-
Notifications
You must be signed in to change notification settings - Fork 139
/
Copy patheval.py
82 lines (66 loc) · 3.45 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
import tensorflow as tf
import numpy as np
import os
import subprocess
import data_helpers
import utils
from configure import FLAGS
def eval():
with tf.device('/cpu:0'):
x_text, y = data_helpers.load_data_and_labels(FLAGS.test_path)
# Map data into vocabulary
text_path = os.path.join(FLAGS.checkpoint_dir, "..", "vocab")
text_vocab_processor = tf.contrib.learn.preprocessing.VocabularyProcessor.restore(text_path)
x = np.array(list(text_vocab_processor.transform(x_text)))
checkpoint_file = tf.train.latest_checkpoint(FLAGS.checkpoint_dir)
graph = tf.Graph()
with graph.as_default():
session_conf = tf.ConfigProto(
allow_soft_placement=FLAGS.allow_soft_placement,
log_device_placement=FLAGS.log_device_placement)
session_conf.gpu_options.allow_growth = FLAGS.gpu_allow_growth
sess = tf.Session(config=session_conf)
with sess.as_default():
# Load the saved meta graph and restore variables
saver = tf.train.import_meta_graph("{}.meta".format(checkpoint_file))
saver.restore(sess, checkpoint_file)
# Get the placeholders from the graph by name
input_text = graph.get_operation_by_name("input_text").outputs[0]
# input_y = graph.get_operation_by_name("input_y").outputs[0]
emb_dropout_keep_prob = graph.get_operation_by_name("emb_dropout_keep_prob").outputs[0]
rnn_dropout_keep_prob = graph.get_operation_by_name("rnn_dropout_keep_prob").outputs[0]
dropout_keep_prob = graph.get_operation_by_name("dropout_keep_prob").outputs[0]
# Tensors we want to evaluate
predictions = graph.get_operation_by_name("output/predictions").outputs[0]
# Generate batches for one epoch
batches = data_helpers.batch_iter(list(x), FLAGS.batch_size, 1, shuffle=False)
# Collect the predictions here
preds = []
for x_batch in batches:
pred = sess.run(predictions, {input_text: x_batch,
emb_dropout_keep_prob: 1.0,
rnn_dropout_keep_prob: 1.0,
dropout_keep_prob: 1.0})
preds.append(pred)
preds = np.concatenate(preds)
truths = np.argmax(y, axis=1)
prediction_path = os.path.join(FLAGS.checkpoint_dir, "..", "predictions.txt")
truth_path = os.path.join(FLAGS.checkpoint_dir, "..", "ground_truths.txt")
prediction_file = open(prediction_path, 'w')
truth_file = open(truth_path, 'w')
for i in range(len(preds)):
prediction_file.write("{}\t{}\n".format(i, utils.label2class[preds[i]]))
truth_file.write("{}\t{}\n".format(i, utils.label2class[truths[i]]))
prediction_file.close()
truth_file.close()
perl_path = os.path.join(os.path.curdir,
"SemEval2010_task8_all_data",
"SemEval2010_task8_scorer-v1.2",
"semeval2010_task8_scorer-v1.2.pl")
process = subprocess.Popen(["perl", perl_path, prediction_path, truth_path], stdout=subprocess.PIPE)
for line in str(process.communicate()[0].decode("utf-8")).split("\\n"):
print(line)
def main(_):
eval()
if __name__ == "__main__":
tf.app.run()