-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathbatcher_kb_2.py
211 lines (185 loc) · 7.65 KB
/
batcher_kb_2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
# imports
import pickle
import numpy as np
from collections import defaultdict
import os
from collections import OrderedDict
import torch
from args import get_args
import json
import itertools
import re
args = get_args()
print ('Loaded all libraries')
class DialogBatcher:
"""
Wrapper for batching the Soccer Dialogue dataset
"""
def __init__(self, gpu=True, max_sent_len=100, max_resp_len=50, max_kb_len=198, max_kb_triple_len=6):
self.batch_size = args.batch_size
# self.use_mask = use_mask
self.max_kb_len = max_kb_len
self.max_kb_sub_len = max_kb_triple_len
self.gpu = gpu
self.max_sent_len = max_sent_len
self.max_resp_len = args.resp_len
if os.path.isfile(args.stoi):
self.stoi = np.load(args.stoi,allow_pickle=True).item()
self.vocab_glove = np.load(args.vocab_glove,allow_pickle=True).item()
vec_dim = 300
# self.stoi['EOS'] = len(self.stoi)+1
# self.stoi['SOS'] = len(self.stoi)+1
# Get required dictionaries for data
self.train = self.get_sequences('train')
self.test = self.get_sequences('test')
self.valid = self.get_sequences('valid')
#self.all = self.get_sequences('all')
self.n_words = len(self.stoi) + 1
self.n_train = len(self.train['x'])
self.n_val = len(self.valid['x'])
self.n_test = len(self.test['x'])
#self.n_all = len(self.all)
self.itos = {v : k for k, v in self.stoi.items()}
# get pretrained vectors
self.vectors = np.zeros((len(self.itos)+1, vec_dim))
for k, v in self.vocab_glove.items():
# self.vectors[self.stoi[k.encode('utf-8')]] = v
self.vectors[self.stoi[k]] = v
self.vectors = torch.from_numpy(self.vectors.astype(np.float32))
def get_seq(self, dial, dataset):
"""
get sequence prepared
:param dial:
:param dataset:
:return:
"""
out = []
q, q_c, a, kb_s, kb_r, team = dial
kb = [kb_s[j] + kb_r[j] for j in range(len(kb_s))]
# dataset['kb'].append(kb)
# dataset['team'].append(team)
for l, (q_l, qc, a_l) in enumerate(zip(q, q_c, a)):
dataset['q_c'].append(qc)
dataset['kb'].append(kb)
dataset['team'].append(team)
dataset['y'].append(a_l+[self.stoi['<eos>']]) # add EOS token at the end
if l > 0:
out = self.merge_list([out, a[l - 1], q_l])
dataset['x'].append(out + [self.stoi['<eos>']])
else:
out = self.merge_list([out, q_l])
dataset['x'].append(out + [self.stoi['<eos>']])
def get_sequences(self, file_name):
"""
get dialogue data
:param file_name:
:return:
"""
ds = {}
ds['x'], ds['q_c'], ds['y'], ds['kb'], ds['team'] = [], [], [], [], []
dat = np.load(args.data_dir+file_name+'.npy',allow_pickle=True)
[self.get_seq(d, ds) for d in dat]
ds['x'], ds['q_c'], ds['y'], ds['kb'] = np.array(ds['x']), np.array(ds['q_c']), np.array(ds['y']), np.array(ds['kb'])
return ds
#return dataset
@staticmethod
def merge_list(set_l):
"""
merge previous utterances into current
:param set_l:
:return:
"""
return list(itertools.chain.from_iterable(set_l))
def geti2w(self, word):
"""
get id 2 word
:param word:
:return:
"""
if self.gpu:
word = self.itos[int(word.cpu().numpy())]
if isinstance(word, str):
return word
else:
return word
else:
# word = self.itos[int(word.numpy())].decode('utf-8')
word = self.itos[int(word.numpy())]
if isinstance(word, str):
return word
else:
return word
def get_iter(self, dataset='train'):
# get iterations.
#self.batch_size = batch_size
if dataset == 'train':
dataset = self.train
elif dataset == 'valid':
dataset = self.valid
# print(dataset['team'])
elif dataset == 'test':
dataset = self.test
else:
dataset = self.all
for i in range(0, len(dataset['x']), self.batch_size):
query = dataset['x'][i:i+self.batch_size]
query_c = dataset['q_c'][i:i+self.batch_size]
response = dataset['y'][i:i+self.batch_size]
kb = dataset['kb'][i:i+self.batch_size]
team = dataset['team'][i:i+self.batch_size]
# for dat in dataset:
# query, response, kb, team = dat
x, x_c, y, mx, my, kb, kb_m, s, v_m = self._load_batch(query, query_c, response, kb, self.batch_size)
#
yield x, x_c, y, mx, my, kb, kb_m, s, v_m, team
def _load_batch(self, q, q_c, a, kb_i, b_s):
b_s = min(b_s, len(q))
#b_s = len(q)
max_len_q = np.max([len(sent) for sent in q])
max_len_q = (max_len_q) if max_len_q < self.max_sent_len else self.max_sent_len
max_len_a = np.max([len(sent) for sent in a])
max_len_a = (max_len_a) if max_len_a < self.max_resp_len else self.max_resp_len
x = np.zeros([max_len_q, b_s], np.int)
q_c_o = np.zeros([max_len_q, b_s], np.int)
y = np.zeros([max_len_a, b_s], np.int)
# sentient_g = np.zeros([max_len_a, b_s], np.int)
kb = np.zeros([b_s, self.max_kb_len, self.max_kb_sub_len])
kb_mask = np.zeros([b_s, self.max_kb_len])
x_mask = np.zeros([max_len_q, b_s], np.int)
y_mask = np.zeros([max_len_a, b_s], np.int)
vocab_mask = np.arange(0, len(self.stoi) + 1)
for j, (row_t, row_qc, row_l, row_kb) in enumerate(zip(q, q_c, a, kb_i)):
row_t = row_t[-max_len_q:]
row_qc = row_qc[-max_len_q:]
row_l = row_l[:max_len_a]
# print (kb_i)
# print (row_t, len(row_t))
x[:len(row_t), j] = row_t
q_c_o[:len(row_qc), j] = row_qc
y[:len(row_l), j] = row_l
x_mask[:len(row_t), j] = 1
y_mask[:len(row_l), j] = 1
for l, k in enumerate(row_kb):
try:
kb[j][l][:len(k)] = k
except Exception:
print (k)
kb_mask[j][:len(row_kb)] = 1
x_o = torch.from_numpy(x)
q_c_o = torch.from_numpy(q_c_o).type(torch.FloatTensor)
y_o = torch.from_numpy(y).type(torch.FloatTensor)
kb = torch.from_numpy(kb).long()
sentient_g = (y_o > self.stoi['<eos>'])
vocab_mask = torch.from_numpy(vocab_mask)
vocab_mask = (vocab_mask < self.stoi['<eos>']).type(torch.FloatTensor)
x_mask = torch.from_numpy(x_mask).type(torch.FloatTensor)
y_mask = torch.from_numpy(y_mask).type(torch.FloatTensor)
kb_mask = torch.from_numpy(kb_mask).type(torch.FloatTensor)
if self.gpu:
x_o, q_c_o, y_o, x_mask, y_mask, kb, kb_mask, sentient_g, vocab_mask = x_o.cuda(), q_c_o.cuda(), y_o.cuda(), x_mask.cuda(), y_mask.cuda(), \
kb.cuda(), kb_mask.cuda(), sentient_g.cuda(), vocab_mask.cuda()
return x_o, q_c_o, y_o, x_mask, y_mask, kb, kb_mask, sentient_g.float(), vocab_mask
if __name__ == '__main__':
batcher = DialogBatcher(gpu=False)
batches = batcher.get_iter('valid')
print (batches)