-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain.py
177 lines (152 loc) · 6.13 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
"""This module simulates photonic training of a feedforward neural network using the DFA algorithm
on the MNIST dataset. Simulation parameters are specified by command line arguments.
This code was based on https://github.com/pytorch/examples/tree/main/mnist"""
import argparse
import torch
import torch.nn.functional as F
from torch import nn, optim
from torch.optim.lr_scheduler import StepLR
from torchvision import datasets, transforms
from tqdm import tqdm
from dfa import DFALayer, DFAOutput
class OpticalNN(nn.Module):
def __init__(self, hidden_layers, error_mean, error_std):
super().__init__()
layers = [784, *hidden_layers, 10]
self.fcs = nn.ModuleList(
[nn.Linear(layers[i], layers[i + 1]) for i in range(len(hidden_layers) + 1)]
)
self.dfa_layers = nn.ModuleList([DFALayer() for _ in range(len(hidden_layers))])
self.dfa_output = DFAOutput(self.dfa_layers, error_mean, error_std)
def forward(self, x):
x = x.reshape(-1, 784)
for i, dfa_layer in enumerate(self.dfa_layers):
x = dfa_layer(torch.relu(self.fcs[i](x)))
x = self.dfa_output(self.fcs[-1](x))
return x
def train(args, model, device, train_loader, optimizer):
model.train()
for (data, target) in tqdm(train_loader, disable=args.no_progressbar):
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = model(data)
loss = F.cross_entropy(output, target)
loss.backward()
optimizer.step()
if args.dry_run:
break
def test(model, device, test_loader):
model.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device), target.to(device)
output = model(data)
test_loss += F.cross_entropy(
output, target, reduction="sum"
).item() # sum up batch loss
pred = output.argmax(dim=1, keepdim=True) # get the index of the max log-probability
correct += pred.eq(target.view_as(pred)).sum().item()
test_loss /= len(test_loader.dataset)
test_accuracy = 100.0 * correct / len(test_loader.dataset)
return test_accuracy
def main():
# Training settings
parser = argparse.ArgumentParser(description="Photonic DFA Training")
parser.add_argument(
"--hidden-layers",
type=int,
nargs="+",
default=[800, 800],
help="Size of the hidden layers",
)
parser.add_argument(
"--error-mean", type=float, default=0, help="Mean error of each MAC operation"
)
parser.add_argument(
"--error-std",
type=float,
default=0,
help="Standard deviation of the error of each MAC operation",
)
parser.add_argument(
"--batch-size",
type=int,
default=64,
help="Input batch size for training (default: 64)",
)
parser.add_argument(
"--test-batch-size",
type=int,
default=1000,
help="Input batch size for testing (default: 1000)",
)
parser.add_argument(
"--epochs",
type=int,
default=50,
help="Number of epochs to train (default: 50)",
)
parser.add_argument("--lr", type=float, default=0.01, help="Learning rate (default: 1.0)")
parser.add_argument("--momentum", type=float, default=0.9, help="SGD momentum (default: 0.9)")
parser.add_argument(
"--gamma", type=float, default=1, help="Learning rate step gamma (default: 1)"
)
parser.add_argument(
"--no-cuda", action="store_true", default=False, help="Disables CUDA training"
)
parser.add_argument(
"--dry-run", action="store_true", default=False, help="Quickly check a single pass"
)
parser.add_argument("--seed", type=int, default=1, help="Random seed (default: 1)")
parser.add_argument(
"--save-model", action="store_true", default=False, help="For saving the current model"
)
parser.add_argument(
"--no-progressbar", action="store_true", default=False, help="Don't display progress bar"
)
args = parser.parse_args()
use_cuda = not args.no_cuda and torch.cuda.is_available()
torch.manual_seed(args.seed)
if use_cuda:
device = torch.device("cuda")
else:
device = torch.device("cpu")
train_kwargs = {"batch_size": args.batch_size}
test_kwargs = {"batch_size": args.test_batch_size}
if use_cuda:
cuda_kwargs = {"num_workers": 1, "pin_memory": True, "shuffle": True}
train_kwargs.update(cuda_kwargs)
test_kwargs.update(cuda_kwargs)
transform = transforms.Compose(
[transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]
)
train_set = datasets.MNIST("./data", train=True, download=True, transform=transform)
val_set, test_set = torch.utils.data.random_split(
datasets.MNIST("./data", train=False, transform=transform), [5000, 5000]
)
train_loader = torch.utils.data.DataLoader(train_set, **train_kwargs)
val_loader = torch.utils.data.DataLoader(val_set, **test_kwargs)
test_loader = torch.utils.data.DataLoader(test_set, **test_kwargs)
model = OpticalNN(args.hidden_layers, args.error_mean, args.error_std).to(device)
optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum)
scheduler = StepLR(optimizer, step_size=1, gamma=args.gamma)
best_val_acc = 0
best_model = OpticalNN(args.hidden_layers, args.error_mean, args.error_std).to(device)
best_model.load_state_dict(model.state_dict())
print(args)
for epoch in range(1, args.epochs + 1):
train(args, model, device, train_loader, optimizer)
val_acc = test(model, device, val_loader)
print(f"Epoch {epoch} - Validation accuracy {val_acc}")
if val_acc > best_val_acc:
best_val_acc = val_acc
best_model.load_state_dict(model.state_dict())
scheduler.step()
test_acc = test(best_model, device, test_loader)
print(f"Test Accuracy: {test_acc}")
if args.save_model:
torch.save(best_model.state_dict(), "Optical_NN.pt")
if __name__ == "__main__":
main()