-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathFace_train.py
85 lines (63 loc) · 2.38 KB
/
Face_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
import os
from PIL import Image
import numpy as np
import cv2
import pymysql
#Linking DB
mydb = pymysql.connect(host="localhost", user="root", passwd="", db="Criminals")
mycursor = mydb.cursor()
mycursor.execute("SELECT * FROM Records")
result = mycursor.fetchall()
p=0
for i in result:
p=1
if p == 1:
mycursor.execute("DELETE FROM Records")
else:
pass
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
recognizer = cv2.face.LBPHFaceRecognizer_create()
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
image_dir = os.path.join(BASE_DIR, "Criminals")
current_id = 0
label_ids = {}
y_labels = []
x_train = []
ids=[]
for root, dirs, files in os.walk(image_dir):
New=0
for file in files:
if file.endswith("png") or file.endswith("JPEG") or file.endswith("JPG") or file.endswith("jpeg") or file.endswith("jpg") or file.endswith("PNG"):
path = os.path.join(root, file)
label = os.path.basename(os.path.dirname(path)).replace(" ","-").lower()
#Give ID:
if label in label_ids:
pass
else:
label_ids[label] = current_id
current_id += 1
id_ = label_ids[label]
print(id_)
print(label)
if New == 0:
sql_insert_query = "INSERT INTO Records (Name, ID, Detects) VALUES (%s,%s,%s)"
insert_tuple = (label, id_, 0)
mycursor.execute(sql_insert_query, insert_tuple)
mydb.commit()
New=1
print ("Record inserted successfully into RECORDS table")
else:
pass
ids.append(id_)
pil_image = Image.open(path).convert("L")
size = (550,550)
final_image = pil_image.resize(size, Image.ANTIALIAS)
image_array = np.array(final_image, "uint8") #Every pixels into numpy array
faces = face_cascade.detectMultiScale(image_array, scaleFactor=1.5 , minNeighbors=5)
for (x,y,w,h) in faces:
roi = image_array[y:y+h, x:x+w]
x_train.append(roi)
y_labels.append(id_)
recognizer.train(x_train, np.array(y_labels))
recognizer.save("trainer.yml")
print("All criminals are trainned")