-
-
Quick Start
-
-Let's demonstrate basic use of Shark with very few lines of code.
-This is C++, so we start with includes.
-
-
#include <shark/Data/Download.h>
-#include <shark/Algorithms/Trainers/LDA.h>
-#include <shark/ObjectiveFunctions/Loss/ZeroOneLoss.h>
-using namespace shark;
-
-Let's load some data for learning.
-
-
ClassificationDataset traindata;
-downloadCsvData(traindata,
- "www.shark-ml.org/data/quickstart-train.csv",
- LAST_COLUMN,
- ' ');
-
-
-The next step is to create a predictive model. Here we use a simple linear classifier.
-
-
LinearClassifier<> classifier;
-
-The core step of learning is to train the model on data using a trainer.
-In Shark, the trainer is not glued to the model. Instead it is a separate object.
-Here, good old Linear Discriminant Analysis (LDA) suits our needs.
-
-
LDA lda;
-lda.train(classifier, traindata);
-
-Congrats! We have a readily trained classifier.
-Let's try it out by applying it to new data.
-
-
ClassificationDataset testdata;
-downloadCsvData(testdata,
- "www.shark-ml.org/data/quickstart-test.csv",
- LAST_COLUMN,
- ' ');
-ZeroOneLoss<> loss;
-double error = loss(testdata.labels(), classifier(testdata.inputs()));
-
-Further reading:
-
-
-