-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathpreprocess_kb_incar.py
392 lines (347 loc) · 14.7 KB
/
preprocess_kb_incar.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
#import pickle
import numpy as np
#from collections import defaultdict
import os
from collections import OrderedDict, defaultdict
#import torch
from args import get_args
import json
import re
from sklearn.metrics.pairwise import cosine_similarity
#from create_vocab_kb import clean_str
import spacy
from spacy.tokenizer import Tokenizer
args = get_args()
import unidecode
from spacy.lang.en.stop_words import STOP_WORDS
from fuzzywuzzy import process, fuzz
from multiprocessing import Pool, cpu_count
from functools import partial
STOP_WORDS.add('de_l_la_le_di')
#spacy tokenizers
nlp = spacy.load('en')
pos = spacy.load('en_core_web_lg')
tokenizer = Tokenizer(nlp.vocab)
#load word2index file
stoi = np.load(args.stoi,allow_pickle=True).item()
itos = {v: k for k, v in stoi.items()}
kg_incar = 'data/KG/incar/'
#output directories
out_dir = 'preproc_files/incar/'
correct_pos = ['NOUN', 'PROPN', 'ADJ', 'NUM', 'VERB']
hit2team_maps = np.load('incar_conversations/hit_team_maps.npy',allow_pickle=True).item()
team_kgs = {}
kg2idx_map = defaultdict(dict)
f=open('replaced.txt', 'w')
w_h_words = ['what', 'how', 'when', 'where', 'why', 'who']
vocab_glove = np.load(args.vocab_glove,allow_pickle=True).item()
global replaced
replaced = []
def clean_str(string):
"""
Tokenization/string cleaning for all datasets except for SST.
Original taken from https://github.com/yoonkim/CNN_sentence/blob/master/process_data.py
"""
string = unidecode.unidecode(string)
string = re.sub(r"[^A-Za-z0-9(),!?\'\`]", " ", string)
string = re.sub(r"\'s", " \'s", string)
string = re.sub(r"\'ve", " \'ve", string)
string = re.sub(r"n\'t", " n\'t", string)
string = re.sub(r"\'re", " \'re", string)
string = re.sub(r"\'d", " \'d", string)
string = re.sub(r"\'ll", " \'ll", string)
string = re.sub(r",", " , ", string)
string = re.sub(r"!", " ! ", string)
string = re.sub(r"\(", " \( ", string)
string = re.sub(r"\)", " \) ", string)
string = re.sub(r"\?", " \? ", string)
string = re.sub(r"\s{2,}", " ", string)
string = re.sub(r"\"", "", string)
#string = re.sub(r"\.", " ", string)
return ' ' +string.strip().lower()+ ' '
def generate_ngrams(s, n=[1, 2, 3, 4]):
words_list = s.split()
words_list = [w for w in words_list if w not in STOP_WORDS]
ngrams_list = []
for num in range(0, len(words_list)):
for l in n:
ngram = ' '.join(words_list[num:num + l])
ngrams_list.append(ngram)
return ngrams_list
def get_max_kb():
kg_cl = os.listdir(kg_incar)
for kg_c in kg_cl:
if kg_c:
team_kgs[kg_c.replace('.txt', '')] = read_kg(kg_incar+kg_c)
max_len = np.max([(len(a)) for a, b, c in team_kgs.values()])
#print(team_kgs["101_kg"])
return max_len
def duplicates(lst, item):
"""
Get indices of duplicate elements in a list
:param lst:
:param item:
:return:
"""
return [idx for idx, x in enumerate(lst) if x == item]
def read_kg(file_n):
"""
Get kg subject and relations
:param file_n: input kg for team
:return:question
"""
with open(file_n, 'r', encoding='utf-8') as f:
kg_info = f.readlines()
#print (file_n)
kg_info = [unidecode.unidecode(l) for l in kg_info]
kg_sub = [info.replace('\n', '').split('\t')[0].strip().lower() for info in kg_info]
kg_reln = [info.replace('\n', '').split('\t')[1].strip().lower() for info in kg_info]
kg_obj = [info.replace('\n', '').split('\t')[-1].strip().lower() for info in kg_info]
#print (kg_obj[0:10])
return kg_sub, kg_reln, kg_obj
def check_question(question):
question = ' '.join([itos[idx] for idx in question])
if '?' in question:
return True
elif any(map(question.split()[0].__contains__, w_h_words)):
return True
else:
return False
def get_avg_word2vec(phrase):
"""get word vectors for phrases"""
vec = np.zeros(300)
#print (phrase)
phrase = phrase.strip()
phrase = clean_str(phrase)
for w in phrase.strip().split():
try:
vec = vec + np.array(vocab_glove[w]).reshape(1, 300).astype(np.float32)
except KeyError:
print("Phrase > ",phrase)
vec = vec + np.array(vocab_glove[w]).reshape(1, 300).astype(np.float32)
exit()
return vec.reshape(1,300)
def get_rel_sim(relation, question):
"""
Get max cosine distance for relations
:param relation:
:param question:
"""
query_ngrams = generate_ngrams(question)
query_ngrams_vec = [get_avg_word2vec(phr) for phr in query_ngrams]
relation_ngram = get_avg_word2vec(relation)
#print (relation_ngram)
similarities = [cosine_similarity(relation_ngram, q)[0][0] for q in query_ngrams_vec]
if similarities and np.max(similarities) > 0.5:
return np.max(similarities)
else:
return 0.0
def get_fuzzy_match(object, answer, threshold=0.8):
"""get phrase with highest match in answer"""
answer_phrase = generate_ngrams(answer)
if answer_phrase:
best_match = [fuzz.ratio(object, phr) for phr in answer_phrase]
#if np.max(best_match) > threshold:
return np.max(best_match), answer_phrase[np.argmax(best_match)]
else:
return 0, ''
def check_presence(answer, kb_key):
"""check probable presence"""
answer, match = process.extract(kb_key, answer)[0]
if match > 0.5:
return match
else:
return 0.0
def replace_obj(param):
answer, team, question,dataset_type = param
if check_question(question):
sub, rel, obj = team_kgs[team+'_kg']
#check probable presence
question = ' '.join([itos[idx] for idx in question])
# check if the question can be answered with the relation
best_s = [(get_rel_sim(r, question), r) for r in rel]
best_s = sorted(best_s, key=lambda x: x[0], reverse=True)
#print (best_s[:3])
if best_s[0][0] > 0.7: # probable relation present in kb
# check if a probable object in the answer is present in the kb
obj_presence = [(get_fuzzy_match(ob, answer), ob) for ob in obj]
presence_score = [a[0] for a, b in obj_presence]
#presence = sorted(presence, key=lambda x: x[0], reverse=True)
print (question, answer)
doc = pos(answer.strip())
presence_pos = {}
for p, o in enumerate(doc):
presence_pos[p] = o.pos_
#print (o.text, o.pos_)
prob_presence = obj_presence[np.argmax(presence_score)][1].strip()
prob_phrase = obj_presence[np.argmax(presence_score)][0][1].strip()
if np.max(presence_score) < 60:
if len(prob_phrase.split()) < 2:
if prob_phrase in prob_presence:
presence_score = 70
else:
presence_score = np.max(presence_score)
else:
presence_score = np.max(presence_score)
else:
presence_score = np.max(presence_score)
presence_idx = [presence_pos[answer.strip().split().index(o)] for o in prob_phrase.split()]
try:
prob_presence_val = int(prob_presence) > 10
except ValueError:
prob_presence_val = True
#print (presence)
#print (presence_idx)
if presence_score > 60 and prob_presence_val and any(pos in presence_idx for pos in correct_pos): # presence in kb more than threshold
#prob_presence = obj_presence[np.argmax(presence_score)][1].strip() # get best object
print (prob_presence)
dupl = duplicates(obj, prob_presence) # duplicate indexes for repeated object
#print (dupl)
if len(dupl) > 1: # More than one probable object
print ("More than 1 match")
prob_rel = [(rel[d], d) for d in dupl]
print (prob_rel)
best_sim = [get_rel_sim(r, question) for r, d in prob_rel] # get similarity with the adjacent relation and the query
print (best_sim)
if np.max(best_sim) > 0.7: # check if corresponding relation has high similarity with question.
print (prob_rel[np.argmax(best_sim)][1])
best_obj_idx = prob_rel[np.argmax(best_sim)][1]
best_obj = obj[best_obj_idx]
else:
best_obj = ''
else:
rel_sim = get_rel_sim(rel[dupl[0]], question)
if rel_sim > 0.7: # check if corresponding relation has high similarity with question.
best_obj = prob_presence
best_obj_idx = dupl[0]
else:
best_obj = ''
if best_obj:
replaced.append(best_obj_idx)
print ('Question was:' + question + ' and answer was:' + answer)
print ('Match found with match:' + str(prob_phrase) + ' with: ' + best_obj + ' with similarity='
+ str(presence_score))
f.write('Question was:' + question + ' and answer was:' + answer + '\n')
f.write("Match found with match:" + str(prob_phrase) + " with: " + str(best_obj) + '\n')
#print (best_obj_idx[0])
replaced_ans = answer.replace(prob_phrase, 'o' + str(best_obj_idx))
f.write(answer + '\n')
f.write(replaced_ans + '\n')
replaced_ans = getsent2i(replaced_ans)
print ('Replaced Answer:' + str(replaced_ans))
f.write(str(replaced_ans) + '\n')
f.write('*' * 80 + '\n')
return replaced_ans
else:
return getsent2i(answer)
else:
return getsent2i(answer)
else:
return getsent2i(answer)
else:
return getsent2i(answer)
def get_chunks(query):
chunks = np.zeros((len(query.split())))
doc = pos(query)
for e in doc.noun_chunks:
chunks[e.start: e.end] = 1
return chunks
def read_json(file_n):
#read a json file
json_f = file_n.split('/')[-1].replace('.json', '')
team = hit2team_maps[json_f]
if team:
sub, reln, obj = team_kgs[team + '_kg']
sub = [getsent2i(s) for s in sub]
reln = [getsent2i(r) for r in reln]
with open(file_n, 'r', encoding='utf-8') as fp:
conv = json.load(fp, object_pairs_hook=OrderedDict,strict=False)
q, q_c, a = [], [], []
for k, v in conv.items():
if 'q' in k:
q.append(getsent2i(clean_str(v).strip()))
q_c.append(get_chunks(clean_str(v).strip()))
else:
a.append(clean_str(v))
if "train" in file_n:
params = [(ans, team, q[j],"train") for j, ans in enumerate(a)]
else:
params = [(ans, team, q[j], "others") for j, ans in enumerate(a)]
with Pool(processes=cpu_count()) as poo:
answers_replaced = poo.map(func=replace_obj, iterable=params)
print ("Number of replaced:" + str(len(replaced)))
return q, q_c, answers_replaced, sub, reln, team+'_kg'
else:
with open(file_n, 'r', encoding='utf-8') as fp:
#print (file_n)
conv = json.load(fp, object_pairs_hook=OrderedDict,strict=False)
q, a = [], []
for k, v in conv.items():
if 'q' in k:
q.append(getsent2i(clean_str(v).strip()))
else:
a.append(getsent2i(clean_str(v).strip()))
return q, [], a, [], [], ''
def getw2id(word):
try:
#print (word)
return stoi[word]
except KeyError:
return stoi['unk']
def getsent2i(sent):
out = []
sent = sent.strip()
tokens = tokenizer(sent)
for t in tokens:
t = t.text
#print (t, getw2id(t))
out.append(getw2id(t))
return out
def get_all_conv(dataset='train'):
if dataset == 'val':
print("---------------------------------------------------------------------VAL STARTED-------------------------------------------------",dataset)
in_f = 'incar_conversations/val/'
dialogue_f = os.listdir(in_f)
out_dial = [read_json(in_f + d_f) for d_f in dialogue_f]
print("---------------------------------------------------------------------VAL DONE-------------------------------------------------")
elif dataset == 'test':
print("---------------------------------------------------------------------TEST STARTED-------------------------------------------------",dataset)
in_f = 'incar_conversations/test/'
dialogue_f = os.listdir(in_f)
out_dial = [read_json(in_f + d_f) for d_f in dialogue_f]
print("---------------------------------------------------------------------TEST DONE-------------------------------------------------")
elif dataset == 'train':
print("---------------------------------------------------------------------TRAIN STARTED-------------------------------------------------",dataset)
in_f = 'incar_conversations/train/'
dialogue_f = os.listdir(in_f)
out_dial = [read_json(in_f + d_f) for d_f in dialogue_f]
print("---------------------------------------------------------------------TRAIN DONE-------------------------------------------------")
else:
print("---------------------------------------------------------------------OTHERS STARTED-------------------------------------------------",dataset)
files = os.listdir(args.data_dir)
all_dial = []
for data in files:
in_f = args.data_dir + data
if not os.path.isfile(in_f):
all_dial.append([read_json(in_f + '/'+ d_f) for d_f in os.listdir(in_f) ])
out_dial = [dial for dialogues in all_dial for dial in dialogues]
print("---------------------------------------------------------------------OTHERS DONE-------------------------------------------------")
return out_dial
if __name__ == '__main__':
max_kb_size = get_max_kb()
print (max_kb_size)
#print (team_kgs.keys())
outs = ['o'+str(i) for i in range(0, max_kb_size)]
valid = get_all_conv('val')
np.save(out_dir+'valid.npy', valid)
test = get_all_conv('test')
np.save(out_dir+'test.npy', test)
train = get_all_conv()
#all = get_all_conv('all')
#print (len(all))
np.save(out_dir+'train.npy', train)
#np.save(out_dir+'all.npy', all)
print('Saving team KG')
np.save(out_dir+'team_kg.npy', team_kgs)
print('Saving the kg dictionary ')
f.close()