-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathevaluation.py
62 lines (49 loc) · 1.64 KB
/
evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import torch
import torch.nn.functional as F
import numpy as np
import scipy.stats as st
from tqdm import tqdm
def recall_at_k_np(scores, ks=[1, 2, 3, 4, 5]):
"""
Evaluation recalll
:param scores: sigmoid scores
:param ks:
:return:
"""
#sort the scores
sorted_idxs = np.argsort(-scores, axis=1)
ranks = (sorted_idxs == 0).argmax(1)
recalls = [np.mean(ranks+1 <= k) for k in ks]
return recalls
def eval_model(model, dataset, mode='valid', gpu=False, no_tqdm=False):
"""
evaluation for DKE-GRU and AddGRU
:param model:
:param dataset:
:param mode:
:param gpu:
:param no_tqdm:
:return:
"""
model.eval()
scores = []
assert mode in ['valid', 'test']
data_iter = dataset.get_iter(mode)
if not no_tqdm:
data_iter = tqdm(data_iter)
data_iter.set_description_str('Evaluation')
n_data = dataset.n_valid if mode == 'valid' else dataset.n_test
data_iter.total = n_data // dataset.batch_size
for mb in data_iter:
context, response, y, cm, rm, key_r, key_mask_r = mb
# Get scores
scores_mb = F.sigmoid(model(context, response, cm, rm, key_r, key_mask_r)) #Appropritate this line while running different models.
scores_mb = scores_mb.cpu() if gpu else scores_mb
scores.append(scores_mb.data.numpy())
scores = np.concatenate(scores)
# Handle the case when numb. of data not divisible by 10
mod = scores.shape[0] % 10
scores = scores[:-mod if mod != 0 else None]
scores = scores.reshape(-1, 10) # 1 in 10
recall_at_ks = [r for r in recall_at_k_np(scores)]
return recall_at_ks