-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdomestictourism.py
144 lines (114 loc) · 4.98 KB
/
domestictourism.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
from scipy import stats
import statsmodels.api as sm
import seaborn as sns
from scipy.stats import f_oneway
from sklearn.cluster import KMeans
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn import metrics
from sklearn.feature_selection import f_regression
from tourism_etal import covidfactors
from importexport_tourism import tourismcovid
domestic = pd.read_csv('domestic.csv')
domestic = domestic[domestic['domestic'] != '..'].reset_index()
domestic = domestic.drop(labels=['index'], axis=1)
domestic['domestic'] = domestic['domestic'].str.replace(',', '')
domestic['domestic'] = pd.to_numeric(domestic['domestic'])
domestic.columns = ['country', 'domestic']
allpopulation = pd.read_csv('population_total.csv')
pop2020 = allpopulation[['country', '2020']]
pop2020.columns = ['country', 'population']
dompop = domestic.merge(pop2020, how='inner')
covidfactors = covidfactors.merge(dompop, how='inner')
covidfactors = covidfactors.merge(tourismcovid, how='inner')
covidfactors['domestic_per_cap'] = (covidfactors['domestic'] / covidfactors['population']) * 100000
covidfactors['log_domestic_per_cap'] = np.log(covidfactors['domestic_per_cap'])
# plt.scatter(covidfactors['log_domestic_per_cap'], covidfactors['log_deaths_per_cap'])
# plt.show()
X = covidfactors['log_domestic_per_cap'].values.reshape(-1,1)
y = covidfactors['log_deaths_per_cap'].values.reshape(-1,1)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=3)
regressor = LinearRegression()
regressor.fit(X_train, y_train)
y_pred = regressor.predict(X_test)
# print(regressor.coef_)
slope, intercept, r_value, p_value, std_err = stats.linregress(covidfactors['log_domestic_per_cap'],
covidfactors['log_deaths_per_cap'])
# decent r_value, low p_value
# print(r_value, p_value)
# figure out what these values represent
mae = metrics.mean_absolute_error(y_test, y_pred)
mse = metrics.mean_squared_error(y_test, y_pred)
# print(mae, mse)
covidfactors['total_international'] = covidfactors['tourists_per_cap'] + covidfactors['outbound_per_cap']
covidfactors['log_international'] = np.log(covidfactors['total_international'])
# X = covidfactors[['log_tourists_per_cap', 'log_income', 'log_le', 'log_me', 'log_domestic_per_cap']].values
X = covidfactors[['log_international', 'log_income', 'log_le', 'log_me', 'log_domestic_per_cap']].values
y = covidfactors['log_deaths_per_cap'].values
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=2)
regressor = LinearRegression()
regressor.fit(X_train, y_train)
y_pred = regressor.predict(X_test)
# print(regressor.coef_)
mae = metrics.mean_absolute_error(y_test, y_pred)
mse = metrics.mean_squared_error(y_test, y_pred)
# print(mae, mse)
F, pval = f_regression(X, y.ravel())
# print(F, pval)
X = sm.add_constant(X)
mreg = sm.OLS(y, X).fit()
# print(mreg.summary())
X = covidfactors['log_international'].values.reshape(-1,1)
y = covidfactors['log_deaths_per_cap'].values.reshape(-1,1)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=3)
regressor = LinearRegression()
regressor.fit(X_train, y_train)
y_pred = regressor.predict(X_test)
# print(regressor.coef_)
slope, intercept, r_value, p_value, std_err = stats.linregress(covidfactors['log_international'],
covidfactors['log_deaths_per_cap'])
# decent r_value, low p_value
# print(r_value, p_value)
# figure out what these values represent
mae = metrics.mean_absolute_error(y_test, y_pred)
mse = metrics.mean_squared_error(y_test, y_pred)
# print(mae, mse)
X = covidfactors[['total_international', 'domestic_per_cap']].values
model = KMeans(n_clusters=4)
model.fit(X)
labels = model.predict(X)
# print(labels)
# num_clusters = list(range(1, 9))
# inertias = []
#
# for k in num_clusters:
# model = KMeans(n_clusters=k)
# model.fit(X)
# inertias.append(model.inertia_)
#
# plt.plot(num_clusters, inertias, '-o')
#
# plt.xlabel('number of clusters (k)')
# plt.ylabel('inertia')
#
# plt.show()
covidfactors['labels1'] = labels
sns.barplot(data=covidfactors, x='labels1',y='deaths_per_cap')
# plt.show()
label_0 = covidfactors[covidfactors['labels1'] == 0].deaths_per_cap
label_1 = covidfactors[covidfactors['labels1'] == 1].deaths_per_cap
label_2 = covidfactors[covidfactors['labels1'] == 2].deaths_per_cap
label_3 = covidfactors[covidfactors['labels1'] == 3].deaths_per_cap
fstat, pval = f_oneway(label_0, label_1, label_2, label_3)
# print(pval)
# sns.scatterplot(data=covidfactors, x='log_tourists_per_cap', y='log_domestic_per_cap', hue='labels', legend='full')
# plt.show()
#
# sns.scatterplot(data=covidfactors, x='log_tourists_per_cap', y='log_deaths_per_cap', hue='labels', legend='full')
# plt.show()
#
# sns.scatterplot(data=covidfactors, x='log_domestic_per_cap', y='log_deaths_per_cap', hue='labels', legend='full')
# plt.show