-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathutils.py
304 lines (247 loc) · 9.65 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
import rembg
import random
import torch
import numpy as np
from PIL import Image, ImageOps
import PIL
from typing import Any
import matplotlib.pyplot as plt
import io
def resize_foreground(
image: Image,
ratio: float,
) -> Image:
image = np.array(image)
assert image.shape[-1] == 4
alpha = np.where(image[..., 3] > 0)
y1, y2, x1, x2 = (
alpha[0].min(),
alpha[0].max(),
alpha[1].min(),
alpha[1].max(),
)
# crop the foreground
fg = image[y1:y2, x1:x2]
# pad to square
size = max(fg.shape[0], fg.shape[1])
ph0, pw0 = (size - fg.shape[0]) // 2, (size - fg.shape[1]) // 2
ph1, pw1 = size - fg.shape[0] - ph0, size - fg.shape[1] - pw0
new_image = np.pad(
fg,
((ph0, ph1), (pw0, pw1), (0, 0)),
mode="constant",
constant_values=((0, 0), (0, 0), (0, 0)),
)
# compute padding according to the ratio
new_size = int(new_image.shape[0] / ratio)
# pad to size, double side
ph0, pw0 = (new_size - size) // 2, (new_size - size) // 2
ph1, pw1 = new_size - size - ph0, new_size - size - pw0
new_image = np.pad(
new_image,
((ph0, ph1), (pw0, pw1), (0, 0)),
mode="constant",
constant_values=((0, 0), (0, 0), (0, 0)),
)
new_image = Image.fromarray(new_image)
return new_image
def remove_background(image: Image,
rembg_session: Any = None,
force: bool = False,
**rembg_kwargs,
) -> Image:
do_remove = True
if image.mode == "RGBA" and image.getextrema()[3][0] < 255:
do_remove = False
do_remove = do_remove or force
if do_remove:
image = rembg.remove(image, session=rembg_session, **rembg_kwargs)
return image
def random_crop(image, crop_scale=(0.8, 0.95)):
"""
随机裁切图片
image (numpy.ndarray): (H, W, C)。
crop_scale (tuple): (min_scale, max_scale)。
"""
assert isinstance(image, Image.Image), "iput must be PIL.Image.Image"
assert len(crop_scale) == 2 and 0 < crop_scale[0] <= crop_scale[1] <= 1
width, height = image.size
# 计算裁切的高度和宽度
crop_width = random.randint(int(width * crop_scale[0]), int(width * crop_scale[1]))
crop_height = random.randint(int(height * crop_scale[0]), int(height * crop_scale[1]))
# 随机选择裁切的起始点
left = random.randint(0, width - crop_width)
top = random.randint(0, height - crop_height)
# 裁切图片
cropped_image = image.crop((left, top, left + crop_width, top + crop_height))
return cropped_image
def get_crop_images(img, num=3):
cropped_images = []
for i in range(num):
cropped_images.append(random_crop(img))
return cropped_images
def background_preprocess(input_image, do_remove_background):
rembg_session = rembg.new_session() if do_remove_background else None
if do_remove_background:
input_image = remove_background(input_image, rembg_session)
input_image = resize_foreground(input_image, 0.85)
return input_image
def remove_outliers_and_average(tensor, threshold=1.5):
assert tensor.dim() == 1, "dimension of input Tensor must equal to 1"
q1 = torch.quantile(tensor, 0.25)
q3 = torch.quantile(tensor, 0.75)
iqr = q3 - q1
lower_bound = q1 - threshold * iqr
upper_bound = q3 + threshold * iqr
non_outliers = tensor[(tensor >= lower_bound) & (tensor <= upper_bound)]
if len(non_outliers) == 0:
return tensor.mean().item()
return non_outliers.mean().item()
def remove_outliers_and_average_circular(tensor, threshold=1.5):
assert tensor.dim() == 1, "dimension of input Tensor must equal to 1"
# 将角度转换为二维平面上的点
radians = tensor * torch.pi / 180.0
x_coords = torch.cos(radians)
y_coords = torch.sin(radians)
# 计算平均向量
mean_x = torch.mean(x_coords)
mean_y = torch.mean(y_coords)
differences = torch.sqrt((x_coords - mean_x) * (x_coords - mean_x) + (y_coords - mean_y) * (y_coords - mean_y))
# 计算四分位数和 IQR
q1 = torch.quantile(differences, 0.25)
q3 = torch.quantile(differences, 0.75)
iqr = q3 - q1
# 计算上下限
lower_bound = q1 - threshold * iqr
upper_bound = q3 + threshold * iqr
# 筛选非离群点
non_outliers = tensor[(differences >= lower_bound) & (differences <= upper_bound)]
if len(non_outliers) == 0:
mean_angle = torch.atan2(mean_y, mean_x) * 180.0 / torch.pi
mean_angle = (mean_angle + 360) % 360
return mean_angle # 如果没有非离群点,返回 None
# 对非离群点再次计算平均向量
radians = non_outliers * torch.pi / 180.0
x_coords = torch.cos(radians)
y_coords = torch.sin(radians)
mean_x = torch.mean(x_coords)
mean_y = torch.mean(y_coords)
mean_angle = torch.atan2(mean_y, mean_x) * 180.0 / torch.pi
mean_angle = (mean_angle + 360) % 360
return mean_angle
def scale(x):
# print(x)
# if abs(x[0])<0.1 and abs(x[1])<0.1:
# return x*5
# else:
# return x
return x*3
def get_proj2D_XYZ(phi, theta, gamma):
x = np.array([-1*np.sin(phi)*np.cos(gamma) - np.cos(phi)*np.sin(theta)*np.sin(gamma), np.sin(phi)*np.sin(gamma) - np.cos(phi)*np.sin(theta)*np.cos(gamma)])
y = np.array([-1*np.cos(phi)*np.cos(gamma) + np.sin(phi)*np.sin(theta)*np.sin(gamma), np.cos(phi)*np.sin(gamma) + np.sin(phi)*np.sin(theta)*np.cos(gamma)])
z = np.array([np.cos(theta)*np.sin(gamma), np.cos(theta)*np.cos(gamma)])
x = scale(x)
y = scale(y)
z = scale(z)
return x, y, z
# 绘制3D坐标轴
def draw_axis(ax, origin, vector, color, label=None):
ax.quiver(origin[0], origin[1], vector[0], vector[1], angles='xy', scale_units='xy', scale=1, color=color)
if label!=None:
ax.text(origin[0] + vector[0] * 1.1, origin[1] + vector[1] * 1.1, label, color=color, fontsize=12)
def matplotlib_2D_arrow(angles, rm_bkg_img):
fig, ax = plt.subplots(figsize=(8, 8))
# 设置旋转角度
phi = np.radians(angles[0])
theta = np.radians(angles[1])
gamma = np.radians(-1*angles[2])
w, h = rm_bkg_img.size
if h>w:
extent = [-5*w/h, 5*w/h, -5, 5]
else:
extent = [-5, 5, -5*h/w, 5*h/w]
ax.imshow(rm_bkg_img, extent=extent, zorder=0, aspect ='auto') # extent 设置图片的显示范围
origin = np.array([0, 0])
# 旋转后的向量
rot_x, rot_y, rot_z = get_proj2D_XYZ(phi, theta, gamma)
# draw arrow
arrow_attr = [{'point':rot_x, 'color':'r', 'label':'front'},
{'point':rot_y, 'color':'g', 'label':'right'},
{'point':rot_z, 'color':'b', 'label':'top'}]
if phi> 45 and phi<=225:
order = [0,1,2]
elif phi > 225 and phi < 315:
order = [2,0,1]
else:
order = [2,1,0]
for i in range(3):
draw_axis(ax, origin, arrow_attr[order[i]]['point'], arrow_attr[order[i]]['color'], arrow_attr[order[i]]['label'])
# draw_axis(ax, origin, rot_y, 'g', label='right')
# draw_axis(ax, origin, rot_z, 'b', label='top')
# draw_axis(ax, origin, rot_x, 'r', label='front')
# 关闭坐标轴和网格
ax.set_axis_off()
ax.grid(False)
# 设置坐标范围
ax.set_xlim(-5, 5)
ax.set_ylim(-5, 5)
def figure_to_img(fig):
with io.BytesIO() as buf:
fig.savefig(buf, format='JPG', bbox_inches='tight')
buf.seek(0)
image = Image.open(buf).copy()
return image
from render import render, Model
import math
axis_model = Model("./assets/axis.obj", texture_filename="./assets/axis.png")
def render_3D_axis(phi, theta, gamma):
radius = 240
# camera_location = [radius * math.cos(phi), radius * math.sin(phi), radius * math.tan(theta)]
# print(camera_location)
camera_location = [-1*radius * math.cos(phi), -1*radius * math.tan(theta), radius * math.sin(phi)]
img = render(
# Model("res/jinx.obj", texture_filename="res/jinx.tga"),
axis_model,
height=512,
width=512,
filename="tmp_render.png",
cam_loc = camera_location
)
img = img.rotate(gamma)
return img
def overlay_images_with_scaling(center_image: Image.Image, background_image, target_size=(512, 512)):
"""
调整前景图像大小为 512x512,将背景图像缩放以适配,并中心对齐叠加
:param center_image: 前景图像
:param background_image: 背景图像
:param target_size: 前景图像的目标大小,默认 (512, 512)
:return: 叠加后的图像
"""
# 确保输入图像为 RGBA 模式
if center_image.mode != "RGBA":
center_image = center_image.convert("RGBA")
if background_image.mode != "RGBA":
background_image = background_image.convert("RGBA")
# 调整前景图像大小
center_image = center_image.resize(target_size)
# 缩放背景图像,确保其适合前景图像的尺寸
bg_width, bg_height = background_image.size
# 按宽度或高度等比例缩放背景
scale = target_size[0] / max(bg_width, bg_height)
new_width = int(bg_width * scale)
new_height = int(bg_height * scale)
resized_background = background_image.resize((new_width, new_height))
# 计算需要的填充量
pad_width = target_size[0] - new_width
pad_height = target_size[0] - new_height
# 计算上下左右的 padding
left = pad_width // 2
right = pad_width - left
top = pad_height // 2
bottom = pad_height - top
# 添加 padding
resized_background = ImageOps.expand(resized_background, border=(left, top, right, bottom), fill=(255,255,255,255))
# 将前景图像叠加到背景图像上
result = resized_background.copy()
result.paste(center_image, (0, 0), mask=center_image)
return result