-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathvision_tower.py
161 lines (134 loc) · 5.66 KB
/
vision_tower.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import torch
from torch import nn
import torch.nn.init as init
import torch.nn.functional as F
from paths import *
from typing import Dict, List, Optional, Set, Tuple, Union
from transformers import AutoImageProcessor, AutoModel, Dinov2Model
from transformers.models.dinov2.modeling_dinov2 import Dinov2Embeddings
from transformers.models.dinov2.configuration_dinov2 import Dinov2Config
import numpy as np
from contextlib import nullcontext
def get_activation(activation):
if activation.lower() == 'gelu':
return nn.GELU()
elif activation.lower() == 'rrelu':
return nn.RReLU(inplace=True)
elif activation.lower() == 'selu':
return nn.SELU(inplace=True)
elif activation.lower() == 'silu':
return nn.SiLU(inplace=True)
elif activation.lower() == 'hardswish':
return nn.Hardswish(inplace=True)
elif activation.lower() == 'leakyrelu':
return nn.LeakyReLU(inplace=True)
elif activation.lower() == 'sigmoid':
return nn.Sigmoid()
elif activation.lower() == 'tanh':
return nn.Tanh()
else:
return nn.ReLU(inplace=True)
class MLP_dim(nn.Module):
def __init__(
self, in_dim=512, out_dim=1024, bias=True, activation='relu'):
super().__init__()
self.act = get_activation(activation)
self.net1 = nn.Sequential(
nn.Linear(in_dim, int(out_dim), bias=bias),
nn.BatchNorm1d(int(out_dim)),
self.act
)
self.net2 = nn.Sequential(
nn.Linear(int(out_dim), out_dim, bias=bias),
nn.BatchNorm1d(out_dim)
)
def forward(self, x):
return self.net2(self.net1(x))
class FLIP_Dinov2Embeddings(Dinov2Embeddings):
"""
Construct the CLS token, mask token, position and patch embeddings.
"""
def __init__(self, config: Dinov2Config) -> None:
super().__init__(config)
def forward(self, pixel_values: torch.Tensor, bool_masked_pos: Optional[torch.Tensor] = None) -> torch.Tensor:
batch_size, _, height, width = pixel_values.shape
target_dtype = self.patch_embeddings.projection.weight.dtype
embeddings = self.patch_embeddings(pixel_values.to(dtype=target_dtype))
# add the [CLS] token to the embedded patch tokens
cls_tokens = self.cls_token.expand(batch_size, -1, -1)
embeddings = torch.cat((cls_tokens, embeddings), dim=1)
# add positional encoding to each token
embeddings = embeddings + self.interpolate_pos_encoding(embeddings, height, width)
if bool_masked_pos is not None:
# embeddings = torch.where(
# bool_masked_pos.unsqueeze(-1), self.mask_token.to(embeddings.dtype).unsqueeze(0), embeddings
# )
B,S,D = embeddings.shape
batch_indices = torch.arange(B).unsqueeze(1)
embeddings = embeddings[batch_indices, bool_masked_pos]
embeddings = self.dropout(embeddings)
return embeddings
class FLIP_DINOv2(Dinov2Model):
def __init__(self, config):
super().__init__(config)
self.embeddings = FLIP_Dinov2Embeddings(config)
class DINOv2_MLP(nn.Module):
def __init__(self,
dino_mode,
in_dim,
out_dim,
evaluate,
mask_dino,
frozen_back
) -> None:
super().__init__()
# self.dinov2 = AutoModel.from_pretrained(DINO_BASE)
if dino_mode == 'base':
self.dinov2 = FLIP_DINOv2.from_pretrained(DINO_BASE, cache_dir='./')
elif dino_mode == 'large':
self.dinov2 = FLIP_DINOv2.from_pretrained(DINO_LARGE, cache_dir='./')
elif dino_mode == 'small':
self.dinov2 = FLIP_DINOv2.from_pretrained(DINO_SMALL, cache_dir='./')
elif dino_mode == 'giant':
self.dinov2 = FLIP_DINOv2.from_pretrained(DINO_GIANT, cache_dir='./')
self.down_sampler = MLP_dim(in_dim=in_dim, out_dim=out_dim)
self.random_mask = False
if not evaluate:
self.init_weights(self.down_sampler)
self.random_mask = mask_dino
if frozen_back:
self.forward_mode = torch.no_grad()
else:
self.forward_mode = nullcontext()
def forward(self, img_inputs):
device = self.get_device()
# print(img_inputs['pixel_values'].shape)
with self.forward_mode:
if self.random_mask:
B = len(img_inputs['pixel_values'])
S = 256
indices = []
for i in range(B):
tmp = torch.randperm(S)[:S//2]
tmp = tmp.sort().values + 1
indices.append(tmp)
indices = torch.stack(indices, dim=0)
indices = torch.cat([torch.zeros(B, 1, dtype=torch.long, device='cpu'), indices], dim=1)
# print(indices.shape)
img_inputs['bool_masked_pos'] = indices.to(device)
dino_outputs = self.dinov2(**img_inputs)
dino_seq = dino_outputs.last_hidden_state
# B,S,_ = dino_seq.shape
# dino_seq = dino_seq.view(B*S,-1)
dino_seq = dino_seq[:,0,:]
down_sample_out = self.down_sampler(dino_seq)
# down_sample_out = down_sample_out.view(B,S,-1)
# down_sample_out = down_sample_out[:,0,:]
return down_sample_out
def get_device(self):
return next(self.parameters()).device
def init_weights(self, m):
if isinstance(m, nn.Linear):
init.xavier_uniform_(m.weight)
if m.bias is not None:
init.constant_(m.bias, 0)