXChQv4/vvv0axZs/IOpVJ49uwZOnTogCpVquDw4cO4ceMG/u///g8WFhblHVqF9/XXX2PNmjVYtWoVoqOj8fXXXyMoKAgrV64s79DeToLUql27dsLX11eazsnJEXZ2dmLRokWFth8yZIhwd3eXzXNychJjxozRaJyaUNKxvyo7O1uYmJiILVu2aCpEjVBl3NnZ2aJ9+/Ziw4YNwsvLS/Tr168MIlW/ko59zZo14r333hOZmZllFaJGlHTcvr6+olu3brJ5kyZNEh06dNBonJoGQOzZs+e1baZOnSoaN24sm/ff//5XuLm5aTAyzSrOuAvj6Ogo5s6dq/6ASO1Km8/opfj4eAFAnDx5srxDqTSeP38u6tevL0JDQ0Xnzp3F+PHjyzukCm/atGmiY8eO5R1GpeTu7i5GjRolmzdw4EDh6elZThG93XjEW40yMzMRGRkJV1dXaZ5CoYCrqysiIiIKXSciIkLWHgDc3NyKbF9RqTL2V6WlpSErKwuWlpaaClPtVB13YGAgrK2t4e3tXRZhaoQqY9+/fz+cnZ3h6+sLGxsbNGnSBAsXLkROTk5ZhV1qqoy7ffv2iIyMlE5VvXPnDg4dOoTevXuXSczl6W35jCut3NxcPH/+vFJ9vr2r1JHP6KWkpCQA4Ou+BHx9feHu7l7gc5OKtn//frRp0waDBw+GtbU1WrZsifXr15d3WJVC+/btERYWhlu3bgEArly5gj/++AO9evUq58jeTjrlHcDb5OnTp8jJyYGNjY1svo2NDf76669C11EqlYW2VyqVGotTE1QZ+6umTZsGOzu7SpVsVBn3H3/8gY0bNyIqKqoMItQcVcZ+584dHDt2DJ6enjh06BBu376NsWPHIisrCwEBAWURdqmpMu5hw4bh6dOn6NixI4QQyM7OxmeffVYpTzUvqaI+45KTk/HixQsYGBiUU2Rla+nSpUhJScGQIUPKOxR6A3XkM3q5s2nChAno0KEDmjRpUt7hVAo7duzApUuXcOHChfIOpVK5c+cO1qxZg0mTJmHmzJm4cOECxo0bB11dXXh5eZV3eBXa9OnTkZycjIYNG0JbWxs5OTlYsGABPD09yzu0txILb6oQFi9ejB07duDEiRPQ19cv73A05vnz5xgxYgTWr1+PqlWrlnc4ZS43NxfW1tZYt24dtLW10bp1azx8+BBLliypNIW3Kk6cOIGFCxfiu+++g5OTE27fvo3x48dj3rx5mD17dnmHRxq2bds2zJ07F/v27YO1tXV5h0NUJnx9ffHnn3/ijz/+KO9QKoW4uDiMHz8eoaGhb/X3IE3Izc1FmzZtsHDhQgBAy5Yt8eeff2Lt2rUsvN/g559/RnBwMLZt24bGjRtL12Kxs7Pjc6cBLLzVqGrVqtDW1sbjx49l8x8/fgxbW9tC17G1tS1R+4pKlbHnWbp0KRYvXozff/+90l1IpKTj/vvvv3Hv3j306dNHmpebmwsA0NHRwc2bN1G3bl3NBq0mqvzPq1evjipVqkBbW1ua16hRIyiVSmRmZkJXV1ejMauDKuOePXs2RowYgU8//RQA0LRpU6SmpsLHxwdfffUVFIq391c/RX3GmZqavhNHu3fs2IFPP/0Uu3btqlRn87zLSpPP6CU/Pz8cPHgQ4eHhqFmzZnmHUylERkYiPj4erVq1kubl5OQgPDwcq1atQkZGhix30v9Ur14djo6OsnmNGjXCr7/+Wk4RVR5TpkzB9OnT4eHhAeDl95P79+9j0aJFLLw14O39tlcOdHV10bp1a4SFhUnzcnNzERYWBmdn50LXcXZ2lrUHgNDQ0CLbV1SqjB0AgoKCMG/ePISEhKBNmzZlEapalXTcDRs2xLVr1xAVFSU9+vbtK13x2d7evizDLxVV/ucdOnTA7du3pZ0NAHDr1i1Ur169UhTdgGrjTktLK1Bc532BEm/5LTvels84VWzfvh2ffPIJtm/fDnd39/IOh4pJ1XxGLz/P/Pz8sGfPHhw7dgx16tQp75AqDRcXlwLfD9q0aQNPT09ERUWx6H6NDh06FLht3a1bt+Dg4FBOEVUeRX0/yf89jdSonC/u9tbZsWOH0NPTE5s3bxY3btwQPj4+wtzcXCiVSiGEECNGjBDTp0+X2p8+fVro6OiIpUuXiujoaBEQECCqVKkirl27Vl5DUFlJx7548WKhq6srfvnlF/Ho0SPp8fz58/IagkpKOu5XVearmpd07LGxscLExET4+fmJmzdvioMHDwpra2sxf/788hqCSko67oCAAGFiYiK2b98u7ty5I44ePSrq1q0rhgwZUl5DUNnz58/F5cuXxeXLlwUA8c0334jLly+L+/fvCyGEmD59uhgxYoTU/s6dO8LQ0FBMmTJFREdHi9WrVwttbW0REhJSXkNQSUnHHRwcLHR0dMTq1atln2+JiYnlNQQqgTe9x6lwn3/+uTAzMxMnTpyQve7T0tLKO7RKiVc1L57z588LHR0dsWDBAhETEyOCg4OFoaGh2Lp1a3mHVuF5eXmJGjVqiIMHD4q7d++K3bt3i6pVq4qpU6eWd2hvJRbeGrBy5UpRq1YtoaurK9q1ayfOnj0rLevcubPw8vKStf/555/F+++/L3R1dUXjxo3Fb7/9VsYRq09Jxu7g4CAAFHgEBASUfeClVNL/eX6VufAWouRjP3PmjHBychJ6enrivffeEwsWLBDZ2dllHHXplWTcWVlZYs6cOaJu3bpCX19f2Nvbi7Fjx4pnz56VfeCldPz48ULft3nj9fLyEp07dy6wTosWLYSurq547733xKZNm8o87tIq6bg7d+782vZU8b3uPU6FK+w1D6BSvucrAhbexXfgwAHRpEkToaenJxo2bCjWrVtX3iFVCsnJyWL8+PGiVq1aQl9fX7z33nviq6++EhkZGeUd2ltJS4i3/DxHIiIiIiIionLE33gTERERERERaRALbyIiIiIiIiINYuFNREREREREpEEsvImIiIiIiIg0iIU3ERERERERkQax8CYiIiIiIiLSIBbeRERERERERBrEwpuIiIiIiIhIg1h4ExGp2bVr19CrVy9kZmbi6tWraNeuXZlte926dbC3t4dCocDy5cvLbLvvmvDwcPTp0wd2dnbQ0tLC3r17S9zHkSNH8MEHH8DExATVqlXDoEGDcO/ePbXHSkT0LijP3EsVV2nz9Zw5c6ClpVXgYWRkVOJYWHjTO+HTTz9F/fr1YWhoCAsLCzg7O2Pr1q3lHRa9pZo0aYIqVarAyMgI7dq1w6RJk0rd55UrVzB06FDY29vDwMAAjRo1wrfffitrk5ycDD8/P0ybNg0PHz6Ej49PqbdLhUtNTUXz5s2xevVqlda/e/cu+vXrh27duiEqKgpHjhzB06dPMXDgQDVHSlR+mHupLKmSe2vXri0VUtra2rCzs4O3tzeePXsmtTlx4gS0tLRgYWGB9PR02foXLlyQ1s9PCIH169fD2dkZpqamMDY2RuPGjTF+/Hjcvn272GO6d+8evL29UadOHRgYGKBu3boICAhAZmZmsft415U2X3/55Zd49OiR7OHo6IjBgweXvDNB9A6YOnWqOHHihHjw4IG4deuW2LJlizAyMhJr1qwp79DoLfb48WORmpqqlr42btwoxo0bJ06cOCH+/vtv8dNPPwkDAwOxcuVKqc21a9cEAHHnzh21bJOKB4DYs2ePbF56erqYPHmysLOzE4aGhqJdu3bi+PHj0vJdu3YJHR0dkZOTI83bv3+/0NLSEpmZmWUUOZFmMfdSeShJ7nVwcBCBgYHi0aNH4sGDB+LYsWOiXr16Yvjw4VKb48ePCwDC3t5ebNu2Tbb+mDFjRK1atUT+kio3N1d4eHgIfX19ERgYKCIiIsT9+/dFRESEmDp1qvDy8ir2WA4fPixGjhwpjhw5Iv7++2+xb98+YW1tLSZPnlzsPuh/VMnXr4qKihIARHh4eMm3X+I1iN4SAwYMEEOHDpWmHRwcxLJly2RtvLy8RL9+/aTpw4cPiw4dOggzMzNhaWkp3N3dxe3bt6XlmzZtEmZmZrI+OnfuLMaPHy9Nv+kNXlgfd+/eFQDE5cuXhRD/SwLPnj2T2gwfPrzAB0psbKwYPHiwMDMzExYWFqJv377i7t27RT4nef0W9ihJv3nP25w5c0TVqlWFiYmJGDNmjMjIyJDa5OTkiIULF4ratWsLfX190axZM7Fr164CsTRt2lQW4969ewUA0blz5xL3lf/5EkL+Afzqc5zn1dfF/fv3Rd++fYWRkZEwMTERgwcPFkqlUloeEBAgmjdvLk1nZGSIunXrFrr9V2NZv3696N+/vzAwMBD16tUT+/btK7K9EEKMHTtWdO3aVQjx8nXz6v/sdf9rUp/CEvmnn34q2rdvL8LDw8Xt27fFkiVLhJ6enrh165YQQog7d+4IXV1dsWHDBpGdnS0SExPF4MGDRffu3cthBERlh7m3IObe8su9hb3+5s2bJxwdHQuMY9asWcLV1VWan5aWJszMzMTs2bNlhff27dsFgCJzeG5urmx6/fr1omHDhkJPT080aNBArF69ush4hRAiKChI1KlT57VtqHCq5OtX+fn5iffff1+l7fNUc3rnCCEQGRmJM2fOoGfPniVaNzU1FZMmTcLFixcRFhYGhUKBAQMGIDc3t9h9+Pn5ISIiAjt27MDVq1cxePBg9OzZEzExMSUdiiQyMhL79++XzcvKyoKbmxtMTExw6tQpnD59GsbGxujZs+cbT1G6efOm7JQaVfoNCwtDdHQ0Tpw4ge3bt2P37t2YO3eutHzRokX48ccfsXbtWly/fh0TJ07E8OHDcfLkSdn2EhIScPbsWWn6+++/R40aNWRtittXaeXm5qJfv35ISEjAyZMnERoaijt37uC///1vkeusWrUKjx8/Llb/c+fOxZAhQ3D16lX07t0bnp6eSEhIKLJ9UlISLC0tAQD//e9/8fvvvwMAzp8/j0ePHsHe3r4EoyN1iY2NxaZNm7Br1y58+OGHqFu3Lr788kt07NgRmzZtAgDUqVMHR48excyZM6Gnpwdzc3M8ePAAP//8czlHT6QZzL3MvarSdO7N7+HDhzhw4ACcnJwKLBsxYgROnTqF2NhYAMCvv/6K2rVro1WrVrJ227dvR4MGDdC3b99Ct5H/tPTg4GD4+/tjwYIFiI6OxsKFCzF79mxs2bKlyBjz534qneLk6/zS09MRHBwMb29v1TaoUrlOVAnt2bNHGBkZCR0dHaGlpSX8/f1ly4uz1/1VT548EQDEtWvXhBBC7NixQ+jp6cna5N/rfv/+faGtrS0ePnwoa+Pi4iJmzJghhFBtr3unTp3EvHnzZHvyfvrpJ9GgQQPZntWMjAxhYGAgjhw5Uuh4irN3ujj9enl5CUtLS9mpXmvWrBHGxsYiJydHpKenC0NDQ3HmzBnZdry9vaUjIXmxzJ49W4waNUp6/qytrcXnn38u7XUvSV+l3et+9OhRoa2tLWJjY6Xl169fFwDE+fPnhRDyve7//vuvsLCwkP43bzriPWvWLGk6JSVFABCHDx8utP3p06eFjo6O7H95+fJlHukuB3hlD/rBgwcFAGFkZCR76OjoiCFDhgghhHj06JGoX7++mDJlirh06ZI4efKk6Ny5s3BxcSlwNISoMmPuZe6tyLnXwcFB6OrqCiMjI6Gvry8ACCcnJ9k6+cfRv39/MXfuXCGEEF27dhXffvut2LNnj+yId8OGDUXfvn1l2xk/fryUC2rUqCHNr1u3boHT1+fNmyecnZ0LjTcmJkaYmpqKdevWFTkmKpoq+Tq/bdu2CR0dHdnZFiWho1q5TlT5dO/eHVFRUUhJScG5c+cwbdo0VK9eHZ999pnUZtq0aZg1a5Y0nZGRAXd3d2k6JiYG/v7+OHfuHJ4+fSrtbY+NjUWTJk3QuHFjZGRk4Ndff8WgQYMKxHDt2jXk5OTg/fffl83PyMiAlZWVNJ2UlARjY2Np+uVnReH27t2LO3fuYPLkyZg9e7Y0/8qVK7h9+zZMTExk7dPT0/H3338X2d+bFLff5s2bw9DQUJp2dnZGSkoK4uLikJKSgrS0NHTv3l3WR2ZmJlq2bCmb5+XlhXbt2mHZsmXYsGEDhg8fjpycHGn57du3i91XzZo13zi+9u3bQ6H438lAaWlp0t/R0dGwt7eXHUl2dHSEubk5oqOj0bZtW1lfgYGB6Nq1Kzp27PjG7QJAs2bNpL+NjIxgamqK+Pj4Au3+/PNP9OvXDwEBAejRo0ex+qayk5KSAm1tbURGRkJbW1u2LO99vXr1apiZmSEoKEhatnXrVtjb2+PcuXP44IMPyjRmIk1h7n2Juff1yjP3TpkyBSNHjoQQAnFxcZg5cybc3d0RHh5e4DN81KhRGD9+PIYPH46IiAjs2rULp06deuM2vvrqK/j5+WH37t1YuHAhgJdncvz999/w9vbG6NGjpbbZ2dkwMzMr0MfDhw/Rs2dPDB48WNaeVFecfJ3fhg0b8NFHH8HGxkal7bHwpneGkZER6tWrBwBo0aIFnjx5gqVLl8qSf96Hb55p06bJEk2fPn3g4OCA9evXw87ODrm5uWjSpIl0mleTJk0wbdo0DB48GPr6+lAoFHjx4gVatGgBoPhvcBMTE1y6dEmafvjwIbp06VJgTFlZWZg6dSoWLFgAAwMD2bKUlBS0bt0awcHBBdarVq3aG56toqmj35SUFADAb7/9VuDUNT09Pdm0lZUV3Nzc8OOPP+KHH37A77//jrVr16rU16lTp2RfWurXr18gtp07d6JRo0bSdGHPe3HExMRgw4YNiIqKwoMHD4q1TpUqVWTTWlpaBU6lvHHjBlxcXODj4yP7okoVR8uWLZGTk4P4+Hh8+OGHhbZJS0uTfckEIH0mlOT0WaKKjrn3f5h7X6poubdq1arSa7R+/fpYvnw5nJ2dcfz4cbi6usra9urVCz4+PvD29kafPn1kO27y1K9fHzdv3pTNq1atGqpVqwZra2tpXt5zuH79+gKntr/6Ov3nn3/QtWtXtG/fHuvWrSvWuOjNipOv89y9exfHjx8v8POSkmDhTe8sIUSBL7j5P3yBl0k4MTERAPDvv//i5s2bWL9+vfTm/OOPPwr0u3jxYsycOVM6Uunp6SktK+4bXKFQyOLQ0Sn8rbpmzRoYGxtjxIgRBZa1atUKO3fuhLW1NUxNTYvcVkkVt98rV67gxYsX0peSs2fPwtjYGPb29rC0tISenh5iY2PRuXPnN25zzJgx6NOnD1q0aIGGDRvKljk6Oha7rzp16sDc3Py1bezt7Yt87hs1aoS4uDjExcVJe95v3LiBxMREODo6yvqZNm0aPv30U9SrV6/Yyf9Nrl+/jm7dusHLywsLFixQS5+kmpSUFNktYe7evYuoqChYWlri/fffh6enJz7++GP83//9H1q2bIknT54gLCwMzZo1g7u7O9zd3bFs2TIEBgZi6NCheP78OWbOnAkHB4cCR4uI3ibMvaph7i273JtX9L548aLAMh0dHXz88ccICgrC4cOHC11/6NChGDZsGPbt24d+/foVuR0bGxvY2dnhzp07stfrqx4+fIiuXbuidevW2LRpU4GdtvR6pc3XeX744QdUr14dvXr1UjkWFt701ktOTsann34KHx8fNGjQAC9evMCpU6ewZMmSEh0xtLCwgJWVFdatW4fq1asjNjYW06dPL7StqamplBjz7w0vyRu8OIKCgnDgwIEC948EXn7pWLJkCfr164fAwEDUrFkT9+/fx+7duzF16tRinfpVmOL2m5mZCW9vb8yaNQv37t1DQEAA/Pz8oFAoYGJigi+//BITJ05Ebm4uOnbsiKSkJJw+fRqmpqbw8vKSbbNz586YO3cunJ2dC8RT0r5Kw9XVFU2bNoWnpyeWL1+O7OxsjB07Fp07d0abNm2kdrdv30ZsbGyJ7tX5Jn/++Se6desGNzc3TJo0CUqlEsDLLwilOYpCqrl48SK6du0qTefdL9bLywubN2/Gpk2bMH/+fEyePBkPHz5E1apV8cEHH+Cjjz4CAHTr1g3btm1DUFAQgoKCYGhoCGdnZ4SEhBQ4gkZUGTH3Mveqi6Zz7/Pnz6FUKqVTzadOnYpq1aqhffv2hbafN28epkyZUujRbgDw8PDA7t274eHhgRkzZsDNzQ02Nja4f/8+du7cKTuaPXfuXIwbNw5mZmbo2bMnMjIycPHiRTx79gyTJk2SzrpwcHDA0qVL8eTJE2ldW1vbEo3zXVXafA28PBNt8+bNGDlyZIGzEUqChTe99fT19WFlZYXJkyfj3r170NbWRtOmTbFx40YMHjy42P0oFArs2LED48aNQ5MmTdCgQQOsWLGixKdDFecNXlxdu3aVfZjkZ2hoiPDwcEybNg0DBw7E8+fPUaNGDbi4uJRqL3xx+3VxcUH9+vXRqVMnZGRkYOjQoZgzZ460fN68eahWrRoWLVqEO3fuwNzcHK1atcLMmTML3e7EiROLjKmkfalKS0sL+/btwxdffIFOnTpBoVCgZ8+eWLlypaxdamoq5s6dq9arjv7yyy948uQJtm7diq1bt0rzHRwccO/ePbVth4qnS5cur/39Z5UqVTB37lzZ1YRf5eHhAQ8PD02ER1TumHuZe9VF07nX398f/v7+AF6eEt62bVscPXq0yMJaV1cXVatWfW28O3fuxPr167Fp0yYEBQUhKysLNWvWhIuLC7755hup7aeffgpDQ0MsWbIEU6ZMgZGREZo2bYoJEyYAAEJDQ3H79m3cvn27wE6b1+Ug+h915GuFQoG4uLhSx6Il+F8jIjUbOXIkEhMTsXfv3vIOhYiI6J3A3EtUsfFHAkREREREREQaxMKbiIiIiIiISIN4qjkRERERERGRBvGINxEREREREZEGsfAmIiIiIiIi0iAW3kREREREREQaxMKbiIiIiIiISINYeBMRERERERFpEAtvIiIiIiIiIg1i4U1ERERERESkQSy8iYiIiIiIiDTo/wFdIZd31Tp3+gAAAABJRU5ErkJggg==",
+ "text/plain": [
+ "