-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
173 lines (143 loc) · 5.73 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import os
import argparse
import yaml
import torch
import torch.nn as nn
from torch.utils.tensorboard import SummaryWriter
from libs.core import load_config
from libs.datasets import make_dataset, make_data_loader
from libs.model import Worker
from libs.utils import *
def main(args):
# set up checkpoint folder
os.makedirs('log', exist_ok=True)
ckpt_path = os.path.join('log', args.name)
ensure_path(ckpt_path)
# load config
try:
cfg_path = os.path.join(ckpt_path, 'config.yaml')
check_file(cfg_path)
cfg = load_config(cfg_path)
print('config loaded from checkpoint folder')
cfg['_resume'] = True
except:
check_file(args.config)
cfg = load_config(args.config)
print('config loaded from command line')
# configure GPUs
n_gpus = len(args.gpu.split(','))
if n_gpus > 1:
cfg['_parallel'] = True
cfg['opt']['lr'] *= n_gpus # linear scaling rule
set_gpu(args.gpu)
set_log_path(ckpt_path)
writer = SummaryWriter(os.path.join(ckpt_path, 'tensorboard'))
rng = fix_random_seed(cfg.get('seed', 2022))
###########################################################################
""" worker """
ep0 = 0
if cfg.get('_resume'):
ckpt_name = os.path.join(ckpt_path, 'last.pth')
try:
check_file(ckpt_name)
ckpt = torch.load(ckpt_name)
ep0, cfg = ckpt['epoch'], ckpt['config']
worker = Worker(cfg['model'])
worker.load(ckpt)
except:
cfg.pop('_resume')
ep0 = 0
worker = Worker(cfg['model'])
else:
worker = Worker(cfg['model'])
yaml.dump(cfg, open(os.path.join(ckpt_path, 'config.yaml'), 'w'))
worker.cuda(cfg.get('_parallel'))
print('worker initialized, train from epoch {:d}'.format(ep0 + 1))
print('number of model parameters: {:s}'.format(count_params(worker)))
###########################################################################
""" dataset """
train_set = make_dataset(
name=cfg['data']['dataset']['name'],
split=cfg['data']['train_split'],
cfg=cfg['data']['dataset'],
is_training=True,
)
train_loader = make_data_loader(
train_set,
generator=rng,
batch_size=cfg['data']['batch_size'],
num_workers=cfg['data']['num_workers'],
is_training=True,
)
cfg['opt']['itrs_per_epoch'] = itrs_per_epoch = len(train_loader)
print('train data size: {:d}'.format(len(train_set)))
print('number of iterations per epoch: {:d}'.format(itrs_per_epoch))
###########################################################################
""" optimizer & scheduler """
optimizer = make_optimizer(worker, cfg['opt'])
scheduler = make_scheduler(optimizer, cfg['opt'])
n_epochs = cfg['opt']['epochs'] + cfg['opt']['warmup_epochs']
print(cfg['opt']['epochs'])
n_itrs = n_epochs * itrs_per_epoch
###########################################################################
""" train """
loss_list = ['cls', 'reg', 'iou', 'nce', 'total']
losses = {k: AverageMeter() for k in loss_list}
timer = Timer()
for ep in range(ep0, n_epochs):
# train for one epoch
for itr, data_list in enumerate(train_loader, 1):
loss_dict = worker.train(data_list, cfg['train'])
global_itr = ep * itrs_per_epoch + itr
for k in loss_list:
if k in loss_dict.keys():
losses[k].update(loss_dict[k].item())
writer.add_scalar(k, losses[k].item(), global_itr)
lr = scheduler.get_last_lr()[0]
writer.add_scalar('lr', lr, global_itr)
writer.flush()
optimizer.zero_grad()
loss_dict['total'].backward()
if cfg['opt']['clip_grad_norm'] > 0:
nn.utils.clip_grad_norm_(
worker.parameters(), cfg['opt']['clip_grad_norm']
)
optimizer.step()
scheduler.step()
worker.ema_update(cfg['opt'].get('ema_momentum', 0.999))
if global_itr == 1 or global_itr % args.print_freq == 0:
torch.cuda.synchronize()
t_elapsed = time_str(timer.end())
log_str = '[{:03d}/{:03d}] '.format(
global_itr // args.print_freq, n_itrs // args.print_freq
)
for k in loss_list:
if k in loss_dict.keys():
log_str += '{:s} {:.3f} ({:.3f}) | '.format(
k, loss_dict[k].item(), losses[k].item()
)
losses[k].reset()
log_str += t_elapsed
log(log_str, 'log.txt')
timer.start()
# save checkpoint
ckpt = worker.save()
ckpt['epoch'] = ep + 1
ckpt['config'] = cfg
ckpt['optimizer'] = optimizer.state_dict()
ckpt['scheduler'] = scheduler.state_dict()
torch.save(ckpt, os.path.join(ckpt_path, '{:02d}.pth'.format(ep + 1)))
torch.save(ckpt, os.path.join(ckpt_path, 'last.pth'))
writer.close()
print('all done!')
###########################################################################
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-c', '--config', type=str, help='config file path')
parser.add_argument('-n', '--name', type=str, help='job name')
parser.add_argument('-g', '--gpu', type=str, default='0', help='GPU IDs')
parser.add_argument('-pf', '--print_freq', type=int, default=1,
help='print frequency (x100 itrs)')
args = parser.parse_args()
args.print_freq *= 100
main(args)