-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplayer.py
548 lines (495 loc) · 22.3 KB
/
player.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
"""
@Time : 03.04.22 16:46
@Author : Haiyang Mei
@E-mail : [email protected]
@Project : firenet-pdavis
@File : player.py
@Function:
"""
import time
import datetime
import argparse
import torch
import numpy as np
from easygui import fileopenbox
from numpy import mean
from os.path import join
import os
import sys
import cv2
from tqdm import tqdm
from thop import profile
# from thop import clever_format
from engineering_notation import EngNumber as eng # only from pip
from utils.load_model_from_args import load_model_from_args
from utils.prefs import MyPreferences
prefs=MyPreferences()
from utils.get_logger import get_logger
log=get_logger(__name__)
# import math
from pathlib import Path
from globals_and_utils import DOLP_AOLP_MASK_LEVEL, mycv2_put_text
# for run original model
# from model_ori.model import *
# from model_ori import model as model_arch
# for train and test new model
# from model.model import *
# from model import model as model_arch
# from model import model_mhy as model_arch
# from model import model_original as model_arch
from train.model import model_v as model_arch
from train.utils.render_e2p_output import render_e2p_output
# from model import model_ed as model_arch
# from model.model import ColorNet
from train.utils.util import ensure_dir, flow2bgr_np
from train.data_loader.data_loaders import InferenceDataLoader
from train.utils.util import CropParameters, get_height_width, torch2cv2, \
append_timestamp, setup_output_folder, torch2numpy, numpy2cv2
from utils.timers import CudaTimer
from train.utils.henri_compatible import make_henri_compatible
from train.parse_config import ConfigParser
model_info = {}
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
def minmax_normalization(image, device):
mini = np.percentile(torch.flatten(image).cpu().detach().numpy(), 1)
maxi = np.percentile(torch.flatten(image).cpu().detach().numpy(), 99)
image_morm = (image - mini) / (maxi - mini + 1e-5)
image_morm = torch.clamp(image_morm, 0, 1)
return image_morm.to(device)
def main(args):
sys.path.append('train') # needed to get model to load using torch.load with train.parse_config ConfigParser.. don't understand why
if args.events_file_path is None:
events_file_path = get_events_file_path()
else:
events_file_path=Path(args.events_file_path)
if events_file_path is None:
print('no file specified, quitting')
quit(0)
log.info(f'playing file "{events_file_path}"')
data_loader, dataset = open_dataset(args, events_file_path)
n_samples = len(dataset)
height, width = get_height_width(data_loader)
model_info['input_shape'] = height, width
# crop = CropParameters(width, height, model.num_encoders)
crop = CropParameters(width, height, 1)
if args.device is not None:
os.environ['CUDA_VISIBLE_DEVICES'] = args.device
log.info('Loading checkpoint: {} ...'.format(args.checkpoint_path))
model = load_model_from_args(args)
reset_e2p_network(model)
frame_number = -1
time_list = []
paused=False # to pause playback
forwards=True # what direction to go
if not args.quiet: # show video
cv2.namedWindow('pdavis',cv2.WINDOW_NORMAL)
recording_activated=False
frame_interval_ms=100
# https://stackoverflow.com/questions/53570732/get-single-random-example-from-pytorch-dataloader/61389393#61389393
# for item in tqdm(data_loader):
with tqdm(total=n_samples) as pbar:
while True:
k = cv2.waitKey(frame_interval_ms) & 0xFF # mask out modifiers if any
# https://stackoverflow.com/questions/75030061/python-opencv-waitkeyex-stops-picking-up-arrow-keys-after-mouse-click-or-tab
if k == 27 or k == ord('x'): # ESC or 'x' exits
print('quitting...')
cv2.destroyAllWindows()
break
elif k==ord(' '):
paused=not paused
print(f'paused={paused}')
elif k==ord('b'):
forwards=not forwards
print(f'forwards={forwards}')
elif k==ord('r'):
print('rewound')
frame_number=-1
forwards=True
reset_e2p_network(model)
pbar.reset(-1)
continue
elif k==ord('['):
frame_number-=20
print(f'jogged backwards to {frame_number}')
elif k==ord(']'):
frame_number+=20
print(f'jogged forwards to {frame_number}')
elif k == ord('f'):
frame_interval_ms = int(decrease(frame_interval_ms, 4))
print(f'shorter frame intervals is now {frame_interval_ms:.2f}ms')
elif k == ord('s'):
frame_interval_ms = int(increase(frame_interval_ms, 1000))
print(f'longer frame intervals is now {frame_interval_ms:.2f}ms')
elif k==ord('o'):
events_file_path=get_events_file_path()
if events_file_path is None:
continue
data_loader, dataset = open_dataset(args, events_file_path)
n_samples = len(dataset)
frame_number=-1
pbar.reset(n_samples)
continue
elif k == ord('l'):
if not recording_activated:
recording_activated = True
output_folder = os.path.join(args.output_folder, events_file_path.stem)
ts_fname = setup_output_folder(output_folder) # create folder and timestamps file in it
log.info(f'started logging recording PNG frames to folder {output_folder}')
else:
recording_activated = False
log.info(f'stopped logging recording PNG frames to folder {output_folder}')
elif k==ord('e'):
reset_e2p_network(model)
elif k == ord('-'):
args.dolp_aolp_mask_level *= .9
print(f'decrased AoLP DoLP mask level to {args.dolp_aolp_mask_level}')
elif k == ord('='): # change mask level for displaying AoLP
args.dolp_aolp_mask_level /= .9
print(f'increased AoLP DoLP mask level to {args.dolp_aolp_mask_level}')
elif k==ord('m'):
lastmodel = prefs.get('last_model_selected', 'models/*.pth')
f = fileopenbox(msg='select model checkpoint', title='Model checkpoint', default=lastmodel,
filetypes=['*.pth'])
if f is not None:
prefs.put('last_model_selected', f)
args.checkpoint_path = f
model=load_model_from_args(args)
print(f'changed model to {args.checkpoint_path}')
elif k==ord('h') or k==ord('?'):
print('ESC or x: exit\n'
'space: toggle pause\n'
'r: rewind\n'
'b: toggle direction backwards/forwards\n'
's or f: slower or faster playback\n'
'[ or ]: jog backwards or forwards\n'
'o: open a new h5 to play back\n'
'm: load a new E2P network model\n'
'l: toggle logging (recording) frames to disk'
f'- or =: decrease or increase the AoLP DoLP mask level which is currently {args.dolp_aolp_mask_level}'
'e: rEset E2P hidden states\n'
'? or h: print this help'
)
elif k!=255:
print(f'unknown key {k}')
if paused:
continue
frame_number += 1 if forwards else -1
if frame_number>=n_samples:
print('rewound')
frame_number=-1
if recording_activated:
log.info(f'stopped logging recording frames to {output_folder}')
recording_activated=False
continue
if frame_number<0:
print('done going backwards, changed to forwards')
forwards=True
frame_number=-1
if recording_activated:
log.info(f'stopped logging recording frames to {output_folder}')
recording_activated=False
continue
pbar.update(1 if forwards else -1)
item=dataset[frame_number] # get a particular frame, is dict with intensity, aolp, dolp, events (voxel grid), etc
# even though we directly access the dataset item by index, it still calls the get_item that calls the code in data_loaders.py to build the voxel grid from raw events
# item['events'] is actually the complete 5-frame voxel grid
# see my_merge_h5.py for how the original data is created for training E2P
voxel = torch.unsqueeze(item['events'], dim=0).to(device)# we need to add a singleton dimension at front to make it look like batch 1 sample
# voxel = item['events'].to(device)
# important # tobi doesn't think we need to do this for E2P... maybe holdover from firenet?
# if args.real_data:
# voxel = torch.flip(voxel, [2])
# voxel = torch.flip(voxel, [2, 3])
# with CudaTimer('Inference'):
# output = model(voxel)
start_each = time.time()
output = model(voxel)
time_each = time.time() - start_each
time_list.append(time_each)
# calculate the computational efficiency
if args.measure_cost:
args.measure_cost=False # only first one
flops, params = profile(model, inputs=(voxel,))
# print(model)
log.info(f'\n[Network cost information]\nFLOPs/sample: {eng(flops)}\nParams: {eng(params)}')
# code moved to bottom of file ****************************************************
# intensity = torch2cv2(output['i']) # these 3 outputs are scaled 0-1, torch2cv2 rescales to 0-255 uint8 2d images
# aolp = torch2cv2(output['a'])
# dolp = torch2cv2(output['d'])
aolp = output['a']
if aolp.shape[1] == 2: #using sin/cos output, convert back to [0,1] first
aolp = torch.atan2(aolp[:, 0:1], aolp[:, 1:2]+ 1e-6) / (2*np.pi) + 0.5 # map to [0,1]
output['a'] = aolp
intensity,aolp,dolp=render_e2p_output(output, args.dolp_aolp_mask_level, 1.0)
iad = cv2.hconcat([intensity, aolp, dolp])
# iad_f = cv2.hconcat([intensity_f, aolp_f, dolp_f])
gt={}
gt['i']=(torch.squeeze(item['intensity']))
gt['a']=(torch.squeeze(item['aolp']))
gt['d']=(torch.squeeze(item['dolp']))
# print(f"** gt['a'] max:{gt['a'].max()}, gt['a'] min:{gt['a'].min()}")
# intensity_gt=(torch.squeeze(item['intensity']).numpy() * 255).astype(np.uint8)
# aolp_gt=(torch.squeeze(item['aolp']).numpy() * 255).astype(np.uint8)
# dolp_gt=(torch.squeeze(item['dolp']).numpy() * 255).astype(np.uint8)
intensity_gt,aolp_gt,dolp_gt=render_e2p_output(gt, args.dolp_aolp_mask_level, 1.0)
iad_gt = cv2.hconcat([intensity_gt,aolp_gt,dolp_gt])
mycv2_put_text(iad_gt, f'GT fr:{frame_number:,}/{n_samples:,}',fontScale=1.5,org=(10,20))
mycv2_put_text(iad, 'E2P',fontScale=1.5,org=(10,20))
iad_both = cv2.vconcat([iad_gt, iad])
if recording_activated:
iad_name = '{:05d}.png'.format(frame_number)
cv2.imwrite(join(output_folder, iad_name), iad_both)
print('.', end='')
append_timestamp(ts_fname, iad_name, item['timestamp'].item())
if frame_number % 80 == 0:
print('')
if not args.quiet: # show video
cv2.namedWindow('pdavis')
cv2.imshow('pdavis',iad_both)
log.info(f"\n{args.checkpoint_path}'s average inference time Is : {eng(mean(time_list) * 1000)} ms")
def get_events_file_path():
last_h5_folder = prefs.get('last_h5_folder', '')
events_file_path = fileopenbox(msg='Select h5 dataset file', title='H5 chooser', filetypes=['*.h5'],
default=last_h5_folder)
if events_file_path is None:
print('no file selected')
return None
events_file_path = Path(events_file_path)
prefs.put('last_h5_folder', str(events_file_path))
return events_file_path
def open_dataset(args, events_file_path):
dataset_kwargs = {'transforms': {},
'max_length': None,
'sensor_resolution': (args.height, args.width),
'num_bins': 5,
'filter_hot_events': args.filter_hot_events,
'voxel_method': {'method': args.voxel_method,
'k': args.k,
't': args.t,
'sliding_window_w': args.sliding_window_w,
'sliding_window_t': args.sliding_window_t}
}
if args.update:
print("Updated style model")
dataset_kwargs['combined_voxel_channels'] = False
if args.legacy_norm:
print('Using legacy voxel normalization')
dataset_kwargs['transforms'] = {'LegacyNorm': {}}
if args.robust_norm:
print('Using Robust voxel normalization')
dataset_kwargs['transforms'] = {'RobustNorm': {}}
data_loader = InferenceDataLoader(events_file_path, dataset_kwargs=dataset_kwargs, ltype=args.loader_type,
real_data=args.real_data, direction=args.direction)
dataset = data_loader.dataset
return data_loader, dataset
def reset_e2p_network(model):
print('reset E2P hidden states')
model.reset_states_i()
model.reset_states_a()
model.reset_states_d()
SPEED_UP_FACTOR=2
def increase(val,limit):
return val*SPEED_UP_FACTOR if val*SPEED_UP_FACTOR<=limit else limit
def decrease(val,limit):
return val/SPEED_UP_FACTOR if val/SPEED_UP_FACTOR>=limit else limit
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='PyTorch Template')
parser.add_argument('--checkpoint_path', type=str, default='models/e2p-0317_215454-e2p-paper_plus_tobi_office-from-scratch.pth',
help='path to latest checkpoint (default: None)')
# parser.add_argument('--events_file_path', type=str, default='/mnt/c/Users/tobid/Downloads/Davis346B-2023-03-16T15-42-43+0100-00000000-0-pdavis-polfilter-tobi-office-window2.h5',
parser.add_argument('--events_file_path', type=str, default=None,
help='path to events (HDF5)')
parser.add_argument('--output_folder', default="./tmp/output", type=str,
help='where to save outputs to')
parser.add_argument('--dolp_aolp_mask_level', type=float, default=DOLP_AOLP_MASK_LEVEL, help='level of DoLP below which to mask the AoLP value since it is likely not meaningful')
parser.add_argument('--height', type=int, default=260,
help='sensor resolution: height')
parser.add_argument('--width', type=int, default=346,
help='sensor resolution: width')
parser.add_argument('--device', default='0', type=str,
help='indices of GPUs to enable')
parser.add_argument('--update', action='store_true',
help='Set this if using updated models')
parser.add_argument('--voxel_method', default='between_frames', type=str,
help='which method should be used to form the voxels',
choices=['between_frames', 'k_events', 't_seconds'])
parser.add_argument('--k', type=int,
help='new voxels are formed every k events (required if voxel_method is k_events)')
parser.add_argument('--sliding_window_w', type=int,
help='sliding_window size (required if voxel_method is k_events)')
parser.add_argument('--t', type=float,
help='new voxels are formed every t seconds (required if voxel_method is t_seconds)')
parser.add_argument('--sliding_window_t', type=float,
help='sliding_window size in seconds (required if voxel_method is t_seconds)')
parser.add_argument('--loader_type', default='H5', type=str,
help='Which data format to load (HDF5 recommended)')
parser.add_argument('--filter_hot_events', action='store_true',
help='If true, auto-detect and remove hot pixels')
parser.add_argument('--legacy_norm', action='store_true', default=False,
help='Normalize nonzero entries in voxel to have mean=0, std=1 according to Rebecq20PAMI and Scheerlinck20WACV.'
'If --e2vid or --firenet_legacy are set, --legacy_norm will be set to True (default False).')
parser.add_argument('--robust_norm', action='store_true', default=False,
help='Normalize voxel')
parser.add_argument('--e2vid', action='store_true', default=False,
help='set required parameters to run original e2vid as described in Rebecq20PAMI')
parser.add_argument('--firenet_legacy', action='store_true', default=False,
help='set required parameters to run legacy firenet as described in Scheerlinck20WACV (not for retrained models using updated code)')
parser.add_argument('--measure_cost', action='store_true', default=False,
help='Calculate the parameters and FLOPs.')
parser.add_argument('--real_data', action='store_true', default=False,
help='currently our own real data has no frame')
parser.add_argument('--direction', default=None, type=str,
help='Specify which dataloader will be used for FireNet inference.')
parser.add_argument('--quiet',action='store_true',help='quiet mode - do not show video during reconstruction')
args = parser.parse_args()
main(args)
# model.firenet_i90.reset_states()
# model.firenet_i45.reset_states()
# model.firenet_i135.reset_states()
# model.firenet_i0.reset_states()
# model.reset_states_intensity()
# model.reset_states_aolp()
# model.reset_states_dolp()
# m13
# model.reset_states_i()
# v
# model.reset_states_s0()
# model.reset_states_s1()
# model.reset_states_s2()
# m31
# model.reset_states_i2()
# model.reset_states_i4()
# model.reset_states_i8()
# model.reset_states_a2()
# model.reset_states_a4()
# model.reset_states_a8()
# model.reset_states_d2()
# model.reset_states_d4()
# model.reset_states_d8()
# original firenet
# image = crop.crop(output['image'])
# image = torch2cv2(image)
# output raw
# image = crop.crop(output['image'])
# image = torch2numpy(image)
# image = np.clip(image, 0, 1)
#
# i90 = image[0::2, 0::2]
# i45 = image[0::2, 1::2]
# i135 = image[1::2, 0::2]
# i0 = image[1::2, 1::2]
#
# s0 = i0.astype(float) + i90.astype(float)
# s1 = i0.astype(float) - i90.astype(float)
# s2 = i45.astype(float) - i135.astype(float)
#
# output stocks parameters
# s0 = crop.crop(output['s0']) * 2
# s1 = crop.crop(output['s1']) * 2 - 1
# s2 = crop.crop(output['s2']) * 2 - 1
#
# s0 = torch2numpy(s0)
# s1 = torch2numpy(s1)
# s2 = torch2numpy(s2)
#
# intensity = s0 / 2
# intensity = numpy2cv2(intensity)
#
# aolp = 0.5 * np.arctan2(s2, s1)
# aolp = aolp + 0.5 * math.pi
# aolp = aolp / math.pi
# aolp = numpy2cv2(aolp)
#
# dolp = np.divide(np.sqrt(np.square(s1) + np.square(s2)), s0, out=np.zeros_like(s0).astype(float), where=s0 != 0)
# dolp = numpy2cv2(dolp)
# output polarization with crop
# intensity = crop.crop(output['i'])
# intensity = torch2cv2(intensity)
# aolp = crop.crop(output['a'])
# aolp = torch2cv2(aolp)
# dolp = crop.crop(output['d'])
# dolp = torch2cv2(dolp)
# output polarization without crop
# output['i'] = minmax_normalization(output['i'], output['i'].device)
# intensity_f = torch2cv2(output['i_f'])
# aolp_f = torch2cv2(output['a_f'])
# dolp_f = torch2cv2(output['d_f'])
# intensity = torch2cv2(output['i90'])
# aolp = torch2cv2(output['i45'])
# dolp = torch2cv2(output['i135'])
# for dct output
# intensity = crop.crop(output['i_f'])
# intensity = torch2cv2(intensity)
# aolp = crop.crop(output['a_f'])
# aolp = torch2cv2(aolp)
# dolp = crop.crop(output['d_f'])
# dolp = torch2cv2(dolp)
# new representation
# aolp = output['image']
# aolp = output['a']
# aolp = torch2numpy(aolp)
# aolp = np.clip(aolp, 0, 1)
# aolp = aolp - 0.5
# aolp = np.where(aolp < 0, aolp+1, aolp)
# aolp = numpy2cv2(aolp)
# intensity = aolp
# dolp = aolp
# dolp = crop.crop(output['image'])
# dolp = crop.crop(output['d'])
# dolp = torch2cv2(dolp)
# intensity = dolp
# aolp = dolp
# output stocks parameters
# s0 = crop.crop(output['s0'])
# s0 = torch2numpy(s0)
# s0 = np.clip(s0, 0, 1)
# s1 = crop.crop(output['s1'])
# s1 = torch2numpy(s1)
# s1 = np.clip(s1, 0, 1)
# s1 = s1 * 2 - 1
# s2 = crop.crop(output['s2'])
# s2 = torch2numpy(s2)
# s2 = np.clip(s2, 0, 1)
# s2 = s2 * 2 - 1
#
# intensity = numpy2cv2(s0)
#
# aolp = 0.5 * np.arctan2(s2, s1)
# aolp = aolp + 0.5 * math.pi
# aolp = aolp / math.pi
# aolp = numpy2cv2(aolp)
#
# dolp = np.divide(np.sqrt(np.square(s1) + np.square(s2)), s0, out=np.zeros_like(s0).astype(float), where=s0 != 0)
# dolp = numpy2cv2(dolp)
# output four-direction intensity
# i90 = crop.crop(output['i_90'])
# i90 = torch2numpy(i90)
# i90 = np.clip(i90, 0, 1)
# i45 = crop.crop(output['i_45'])
# i45 = torch2numpy(i45)
# i45 = np.clip(i45, 0, 1)
# i135 = crop.crop(output['i_135'])
# i135 = torch2numpy(i135)
# i135 = np.clip(i135, 0, 1)
# i0 = crop.crop(output['i_0'])
# i0 = torch2numpy(i0)
# i0 = np.clip(i0, 0, 1)
#
# s0 = i0.astype(float) + i90.astype(float)
# s1 = i0.astype(float) - i90.astype(float)
# s2 = i45.astype(float) - i135.astype(float)
#
# intensity = s0 / 2
# intensity = numpy2cv2(intensity)
#
# aolp = 0.5 * np.arctan2(s2, s1)
# aolp = aolp + 0.5 * math.pi
# aolp = aolp / math.pi
# aolp = numpy2cv2(aolp)
#
# dolp = np.divide(np.sqrt(np.square(s1) + np.square(s2)), s0, out=np.zeros_like(s0).astype(float), where=s0 != 0)
# dolp = numpy2cv2(dolp)
# output raw
# fname = '{:05d}.png'.format(i + 1)
# cv2.imwrite(join(output_folder, fname), image)
# output polarization iad