-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathkmeans_vector.py
140 lines (101 loc) · 4.67 KB
/
kmeans_vector.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import numpy as np
import scipy.sparse as sp
import sklearn
from sklearn.utils import check_random_state
from sklearn.utils.validation import _check_sample_weight
from sklearn.cluster._kmeans import _init_centroids
from sklearn.utils.extmath import row_norms
from numba import njit, prange
class KMeans_Vector(sklearn.cluster.KMeans):
def __init__(self, n_clusters=8, *, n_init=10, max_iter=300, tol=1e-4, verbose=0):
super().__init__(n_clusters=n_clusters, n_init=n_init, max_iter=max_iter, tol=tol, verbose=verbose)
def fit(self, X, y=None, sample_weight=None):
X = super()._validate_data(X, accept_sparse='csr',
dtype=[np.float64, np.float32],
order='C', copy=self.copy_x,
accept_large_sparse=False)
super()._check_params(X)
random_state = check_random_state(self.random_state)
init = self.init
x_squared_norms = row_norms(X, squared=True)
best_labels, best_inertia, best_centers = None, None, None
seeds = random_state.randint(np.iinfo(np.int32).max, size=self._n_init)
for seed in seeds:
labels, inertia, centers, n_iter_ = kmeans_single_elkan_vector(
X, sample_weight, self.n_clusters, max_iter=self.max_iter,
init=init, verbose=self.verbose, tol=self._tol,
x_squared_norms=x_squared_norms, random_state=seed,
n_threads=self._n_threads)
if best_inertia is None or inertia < best_inertia:
best_labels = labels.copy()
best_centers = centers.copy()
best_inertia = inertia
best_n_iter = n_iter_
distinct_clusters = len(set(best_labels))
self.cluster_centers_ = best_centers
self.labels_ = best_labels
self.inertia_ = best_inertia
self.n_iter_ = best_n_iter
return self
def predict(self, X):
n_samples = X.shape[0]
labels = np.empty(n_samples, dtype=np.int32)
labels = get_predict(self.cluster_centers_, labels, n_samples, X)
return labels
@njit
def get_predict(centers, labels, n_samples, X):
for sample in range(n_samples):
max_similarity = -1
for l in range(centers.shape[0]):
similarity = np.dot(X[sample], centers[l])
if max_similarity < similarity:
max_similarity = similarity
labels[sample] = l
return labels
@njit
def get_new_centers(centers, centers_new, labels, n_samples, X):
for sample in range(n_samples):
max_similarity = -1
for l in range(centers.shape[0]):
similarity = np.dot(X[sample], centers[l])
if max_similarity < similarity:
max_similarity = similarity
labels[sample] = l
centers_new[labels[sample]] += X[sample]
return centers_new, labels
def kmeans_single_elkan_vector(X, sample_weight, n_clusters, max_iter=300,
init='k-means++', verbose=False, x_squared_norms=None,
random_state=None, tol=1e-4, n_threads=1):
random_state = check_random_state(random_state)
sample_weight = _check_sample_weight(sample_weight, X, dtype=X.dtype)
centers = _init_centroids(X, n_clusters, init, random_state=random_state,
x_squared_norms=x_squared_norms)
centers_norm = np.linalg.norm(centers, axis=1)
centers = centers / centers_norm[:, None]
if verbose:
print('Initialization complete')
n_samples = X.shape[0]
labels = np.full(n_samples, -1, dtype=np.int32)
labels_old = labels.copy()
for i in range(max_iter):
centers_new = np.zeros_like(centers)
centers_new, labels = get_new_centers(centers, centers_new, labels, n_samples, X)
centers_norm_new = np.linalg.norm(centers_new, axis=1)
centers_new = centers_new / centers_norm_new[:, None]
if np.array_equal(labels, labels_old):
if verbose:
print(f"Converged at iteration {i}: strict convergence.")
strict_convergence = True
break
center_shift = centers_new - centers
center_shift_tot = (center_shift**2).sum()
if center_shift_tot <= tol:
if verbose:
print(f"Converged at iteration {i}: center shift "
f"{center_shift_tot} within tolerance {tol}.")
break
if verbose:
print("Iteration {0}, center_shift {1}" .format(i, center_shift_tot))
labels_old = labels.copy()
centers = centers_new.copy()
return labels, center_shift_tot, centers, i + 1