-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtest_sun.py
186 lines (148 loc) · 6.19 KB
/
test_sun.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
import argparse
from model.build_BiSeNet import BiSeNet
import os
import torch
import cv2
from imgaug import augmenters as iaa
from PIL import Image
from torchvision import transforms
import numpy as np
from utils import reverse_one_hot, get_label_info, colour_code_segmentation
import datetime
parser = argparse.ArgumentParser()
parser.add_argument('--checkpoint_path', type=str, default='./checkpoints/epoch_130.pth', help='The path to the pretrained weights of model')
parser.add_argument('--context_path', type=str, default="Xception", help='The context path model you are using.')
parser.add_argument('--num_classes', type=int, default=38, help='num of object classes (with void)')
parser.add_argument('--crop_height', type=int, default=480, help='Height of cropped/resized input image to network')
parser.add_argument('--crop_width', type=int, default=640, help='Width of cropped/resized input image to network')
parser.add_argument('--cuda', type=str, default='0', help='GPU ids used for training')
parser.add_argument('--use_gpu', type=bool, default=True, help='Whether to user gpu for training')
parser.add_argument('--csv_path', type=str, default='/home/disk2/xs/sun/seg37_class_dict.csv', help='Path to label info csv file')
args = parser.parse_args()
# read csv label path
label_info = get_label_info(args.csv_path)
scale = (args.crop_height, args.crop_width)
# build model
os.environ['CUDA_VISIBLE_DEVICES'] = args.cuda
model = BiSeNet(args.num_classes, args.context_path)
# load pretrained model if exists
print('load model from %s ...' % args.checkpoint_path)
if torch.cuda.is_available() and args.use_gpu:
model = torch.nn.DataParallel(model).cuda()
model.module.load_state_dict(torch.load(args.checkpoint_path)) # GPU -> GPU
else:
model.load_state_dict(torch.load(args.checkpoint_path, map_location=lambda storage, loc: storage)) # GPU -> CPU
print('Done!')
resize_img = transforms.Resize(scale, Image.BILINEAR)
resize_depth = transforms.Resize(scale, Image.NEAREST)
to_tensor = transforms.ToTensor()
def predict_on_RGBD(image, depth): # nd convenient both for img and video
# pre-processing on image
image = resize_img(image).convert('RGB')
image = transforms.ToTensor()(image).float().unsqueeze(0)
depth = resize_depth(depth)
depth = np.array(depth)
depth = depth[:, :, np.newaxis]
depth = depth / 255
depth = transforms.ToTensor()(depth).float().unsqueeze(0)
rgbd = torch.cat((image, depth), 1)
# predict
model.eval()
predict = model(rgbd).squeeze()
predict = reverse_one_hot(predict)
predict = colour_code_segmentation(np.array(predict), label_info)
predict = np.uint8(predict)
return cv2.cvtColor(np.uint8(predict), cv2.COLOR_RGB2BGR)
def predict_image(image, depth, out_path):
image = Image.open(image)
depth = Image.open(depth)
cv2.imwrite(out_path, predict_on_RGBD(image, depth))
def predict_video(rgb_video, dep_video, out_img_dir):
if not os.path.exists(out_img_dir):
os.mkdir(out_img_dir)
cap1 = cv2.VideoCapture(rgb_video)
cap2 = cv2.VideoCapture(dep_video)
cnt = 0
while True:
ret1, image = cap1.read()
ret2, depth = cap2.read() # 3 channel
if not ret1 or not ret2:
break
depth = cv2.split(depth)[0]
image = Image.fromarray(image)
depth = Image.fromarray(depth)
seg = predict_on_RGBD(image, depth)
# save image
cv2.imwrite(out_img_dir + str(cnt) + '.png', seg)
print(cnt)
cnt += 1
cap1.release()
cap2.release()
def predict_eg_image():
for i in range(1, 4):
predict_image(image='./img/sun/' + str(i) + '.jpg',
depth='./img/sun/' + str(i) + '.png',
out_path='./img/sun/' + str(i) + '_seg.png')
print(i)
def predict_img_dir(img_dir, depth_dir, out_dir):
if not os.path.exists(out_dir):
os.mkdir(out_dir)
cnt = 0
for img in os.listdir(depth_dir):
image = Image.open(img_dir + img.replace('.png', '.jpg'))
depth = Image.open(depth_dir + img)
seg = predict_on_RGBD(image, depth)
cv2.imwrite(out_dir + img, seg)
print(cnt)
cnt += 1
def test_sun():
print(datetime.datetime.now())
predict_img_dir(img_dir='/home/disk2/xs/sun/test/image/',
depth_dir='/home/disk2/xs/sun/test/depth/',
out_dir='/home/disk2/xs/sun/test/xcep-epoch130/')
print(datetime.datetime.now())
def test_nyu():
print(datetime.datetime.now())
predict_img_dir(img_dir='/home/disk2/xs/nyu/image/',
depth_dir='/home/disk2/xs/nyu/depth/',
out_dir='/home/disk2/xs/nyu/xcep-epoch130/')
print(datetime.datetime.now())
def predict_lab_dir(img_dir, depth_dir, out_dir):
if not os.path.exists(out_dir):
os.mkdir(out_dir)
cnt = 0
for img in os.listdir(depth_dir):
image = Image.open(img_dir + img.replace('disp', 'left'))
# filter depth
depth = Image.open(depth_dir + img)
# ori depth
# depth = cv2.imread(depth_dir + img)
# depth = cv2.split(depth)[0]
# depth = Image.fromarray(depth)
# no depth
# depth = np.zeros((480, 640)).astype('uint8')
# depth = Image.fromarray(depth)
seg = predict_on_RGBD(image, depth)
cv2.imwrite(out_dir + img.replace('disp', 'seg'), seg)
print(cnt)
cnt += 1
def test_lab():
print(datetime.datetime.now())
predict_lab_dir(img_dir='/home/disk2/xs/lab/image/',
depth_dir='/home/disk2/xs/lab/depth/',
out_dir='/home/disk2/xs/lab/xcep-epoch130/')
print(datetime.datetime.now())
def test_3_videos():
predict_video(rgb_video='./img/lab2/rgb.avi',
dep_video='./img/lab2/dep_ori.avi',
out_img_dir='./img/lab2/seg_ori/')
predict_video(rgb_video='./img/lab2/rgb.avi',
dep_video='./img/lab2/dep_disp.avi',
out_img_dir='./img/lab2/seg_disp/')
predict_video(rgb_video='./img/lab2/rgb.avi',
dep_video='./img/lab2/dep_mix.avi',
out_img_dir='./img/lab2/seg_mix/')
if __name__ == '__main__':
# test_lab()
# test_nyu()
test_3_videos()