-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
63 lines (55 loc) · 2.12 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import numpy as np
from scipy.io import wavfile
from scipy.io.wavfile import write as wavwrite
import os
from sklearn.preprocessing import LabelEncoder
import keras
#from keras.models import load_model
from werkzeug.utils import secure_filename
from flask import Flask, flash, request, redirect, url_for, send_from_directory, render_template
from tensorflow import keras
labels = ["on", "off", "stop", "go", "yes", "no", "up", "down", "left", "right"]
le = LabelEncoder()
y = le.fit_transform(labels)
classes = list(le.classes_)
ALLOWED_EXTENSIONS = {'wav', 'mp3'}
dirname = os.path.dirname(os.path.abspath(__file__))
UPLOAD_FOLDER = dirname + "/temp/"
model_folder = dirname+ "/my_model"
loaded_model = keras.models.load_model(model_folder)
# Create Flask App
app = Flask(__name__)
app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
def allowed_file(filename):
return '.' in filename and \
filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS
# Upload files function
@app.route('/', methods=['GET', 'POST'])
def upload_file():
if request.method == 'POST':
if 'file' not in request.files:
flash('No file part')
return redirect(request.url)
file = request.files['file']
if file.filename == '':
flash('No selected file')
return redirect(request.url)
if file and allowed_file(file.filename):
filename = os.path.join(app.config['UPLOAD_FOLDER'],
secure_filename(file.filename))
file.save(filename)
return redirect(url_for('classify_and_show_results',
filename=filename))
return render_template("index.html")
@app.route('/results', methods=['GET'])
def classify_and_show_results():
filename = request.args['filename']
rate, audio = wavfile.read(filename)
prob = loaded_model.predict(audio.reshape(1,16000,1))
index = np.argmax(prob[0]) #getting output from model
prediction= classes[index]
# Delete uploaded file
os.remove(filename)
return render_template("results.html", filename=filename, prediction=prediction)
if __name__ == "__main__":
app.run(debug=True)