-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
372 lines (271 loc) · 10.6 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
import torch
from torch import nn
from torch.nn import functional as F
from math import log, pi, exp
import numpy as np
from scipy import linalg as la
logabs = lambda x: torch.log(torch.abs(x))
class ActNorm(nn.Module):
def __init__(self, in_channel, logdet=True):
super().__init__()
self.loc = nn.Parameter(torch.zeros(1, in_channel, 1, 1))
self.scale = nn.Parameter(torch.ones(1, in_channel, 1, 1))
self.register_buffer("initialized", torch.tensor(0, dtype=torch.uint8))
self.logdet = logdet
def initialize(self, input):
with torch.no_grad():
flatten = input.permute(1, 0, 2, 3).contiguous().view(input.shape[1], -1)
mean = (
flatten.mean(1)
.unsqueeze(1)
.unsqueeze(2)
.unsqueeze(3)
.permute(1, 0, 2, 3)
)
std = (
flatten.std(1)
.unsqueeze(1)
.unsqueeze(2)
.unsqueeze(3)
.permute(1, 0, 2, 3)
)
self.loc.data.copy_(-mean)
self.scale.data.copy_(1 / (std + 1e-6))
def forward(self, input):
_, _, height, width = input.shape
if self.initialized.item() == 0:
self.initialize(input)
self.initialized.fill_(1)
log_abs = logabs(self.scale)
logdet = height * width * torch.sum(log_abs)
if self.logdet:
return self.scale * (input + self.loc), logdet
else:
return self.scale * (input + self.loc)
def reverse(self, output):
return output / self.scale - self.loc
class InvConv2d(nn.Module):
def __init__(self, in_channel):
super().__init__()
weight = torch.randn(in_channel, in_channel)
q, _ = torch.qr(weight)
weight = q.unsqueeze(2).unsqueeze(3)
self.weight = nn.Parameter(weight)
def forward(self, input):
_, _, height, width = input.shape
out = F.conv2d(input, self.weight)
logdet = (
height * width * torch.slogdet(self.weight.squeeze().double())[1].float()
)
return out, logdet
def reverse(self, output):
return F.conv2d(
output, self.weight.squeeze().inverse().unsqueeze(2).unsqueeze(3)
)
class InvConv2dLU(nn.Module):
def __init__(self, in_channel):
super().__init__()
weight = np.random.randn(in_channel, in_channel)
q, _ = la.qr(weight)
w_p, w_l, w_u = la.lu(q.astype(np.float32))
w_s = np.diag(w_u)
w_u = np.triu(w_u, 1)
u_mask = np.triu(np.ones_like(w_u), 1)
l_mask = u_mask.T
w_p = torch.from_numpy(w_p.copy())
w_l = torch.from_numpy(w_l.copy())
w_s = torch.from_numpy(w_s.copy())
w_u = torch.from_numpy(w_u.copy())
self.register_buffer("w_p", w_p)
self.register_buffer("u_mask", torch.from_numpy(u_mask))
self.register_buffer("l_mask", torch.from_numpy(l_mask))
self.register_buffer("s_sign", torch.sign(w_s))
self.register_buffer("l_eye", torch.eye(l_mask.shape[0]))
self.w_l = nn.Parameter(w_l)
self.w_s = nn.Parameter(logabs(w_s))
self.w_u = nn.Parameter(w_u)
def forward(self, input):
_, _, height, width = input.shape
weight = self.calc_weight()
out = F.conv2d(input, weight)
logdet = height * width * torch.sum(self.w_s)
return out, logdet
def calc_weight(self):
weight = (
self.w_p
@ (self.w_l * self.l_mask + self.l_eye)
@ ((self.w_u * self.u_mask) + torch.diag(self.s_sign * torch.exp(self.w_s)))
)
return weight.unsqueeze(2).unsqueeze(3)
def reverse(self, output):
weight = self.calc_weight()
return F.conv2d(output, weight.squeeze().inverse().unsqueeze(2).unsqueeze(3))
class ZeroConv2d(nn.Module):
def __init__(self, in_channel, out_channel, padding=1):
super().__init__()
self.conv = nn.Conv2d(in_channel, out_channel, 3, padding=0)
self.conv.weight.data.zero_()
self.conv.bias.data.zero_()
self.scale = nn.Parameter(torch.zeros(1, out_channel, 1, 1))
def forward(self, input):
out = F.pad(input, [1, 1, 1, 1], value=1)
out = self.conv(out)
out = out * torch.exp(self.scale * 3)
return out
class AffineCoupling(nn.Module):
def __init__(self, in_channel, filter_size=512, affine=True):
super().__init__()
self.affine = affine
self.net = nn.Sequential(
nn.Conv2d(in_channel // 2, filter_size, 3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(filter_size, filter_size, 1),
nn.ReLU(inplace=True),
ZeroConv2d(filter_size, in_channel if self.affine else in_channel // 2),
)
self.net[0].weight.data.normal_(0, 0.05)
self.net[0].bias.data.zero_()
self.net[2].weight.data.normal_(0, 0.05)
self.net[2].bias.data.zero_()
def forward(self, input):
in_a, in_b = input.chunk(2, 1)
if self.affine:
log_s, t = self.net(in_a).chunk(2, 1)
# s = torch.exp(log_s)
s = F.sigmoid(log_s + 2)
# out_a = s * in_a + t
out_b = (in_b + t) * s
logdet = torch.sum(torch.log(s).view(input.shape[0], -1), 1)
else:
net_out = self.net(in_a)
out_b = in_b + net_out
logdet = None
return torch.cat([in_a, out_b], 1), logdet
def reverse(self, output):
out_a, out_b = output.chunk(2, 1)
if self.affine:
log_s, t = self.net(out_a).chunk(2, 1)
# s = torch.exp(log_s)
s = F.sigmoid(log_s + 2)
# in_a = (out_a - t) / s
in_b = out_b / s - t
else:
net_out = self.net(out_a)
in_b = out_b - net_out
return torch.cat([out_a, in_b], 1)
class Flow(nn.Module):
def __init__(self, in_channel, affine=True, conv_lu=True):
super().__init__()
self.actnorm = ActNorm(in_channel)
if conv_lu:
self.invconv = InvConv2dLU(in_channel)
else:
self.invconv = InvConv2d(in_channel)
self.coupling = AffineCoupling(in_channel, affine=affine)
def forward(self, input):
out, logdet = self.actnorm(input)
out, det1 = self.invconv(out)
out, det2 = self.coupling(out)
logdet = logdet + det1
if det2 is not None:
logdet = logdet + det2
return out, logdet
def reverse(self, output):
input = self.coupling.reverse(output)
input = self.invconv.reverse(input)
input = self.actnorm.reverse(input)
return input
def gaussian_log_p(x, mean, log_sd):
return -0.5 * log(2 * pi) - log_sd - 0.5 * (x - mean) ** 2 / torch.exp(2 * log_sd)
def gaussian_sample(eps, mean, log_sd):
return mean + torch.exp(log_sd) * eps
class Block(nn.Module):
def __init__(self, in_channel, n_flow, split=True, affine=True, conv_lu=True):
super().__init__()
squeeze_dim = in_channel * 4
self.flows = nn.ModuleList()
for i in range(n_flow):
self.flows.append(Flow(squeeze_dim, affine=affine, conv_lu=conv_lu))
self.split = split
if split:
self.prior = ZeroConv2d(in_channel * 2, in_channel * 4)
else:
self.prior = ZeroConv2d(in_channel * 4, in_channel * 8)
def forward(self, input):
b_size, n_channel, height, width = input.shape
squeezed = input.view(b_size, n_channel, height // 2, 2, width // 2, 2)
squeezed = squeezed.permute(0, 1, 3, 5, 2, 4)
out = squeezed.contiguous().view(b_size, n_channel * 4, height // 2, width // 2)
logdet = 0
for flow in self.flows:
out, det = flow(out)
logdet = logdet + det
if self.split:
out, z_new = out.chunk(2, 1)
mean, log_sd = self.prior(out).chunk(2, 1)
log_p = gaussian_log_p(z_new, mean, log_sd)
log_p = log_p.view(b_size, -1).sum(1)
else:
zero = torch.zeros_like(out)
mean, log_sd = self.prior(zero).chunk(2, 1)
log_p = gaussian_log_p(out, mean, log_sd)
log_p = log_p.view(b_size, -1).sum(1)
z_new = out
return out, logdet, log_p, z_new
def reverse(self, output, eps=None, reconstruct=False):
input = output
if reconstruct:
if self.split:
input = torch.cat([output, eps], 1)
else:
input = eps
else:
if self.split:
mean, log_sd = self.prior(input).chunk(2, 1)
z = gaussian_sample(eps, mean, log_sd)
input = torch.cat([output, z], 1)
else:
zero = torch.zeros_like(input)
# zero = F.pad(zero, [1, 1, 1, 1], value=1)
mean, log_sd = self.prior(zero).chunk(2, 1)
z = gaussian_sample(eps, mean, log_sd)
input = z
for flow in self.flows[::-1]:
input = flow.reverse(input)
b_size, n_channel, height, width = input.shape
unsqueezed = input.view(b_size, n_channel // 4, 2, 2, height, width)
unsqueezed = unsqueezed.permute(0, 1, 4, 2, 5, 3)
unsqueezed = unsqueezed.contiguous().view(
b_size, n_channel // 4, height * 2, width * 2
)
return unsqueezed
class Glow(nn.Module):
def __init__(
self, in_channel, n_flow, n_block, affine=True, conv_lu=True
):
super().__init__()
self.blocks = nn.ModuleList()
n_channel = in_channel
for i in range(n_block - 1):
self.blocks.append(Block(n_channel, n_flow, affine=affine, conv_lu=conv_lu))
n_channel *= 2
self.blocks.append(Block(n_channel, n_flow, split=False, affine=affine))
def forward(self, input):
log_p_sum = 0
logdet = 0
out = input
z_outs = []
for block in self.blocks:
out, det, log_p, z_new = block(out)
z_outs.append(z_new)
logdet = logdet + det
if log_p is not None:
log_p_sum = log_p_sum + log_p
return log_p_sum, logdet, z_outs
def reverse(self, z_list, reconstruct=False):
for i, block in enumerate(self.blocks[::-1]):
if i == 0:
input = block.reverse(z_list[-1], z_list[-1], reconstruct=reconstruct)
else:
input = block.reverse(input, z_list[-(i + 1)], reconstruct=reconstruct)
return input