diff --git a/doc/api.rst b/doc/api.rst index 62ce3f889f..a7476cd62f 100644 --- a/doc/api.rst +++ b/doc/api.rst @@ -14,11 +14,12 @@ spikeinterface.core :members: .. autoclass:: BaseEvent :members: - .. autoclass:: WaveformExtractor + .. autoclass:: SortingAnalyzer :members: - .. autofunction:: extract_waveforms - .. autofunction:: load_waveforms + .. autofunction:: create_sorting_analyzer + .. autofunction:: load_sorting_analyzer .. autofunction:: compute_sparsity + .. autofunction:: estimate_sparsity .. autoclass:: ChannelSparsity :members: .. autoclass:: BinaryRecordingExtractor diff --git a/doc/how_to/analyse_neuropixels.rst b/doc/how_to/analyse_neuropixels.rst index 37646c2146..c045f3e849 100644 --- a/doc/how_to/analyse_neuropixels.rst +++ b/doc/how_to/analyse_neuropixels.rst @@ -4,11 +4,11 @@ Analyse Neuropixels datasets This example shows how to perform Neuropixels-specific analysis, including custom pre- and post-processing. -.. code:: ipython +.. code:: ipython3 %matplotlib inline -.. code:: ipython +.. code:: ipython3 import spikeinterface.full as si @@ -16,9 +16,9 @@ including custom pre- and post-processing. import matplotlib.pyplot as plt from pathlib import Path -.. code:: ipython +.. code:: ipython3 - base_folder = Path('/mnt/data/sam/DataSpikeSorting/neuropixel_example/') + base_folder = Path('/mnt/data/sam/DataSpikeSorting/howto_si/neuropixel_example/') spikeglx_folder = base_folder / 'Rec_1_10_11_2021_g0' @@ -29,7 +29,7 @@ Read the data The ``SpikeGLX`` folder can contain several “streams” (AP, LF and NIDQ). We need to specify which one to read: -.. code:: ipython +.. code:: ipython3 stream_names, stream_ids = si.get_neo_streams('spikeglx', spikeglx_folder) stream_names @@ -43,7 +43,7 @@ We need to specify which one to read: -.. code:: ipython +.. code:: ipython3 # we do not load the sync channel, so the probe is automatically loaded raw_rec = si.read_spikeglx(spikeglx_folder, stream_name='imec0.ap', load_sync_channel=False) @@ -54,11 +54,12 @@ We need to specify which one to read: .. parsed-literal:: - SpikeGLXRecordingExtractor: 384 channels - 1 segments - 30.0kHz - 1138.145s + SpikeGLXRecordingExtractor: 384 channels - 30.0kHz - 1 segments - 34,145,070 samples + 1,138.15s (18.97 minutes) - int16 dtype - 24.42 GiB -.. code:: ipython +.. code:: ipython3 # we automaticaly have the probe loaded! raw_rec.get_probe().to_dataframe() @@ -201,7 +202,7 @@ We need to specify which one to read: -.. code:: ipython +.. code:: ipython3 fig, ax = plt.subplots(figsize=(15, 10)) si.plot_probe_map(raw_rec, ax=ax, with_channel_ids=True) @@ -229,7 +230,7 @@ Let’s do something similar to the IBL destriping chain (See - instead of interpolating bad channels, we remove then. - instead of highpass_spatial_filter() we use common_reference() -.. code:: ipython +.. code:: ipython3 rec1 = si.highpass_filter(raw_rec, freq_min=400.) bad_channel_ids, channel_labels = si.detect_bad_channels(rec1) @@ -251,7 +252,8 @@ Let’s do something similar to the IBL destriping chain (See .. parsed-literal:: - CommonReferenceRecording: 383 channels - 1 segments - 30.0kHz - 1138.145s + CommonReferenceRecording: 383 channels - 30.0kHz - 1 segments - 34,145,070 samples + 1,138.15s (18.97 minutes) - int16 dtype - 24.36 GiB @@ -271,7 +273,7 @@ preprocessing chain wihtout to save the entire file to disk. Everything is lazy, so you can change the previsous cell (parameters, step order, …) and visualize it immediatly. -.. code:: ipython +.. code:: ipython3 # here we use static plot using matplotlib backend fig, axs = plt.subplots(ncols=3, figsize=(20, 10)) @@ -287,7 +289,7 @@ is lazy, so you can change the previsous cell (parameters, step order, .. image:: analyse_neuropixels_files/analyse_neuropixels_13_0.png -.. code:: ipython +.. code:: ipython3 # plot some channels fig, ax = plt.subplots(figsize=(20, 10)) @@ -299,7 +301,7 @@ is lazy, so you can change the previsous cell (parameters, step order, .. parsed-literal:: - + @@ -326,25 +328,13 @@ Depending on the complexity of the preprocessing chain, this operation can take a while. However, we can make use of the powerful parallelization mechanism of SpikeInterface. -.. code:: ipython +.. code:: ipython3 job_kwargs = dict(n_jobs=40, chunk_duration='1s', progress_bar=True) rec = rec.save(folder=base_folder / 'preprocess', format='binary', **job_kwargs) - -.. parsed-literal:: - - write_binary_recording with n_jobs = 40 and chunk_size = 30000 - - - -.. parsed-literal:: - - write_binary_recording: 0%| | 0/1139 [00:00`__ for more information and a list of all supported metrics. @@ -697,19 +714,24 @@ Some metrics are based on PCA (like ``'isolation_distance', 'l_ratio', 'd_prime'``) and require to estimate PCA for their computation. This can be achieved with: -``si.compute_principal_components(waveform_extractor)`` +``analyzer.compute("principal_components")`` + +.. code:: ipython3 + + metric_names=['firing_rate', 'presence_ratio', 'snr', 'isi_violation', 'amplitude_cutoff'] + -.. code:: ipython + # metrics = analyzer.compute("quality_metrics").get_data() + # equivalent to + metrics = si.compute_quality_metrics(analyzer, metric_names=metric_names) - metrics = si.compute_quality_metrics(we, metric_names=['firing_rate', 'presence_ratio', 'snr', - 'isi_violation', 'amplitude_cutoff']) metrics .. parsed-literal:: - /home/samuel.garcia/Documents/SpikeInterface/spikeinterface/spikeinterface/qualitymetrics/misc_metrics.py:511: UserWarning: Units [11, 13, 15, 18, 21, 22] have too few spikes and amplitude_cutoff is set to NaN - warnings.warn(f"Units {nan_units} have too few spikes and " + /home/samuel.garcia/Documents/SpikeInterface/spikeinterface/src/spikeinterface/qualitymetrics/misc_metrics.py:846: UserWarning: Some units have too few spikes : amplitude_cutoff is set to NaN + warnings.warn(f"Some units have too few spikes : amplitude_cutoff is set to NaN") @@ -734,293 +756,293 @@ PCA for their computation. This can be achieved with: + amplitude_cutoff firing_rate - presence_ratio - snr isi_violations_ratio isi_violations_count - amplitude_cutoff + presence_ratio + snr 0 + 0.011528 0.798668 + 4.591436 + 10.0 1.000000 - 1.324698 - 4.591437 - 10 - 0.011528 + 1.430458 1 - 9.886261 - 1.000000 - 1.959527 - 5.333803 - 1780 0.000062 + 9.886262 + 5.333802 + 1780.0 + 1.000000 + 1.938214 2 + 0.002567 2.849373 - 1.000000 - 1.467690 3.859813 - 107 - 0.002567 + 107.0 + 1.000000 + 1.586939 3 + 0.000099 5.404408 + 3.519589 + 351.0 1.000000 - 1.253708 - 3.519590 - 351 - 0.000188 + 2.073651 4 + 0.001487 4.772678 - 1.000000 - 1.722377 3.947255 - 307 - 0.001487 + 307.0 + 1.000000 + 1.595303 5 + 0.001190 1.802055 - 1.000000 - 2.358286 6.403293 - 71 - 0.001422 + 71.0 + 1.000000 + 2.411436 6 + 0.003508 0.531567 + 94.320694 + 91.0 0.888889 - 3.359229 - 94.320701 - 91 - 0.004900 + 3.377035 7 - 5.400014 - 1.000000 - 4.653080 - 0.612662 - 61 0.000119 + 5.400015 + 0.612662 + 61.0 + 1.000000 + 4.631496 8 - 10.563679 - 1.000000 - 8.267220 - 0.073487 - 28 0.000265 + 10.563680 + 0.073487 + 28.0 + 1.000000 + 8.178637 9 + 0.000968 8.181734 - 1.000000 - 4.546735 0.730646 - 167 - 0.000968 + 167.0 + 1.000000 + 3.900670 10 - 16.839681 - 1.000000 - 5.094325 - 0.298477 - 289 0.000259 + 16.839682 + 0.298477 + 289.0 + 1.000000 + 5.044798 11 + NaN 0.007029 - 0.388889 - 4.032887 0.000000 - 0 - NaN + 0.0 + 0.388889 + 4.032886 12 - 10.184114 - 1.000000 - 4.780558 - 0.720070 - 255 0.000264 + 10.184115 + 0.720070 + 255.0 + 1.000000 + 4.767068 13 + NaN 0.005272 + 0.000000 + 0.0 0.222222 4.627749 - 0.000000 - 0 - NaN 14 - 10.047928 - 1.000000 - 4.984704 - 0.771631 - 266 0.000371 + 10.047929 + 0.771631 + 266.0 + 1.000000 + 5.185702 15 + NaN 0.107192 + 0.000000 + 0.0 0.888889 4.248180 - 0.000000 - 0 - NaN 16 + 0.000452 0.535081 - 0.944444 - 2.326990 8.183362 - 8 - 0.000452 + 8.0 + 0.944444 + 2.309993 17 - 4.650549 - 1.000000 - 1.998918 - 6.391674 - 472 0.000196 + 4.650550 + 6.391673 + 472.0 + 1.000000 + 2.064208 18 + NaN 0.077319 + 293.942411 + 6.0 0.722222 6.619197 - 293.942433 - 6 - NaN 19 - 7.088727 - 1.000000 - 1.715093 + 0.000053 + 7.088728 5.146421 - 883 - 0.000268 + 883.0 + 1.000000 + 2.057868 20 - 9.821243 + 0.000071 + 9.821244 + 5.322676 + 1753.0 1.000000 - 1.575338 - 5.322677 - 1753 - 0.000059 + 1.688922 21 + NaN 0.046567 + 405.178005 + 3.0 0.666667 - 5.899877 - 405.178035 - 3 - NaN + 5.899876 22 + NaN 0.094891 + 65.051727 + 2.0 0.722222 6.476350 - 65.051732 - 2 - NaN 23 + 0.002927 1.849501 + 13.699103 + 160.0 1.000000 - 2.493723 - 13.699104 - 160 - 0.002927 + 2.282473 24 + 0.003143 1.420733 - 1.000000 - 1.549977 4.352889 - 30 - 0.004044 + 30.0 + 1.000000 + 1.573989 25 + 0.002457 0.675661 + 56.455510 + 88.0 0.944444 - 4.110071 - 56.455515 - 88 - 0.002457 + 4.107643 26 + 0.003152 0.642273 - 1.000000 - 1.981111 2.129918 - 3 - 0.003152 + 3.0 + 1.000000 + 1.902601 27 + 0.000229 1.012173 + 6.860924 + 24.0 0.888889 - 1.843515 - 6.860925 - 24 - 0.000229 + 1.854307 28 + 0.002856 0.804818 + 38.433003 + 85.0 0.888889 - 3.662210 - 38.433006 - 85 - 0.002856 + 3.755829 29 + 0.002854 1.012173 - 1.000000 - 1.097260 1.143487 - 4 - 0.000845 + 4.0 + 1.000000 + 1.345607 30 + 0.005439 0.649302 + 63.910953 + 92.0 0.888889 - 4.243889 - 63.910958 - 92 - 0.005439 + 4.168347 @@ -1034,7 +1056,7 @@ Curation using metrics A very common curation approach is to threshold these metrics to select *good* units: -.. code:: ipython +.. code:: ipython3 amplitude_cutoff_thresh = 0.1 isi_violations_ratio_thresh = 1 @@ -1049,7 +1071,7 @@ A very common curation approach is to threshold these metrics to select (amplitude_cutoff < 0.1) & (isi_violations_ratio < 1) & (presence_ratio > 0.9) -.. code:: ipython +.. code:: ipython3 keep_units = metrics.query(our_query) keep_unit_ids = keep_units.index.values @@ -1071,43 +1093,43 @@ In order to export the final results we need to make a copy of the the waveforms, but only for the selected units (so we can avoid to compute them again). -.. code:: ipython +.. code:: ipython3 - we_clean = we.select_units(keep_unit_ids, new_folder=base_folder / 'waveforms_clean') + analyzer_clean = analyzer.select_units(keep_unit_ids, folder=base_folder / 'analyzer_clean', format='binary_folder') -.. code:: ipython +.. code:: ipython3 - we_clean + analyzer_clean .. parsed-literal:: - WaveformExtractor: 383 channels - 6 units - 1 segments - before:45 after:60 n_per_units:500 - sparse + SortingAnalyzer: 383 channels - 6 units - 1 segments - binary_folder - sparse - has recording + Loaded 9 extenstions: random_spikes, waveforms, templates, noise_levels, correlograms, unit_locations, spike_amplitudes, template_similarity, quality_metrics Then we export figures to a report folder -.. code:: ipython +.. code:: ipython3 # export spike sorting report to a folder - si.export_report(we_clean, base_folder / 'report', format='png') + si.export_report(analyzer_clean, base_folder / 'report', format='png') -.. code:: ipython +.. code:: ipython3 - we_clean = si.load_waveforms(base_folder / 'waveforms_clean') - we_clean + analyzer_clean = si.load_sorting_analyzer(base_folder / 'analyzer_clean') + analyzer_clean .. parsed-literal:: - WaveformExtractor: 383 channels - 6 units - 1 segments - before:45 after:60 n_per_units:500 - sparse + SortingAnalyzer: 383 channels - 6 units - 1 segments - binary_folder - sparse - has recording + Loaded 9 extenstions: random_spikes, waveforms, templates, noise_levels, template_similarity, spike_amplitudes, correlograms, unit_locations, quality_metrics @@ -1115,4 +1137,4 @@ And push the results to sortingview webased viewer .. code:: python - si.plot_sorting_summary(we_clean, backend='sortingview') + si.plot_sorting_summary(analyzer_clean, backend='sortingview') diff --git a/doc/modules/core.rst b/doc/modules/core.rst index 17c7bd69e4..73262b4ba7 100644 --- a/doc/modules/core.rst +++ b/doc/modules/core.rst @@ -9,7 +9,7 @@ The :py:mod:`spikeinterface.core` module provides the basic classes and tools of Several Base classes are implemented here and inherited throughout the SI code-base. The core classes are: :py:class:`~spikeinterface.core.BaseRecording` (for raw data), :py:class:`~spikeinterface.core.BaseSorting` (for spike-sorted data), and -:py:class:`~spikeinterface.core.WaveformExtractor` (for waveform extraction and postprocessing). +:py:class:`~spikeinterface.core.SortingAnalyzer` (for postprocessing, quality metrics, and waveform extraction). There are additional classes to allow to retrieve events (:py:class:`~spikeinterface.core.BaseEvent`) and to handle unsorted waveform cutouts, or *snippets*, which are recorded by some acquisition systems @@ -163,105 +163,12 @@ Internally, any sorting object can construct 2 internal caches: time, like for extracting amplitudes from a recording. -WaveformExtractor ------------------ - -The :py:class:`~spikeinterface.core.WaveformExtractor` class is the core object to combine a -:py:class:`~spikeinterface.core.BaseRecording` and a :py:class:`~spikeinterface.core.BaseSorting` object. -Waveforms are very important for additional analyses, and the basis of several postprocessing and quality metrics -computations. - -The :py:class:`~spikeinterface.core.WaveformExtractor` allows us to: - -* extract waveforms -* sub-sample spikes for waveform extraction -* compute templates (i.e. average extracellular waveforms) with different modes -* save waveforms in a folder (in numpy / `Zarr `_) for easy retrieval -* save sparse waveforms or *sparsify* dense waveforms -* select units and associated waveforms - -In the default format (:code:`mode='folder'`) waveforms are saved to a folder structure with waveforms as -:code:`.npy` files. -In addition, waveforms can also be extracted in-memory for fast computations (:code:`mode='memory'`). -Note that this mode can quickly fill up your RAM... Use it wisely! -Finally, an existing :py:class:`~spikeinterface.core.WaveformExtractor` can be saved also in :code:`zarr` format. - -.. code-block:: python - - # extract dense waveforms on 500 spikes per unit - we = extract_waveforms(recording=recording, - sorting=sorting, - sparse=False, - folder="waveforms", - max_spikes_per_unit=500 - overwrite=True) - # same, but with parallel processing! (1s chunks processed by 8 jobs) - job_kwargs = dict(n_jobs=8, chunk_duration="1s") - we = extract_waveforms(recording=recording, - sorting=sorting, - sparse=False, - folder="waveforms_parallel", - max_spikes_per_unit=500, - overwrite=True, - **job_kwargs) - # same, but in-memory - we_mem = extract_waveforms(recording=recording, - sorting=sorting, - sparse=False, - folder=None, - mode="memory", - max_spikes_per_unit=500, - **job_kwargs) - - # load pre-computed waveforms - we_loaded = load_waveforms(folder="waveforms") - - # retrieve waveforms and templates for a unit - waveforms0 = we.get_waveforms(unit_id=unit0) - template0 = we.get_template(unit_id=unit0) - - # compute template standard deviations (average is computed by default) - # (this can also be done within the 'extract_waveforms') - we.precompute_templates(modes=("std",)) - - # retrieve all template means and standard deviations - template_means = we.get_all_templates(mode="average") - template_stds = we.get_all_templates(mode="std") - - # save to Zarr - we_zarr = we.save(folder="waveforms_zarr", format="zarr") - - # extract sparse waveforms (see Sparsity section) - # this will use 50 spikes per unit to estimate the sparsity within a 40um radius from that unit - we_sparse = extract_waveforms(recording=recording, - sorting=sorting, - folder="waveforms_sparse", - max_spikes_per_unit=500, - method="radius", - radius_um=40, - num_spikes_for_sparsity=50) +SortingAnalyzer +--------------- +The :py:class:`~spikeinterface.core.SortingAnalyzer` is the class which connects a :code:`Recording` and a :code:`Sorting`. -**IMPORTANT:** to load a waveform extractor object from disk, it needs to be able to reload the associated -:code:`sorting` object (the :code:`recording` is optional, using :code:`with_recording=False`). -In order to make a waveform folder portable (e.g. copied to another location or machine), one can do: - -.. code-block:: python - - # create a "processed" folder - processed_folder = Path("processed") - - # save the sorting object in the "processed" folder - sorting = sorting.save(folder=processed_folder / "sorting") - # extract waveforms using relative paths - we = extract_waveforms(recording=recording, - sorting=sorting, - folder=processed_folder / "waveforms", - use_relative_path=True) - # the "processed" folder is now portable, and the waveform extractor can be reloaded - # from a different location/machine (without loading the recording) - we_loaded = si.load_waveforms(folder=processed_folder / "waveforms", - with_recording=False) +**To be filled in** Event @@ -783,3 +690,111 @@ various formats: # SpikeGLX format local_folder_path = download_dataset(remote_path='/spikeglx/multi_trigger_multi_gate') rec = read_spikeglx(local_folder_path) + + + +LEGACY objects +-------------- + +WaveformExtractor +^^^^^^^^^^^^^^^^^ + +This is now a legacy object that can still be accessed through the :py:class:`MockWaveformExtractor`. It is kept +for backward compatibility. + +The :py:class:`~spikeinterface.core.WaveformExtractor` class is the core object to combine a +:py:class:`~spikeinterface.core.BaseRecording` and a :py:class:`~spikeinterface.core.BaseSorting` object. +Waveforms are very important for additional analyses, and the basis of several postprocessing and quality metrics +computations. + +The :py:class:`~spikeinterface.core.WaveformExtractor` allows us to: + +* extract waveforms +* sub-sample spikes for waveform extraction +* compute templates (i.e. average extracellular waveforms) with different modes +* save waveforms in a folder (in numpy / `Zarr `_) for easy retrieval +* save sparse waveforms or *sparsify* dense waveforms +* select units and associated waveforms + +In the default format (:code:`mode='folder'`) waveforms are saved to a folder structure with waveforms as +:code:`.npy` files. +In addition, waveforms can also be extracted in-memory for fast computations (:code:`mode='memory'`). +Note that this mode can quickly fill up your RAM... Use it wisely! +Finally, an existing :py:class:`~spikeinterface.core.WaveformExtractor` can be saved also in :code:`zarr` format. + +.. code-block:: python + + # extract dense waveforms on 500 spikes per unit + we = extract_waveforms(recording=recording, + sorting=sorting, + sparse=False, + folder="waveforms", + max_spikes_per_unit=500 + overwrite=True) + # same, but with parallel processing! (1s chunks processed by 8 jobs) + job_kwargs = dict(n_jobs=8, chunk_duration="1s") + we = extract_waveforms(recording=recording, + sorting=sorting, + sparse=False, + folder="waveforms_parallel", + max_spikes_per_unit=500, + overwrite=True, + **job_kwargs) + # same, but in-memory + we_mem = extract_waveforms(recording=recording, + sorting=sorting, + sparse=False, + folder=None, + mode="memory", + max_spikes_per_unit=500, + **job_kwargs) + + # load pre-computed waveforms + we_loaded = load_waveforms(folder="waveforms") + + # retrieve waveforms and templates for a unit + waveforms0 = we.get_waveforms(unit_id=unit0) + template0 = we.get_template(unit_id=unit0) + + # compute template standard deviations (average is computed by default) + # (this can also be done within the 'extract_waveforms') + we.precompute_templates(modes=("std",)) + + # retrieve all template means and standard deviations + template_means = we.get_all_templates(mode="average") + template_stds = we.get_all_templates(mode="std") + + # save to Zarr + we_zarr = we.save(folder="waveforms_zarr", format="zarr") + + # extract sparse waveforms (see Sparsity section) + # this will use 50 spikes per unit to estimate the sparsity within a 40um radius from that unit + we_sparse = extract_waveforms(recording=recording, + sorting=sorting, + folder="waveforms_sparse", + max_spikes_per_unit=500, + method="radius", + radius_um=40, + num_spikes_for_sparsity=50) + + +**IMPORTANT:** to load a waveform extractor object from disk, it needs to be able to reload the associated +:code:`sorting` object (the :code:`recording` is optional, using :code:`with_recording=False`). +In order to make a waveform folder portable (e.g. copied to another location or machine), one can do: + +.. code-block:: python + + # create a "processed" folder + processed_folder = Path("processed") + + # save the sorting object in the "processed" folder + sorting = sorting.save(folder=processed_folder / "sorting") + # extract waveforms using relative paths + we = extract_waveforms(recording=recording, + sorting=sorting, + folder=processed_folder / "waveforms", + use_relative_path=True) + # the "processed" folder is now portable, and the waveform extractor can be reloaded + # from a different location/machine (without loading the recording) + we_loaded = si.load_waveforms(folder=processed_folder / "waveforms", + with_recording=False) diff --git a/doc/modules/postprocessing.rst b/doc/modules/postprocessing.rst index 4e8dd88be5..8fbbaf4d86 100644 --- a/doc/modules/postprocessing.rst +++ b/doc/modules/postprocessing.rst @@ -5,30 +5,30 @@ Postprocessing module After spike sorting, we can use the :py:mod:`~spikeinterface.postprocessing` module to further post-process the spike sorting output. Most of the post-processing functions require a -:py:class:`~spikeinterface.core.WaveformExtractor` as input. +:py:class:`~spikeinterface.core.SortingAnalyzer` as input. .. _waveform_extensions: -WaveformExtractor extensions +ResultExtensions ---------------------------- There are several postprocessing tools available, and all -of them are implemented as a :py:class:`~spikeinterface.core.BaseWaveformExtractorExtension`. All computations on top -of a :code:`WaveformExtractor` will be saved along side the :code:`WaveformExtractor` itself (sub folder, zarr path or sub dict). +of them are implemented as a :py:class:`~spikeinterface.core.ResultExtension`. All computations on top +of a :code:`SortingAnalyzer` will be saved along side the :code:`SortingAnalyzer` itself (sub folder, zarr path or sub dict). This workflow is convenient for retrieval of time-consuming computations (such as pca or spike amplitudes) when reloading a -:code:`WaveformExtractor`. +:code:`SortingAnalyzer`. -:py:class:`~spikeinterface.core.BaseWaveformExtractorExtension` objects are tightly connected to the -parent :code:`WaveformExtractor` object, so that operations done on the :code:`WaveformExtractor`, such as saving, +:py:class:`~spikeinterface.core.ResultExtension` objects are tightly connected to the +parent :code:`SortingAnalyzer` object, so that operations done on the :code:`SortingAnalyzer`, such as saving, loading, or selecting units, will be automatically applied to all extensions. -To check what extensions are available for a :code:`WaveformExtractor` named :code:`we`, you can use: +To check what extensions are available for a :code:`SortingAnalyzer` named :code:`sorting_analyzer`, you can use: .. code-block:: python import spikeinterface as si - available_extension_names = we.get_available_extension_names() + available_extension_names = sorting_analyzer.get_load_extension_names() print(available_extension_names) .. code-block:: bash @@ -40,7 +40,7 @@ To load the extension object you can run: .. code-block:: python - ext = we.load_extension("spike_amplitudes") + ext = sorting_analyzer.get_extension("spike_amplitudes") ext_data = ext.get_data() Here :code:`ext` is the extension object (in this case the :code:`SpikeAmplitudeCalculator`), and :code:`ext_data` will @@ -52,13 +52,9 @@ We can also delete an extension: .. code-block:: python - we.delete_extension("spike_amplitudes") + sorting_analyzer.delete_extension("spike_amplitudes") - -Finally, the waveform extensions can be loaded rather than recalculated by using the :code:`load_if_exists` argument in -any post-processing function. - Available postprocessing extensions ----------------------------------- @@ -66,18 +62,13 @@ noise_levels ^^^^^^^^^^^^ This extension computes the noise level of each channel using the median absolute deviation. -As an extension, this expects the :code:`WaveformExtractor` as input and the computed values are persistent on disk. - -The :py:func:`~spikeinterface.core.get_noise_levels(recording)` computes the same values, but starting from a recording -and without saving the data as an extension. - +As an extension, this expects the :code:`Recording` as input and the computed values are persistent on disk. .. code-block:: python - noise = compute_noise_level(waveform_extractor=we) + noise = compute_noise_level(recording=recording) -For more information, see :py:func:`~spikeinterface.postprocessing.compute_noise_levels` @@ -95,9 +86,9 @@ For dense waveforms, sparsity can also be passed as an argument. .. code-block:: python - pc = compute_principal_components(waveform_extractor=we, - n_components=3, - mode="by_channel_local") + pc = sorting_analyzer.compute(input="principal_components", + n_components=3, + mode="by_channel_local") For more information, see :py:func:`~spikeinterface.postprocessing.compute_principal_components` @@ -112,7 +103,7 @@ and is not well suited for high-density probes. .. code-block:: python - similarity = compute_template_similarity(waveform_extractor=we, method='cosine_similarity') + similarity = sorting_analyzer.compute(input="template_similarity", method='cosine_similarity') For more information, see :py:func:`~spikeinterface.postprocessing.compute_template_similarity` @@ -130,9 +121,9 @@ each spike. .. code-block:: python - amplitudes = computer_spike_amplitudes(waveform_extractor=we, - peak_sign="neg", - outputs="concatenated") + amplitudes = sorting_analyzer.compute(input="spike_amplitudes", + peak_sign="neg", + outputs="concatenated") For more information, see :py:func:`~spikeinterface.postprocessing.compute_spike_amplitudes` @@ -150,15 +141,15 @@ with center of mass (:code:`method="center_of_mass"` - fast, but less accurate), .. code-block:: python - spike_locations = compute_spike_locations(waveform_extractor=we, - ms_before=0.5, - ms_after=0.5, - spike_retriever_kwargs=dict( - channel_from_template=True, - radius_um=50, - peak_sign="neg" + spike_locations = sorting_analyzer.compute(input="spike_locations", + ms_before=0.5, + ms_after=0.5, + spike_retriever_kwargs=dict( + channel_from_template=True, + radius_um=50, + peak_sign="neg" ), - method="center_of_mass") + method="center_of_mass") For more information, see :py:func:`~spikeinterface.postprocessing.compute_spike_locations` @@ -175,8 +166,7 @@ based on individual waveforms, it calculates at the unit level using templates. .. code-block:: python - unit_locations = compute_unit_locations(waveform_extractor=we, - method="monopolar_triangulation") + unit_locations = sorting_analyzer.compute(input="unit_locations", method="monopolar_triangulation") For more information, see :py:func:`~spikeinterface.postprocessing.compute_unit_locations` @@ -219,10 +209,10 @@ with shape (num_units, num_units, num_bins) with all correlograms for each pair .. code-block:: python - ccgs, bins = compute_correlograms(waveform_or_sorting_extractor=we, - window_ms=50.0, - bin_ms=1.0, - method="auto") + ccg = sorting_analyzer.compute(input="correlograms", + window_ms=50.0, + bin_ms=1.0, + method="auto") For more information, see :py:func:`~spikeinterface.postprocessing.compute_correlograms` @@ -236,10 +226,10 @@ This extension computes the histograms of inter-spike-intervals. The computed ou .. code-block:: python - isi_histogram, bins = compute_isi_histograms(waveform_or_sorting_extractor=we, - window_ms=50.0, - bin_ms=1.0, - method="auto") + isi = sorting_analyer.compute(input="isi_histograms" + window_ms=50.0, + bin_ms=1.0, + method="auto") For more information, see :py:func:`~spikeinterface.postprocessing.compute_isi_histograms` diff --git a/doc/modules/qualitymetrics.rst b/doc/modules/qualitymetrics.rst index 962de2dfd8..f5f3581c31 100644 --- a/doc/modules/qualitymetrics.rst +++ b/doc/modules/qualitymetrics.rst @@ -48,17 +48,21 @@ This code snippet shows how to compute quality metrics (with or without principa .. code-block:: python - we = si.load_waveforms(folder='waveforms') # start from a waveform extractor + sorting_analyzer = si.load_sorting_analyzer(folder='waveforms') # start from a sorting_analyzer - # without PC - metrics = compute_quality_metrics(waveform_extractor=we, metric_names=['snr']) + # without PC (depends on "waveforms", "templates", and "noise_levels") + qm_ext = sorting_analyzer.compute(input="quality_metrics", metric_names=['snr'], skip_pc_metrics=True) + metrics = qm_ext.get_data() assert 'snr' in metrics.columns - # with PCs - from spikeinterface.postprocessing import compute_principal_components - pca = compute_principal_components(waveform_extractor=we, n_components=5, mode='by_channel_local') - metrics = compute_quality_metrics(waveform_extractor=we) - assert 'isolation_distance' in metrics.columns + # with PCs (depends on "pca" in addition to the above metrics) + + qm_ext = sorting_analyzer.compute(input={"pca": dict(n_components=5, mode="by_channel_local"), + "quality_metrics": dict(skip_pc_metrics=False)}) + metrics = qm_ext.get_data() + assert 'isolation_distance' in metrics.columns + + For more information about quality metrics, check out this excellent `documentation `_ diff --git a/doc/modules/qualitymetrics/amplitude_cutoff.rst b/doc/modules/qualitymetrics/amplitude_cutoff.rst index a1e4d85d01..207ca115fd 100644 --- a/doc/modules/qualitymetrics/amplitude_cutoff.rst +++ b/doc/modules/qualitymetrics/amplitude_cutoff.rst @@ -23,9 +23,10 @@ Example code import spikeinterface.qualitymetrics as sqm - # It is also recommended to run `compute_spike_amplitudes(wvf_extractor)` + # Combine sorting and recording into a sorting_analyzer + # It is also recommended to run sorting_analyzer.compute(input="spike_amplitudes") # in order to use amplitudes from all spikes - fraction_missing = sqm.compute_amplitude_cutoffs(wvf_extractor, peak_sign="neg") + fraction_missing = sqm.compute_amplitude_cutoffs(sorting_analyzer=sorting_analyzer, peak_sign="neg") # fraction_missing is a dict containing the unit IDs as keys, # and their estimated fraction of missing spikes as values. diff --git a/doc/modules/qualitymetrics/amplitude_cv.rst b/doc/modules/qualitymetrics/amplitude_cv.rst index 81d3b4f12d..2ad51aab2a 100644 --- a/doc/modules/qualitymetrics/amplitude_cv.rst +++ b/doc/modules/qualitymetrics/amplitude_cv.rst @@ -34,10 +34,10 @@ Example code import spikeinterface.qualitymetrics as sqm - # Make recording, sorting and wvf_extractor object for your data. - # It is required to run `compute_spike_amplitudes(wvf_extractor)` or - # `compute_amplitude_scalings(wvf_extractor)` (if missing, values will be NaN) - amplitude_cv_median, amplitude_cv_range = sqm.compute_amplitude_cv_metrics(waveform_extractor=wvf_extractor) + # Combine a sorting and recording into a sorting_analyzer + # It is required to run sorting_analyzer.compute(input="spike_amplitudes") or + # sorting_analyzer.compute(input="amplitude_scalings") (if missing, values will be NaN) + amplitude_cv_median, amplitude_cv_range = sqm.compute_amplitude_cv_metrics(sorting_analyzer=sorting_analyzer) # amplitude_cv_median and amplitude_cv_range are dicts containing the unit ids as keys, # and their amplitude_cv metrics as values. diff --git a/doc/modules/qualitymetrics/amplitude_median.rst b/doc/modules/qualitymetrics/amplitude_median.rst index c77a57b033..1e4eec2e40 100644 --- a/doc/modules/qualitymetrics/amplitude_median.rst +++ b/doc/modules/qualitymetrics/amplitude_median.rst @@ -22,9 +22,9 @@ Example code import spikeinterface.qualitymetrics as sqm - # It is also recommended to run `compute_spike_amplitudes(wvf_extractor)` + # It is also recommended to run sorting_analyzer.compute(input="spike_amplitudes") # in order to use amplitude values from all spikes. - amplitude_medians = sqm.compute_amplitude_medians(waveform_extractor=wvf_extractor) + amplitude_medians = sqm.compute_amplitude_medians(sorting_analyzer) # amplitude_medians is a dict containing the unit IDs as keys, # and their estimated amplitude medians as values. diff --git a/doc/modules/qualitymetrics/drift.rst b/doc/modules/qualitymetrics/drift.rst index dad2aafe7c..8f95f74695 100644 --- a/doc/modules/qualitymetrics/drift.rst +++ b/doc/modules/qualitymetrics/drift.rst @@ -42,10 +42,10 @@ Example code import spikeinterface.qualitymetrics as sqm - # Make recording, sorting and wvf_extractor object for your data. - # It is required to run `compute_spike_locations(wvf_extractor) first` + # Combine sorting and recording into sorting_analyzer + # It is required to run sorting_analyzer.compute(input="spike_locations") first # (if missing, values will be NaN) - drift_ptps, drift_stds, drift_mads = sqm.compute_drift_metrics(waveform_extractor=wvf_extractor, peak_sign="neg") + drift_ptps, drift_stds, drift_mads = sqm.compute_drift_metrics(sorting_analyzer=sorting_analyzer peak_sign="neg") # drift_ptps, drift_stds, and drift_mads are each a dict containing the unit IDs as keys, # and their metrics as values. diff --git a/doc/modules/qualitymetrics/firing_range.rst b/doc/modules/qualitymetrics/firing_range.rst index 1cbd903c7a..d059f4eac6 100644 --- a/doc/modules/qualitymetrics/firing_range.rst +++ b/doc/modules/qualitymetrics/firing_range.rst @@ -23,8 +23,8 @@ Example code import spikeinterface.qualitymetrics as sqm - # Make recording, sorting and wvf_extractor object for your data. - firing_range = sqm.compute_firing_ranges(waveform_extractor=wvf_extractor) + # Combine a sorting and recording into a sorting_analyzer + firing_range = sqm.compute_firing_ranges(sorting_analyzer=sorting_analyzer) # firing_range is a dict containing the unit IDs as keys, # and their firing firing_range as values (in Hz). diff --git a/doc/modules/qualitymetrics/firing_rate.rst b/doc/modules/qualitymetrics/firing_rate.rst index ef8cb3d8f4..953901dd38 100644 --- a/doc/modules/qualitymetrics/firing_rate.rst +++ b/doc/modules/qualitymetrics/firing_rate.rst @@ -39,8 +39,8 @@ With SpikeInterface: import spikeinterface.qualitymetrics as sqm - # Make recording, sorting and wvf_extractor object for your data. - firing_rate = sqm.compute_firing_rates(waveform_extractor=wvf_extractor) + # Combine a sorting and recording into a sorting_analyzer + firing_rate = sqm.compute_firing_rates(sorting_analyzer) # firing_rate is a dict containing the unit IDs as keys, # and their firing rates across segments as values (in Hz). diff --git a/doc/modules/qualitymetrics/isi_violations.rst b/doc/modules/qualitymetrics/isi_violations.rst index 725d9b0fd6..e30a2334d5 100644 --- a/doc/modules/qualitymetrics/isi_violations.rst +++ b/doc/modules/qualitymetrics/isi_violations.rst @@ -79,9 +79,9 @@ With SpikeInterface: import spikeinterface.qualitymetrics as sqm - # Make recording, sorting and wvf_extractor object for your data. + # Combine sorting and recording into sorting_analyzer - isi_violations_ratio, isi_violations_count = sqm.compute_isi_violations(wvf_extractor, isi_threshold_ms=1.0) + isi_violations_ratio, isi_violations_count = sqm.compute_isi_violations(sorting_analyzer=sorting_analyzer, isi_threshold_ms=1.0) References ---------- diff --git a/doc/modules/qualitymetrics/presence_ratio.rst b/doc/modules/qualitymetrics/presence_ratio.rst index ad0766d37c..e925c6e325 100644 --- a/doc/modules/qualitymetrics/presence_ratio.rst +++ b/doc/modules/qualitymetrics/presence_ratio.rst @@ -25,9 +25,9 @@ Example code import spikeinterface.qualitymetrics as sqm - # Make recording, sorting and wvf_extractor object for your data. + # Combine sorting and recording into a sorting_analyzer - presence_ratio = sqm.compute_presence_ratios(waveform_extractor=wvf_extractor) + presence_ratio = sqm.compute_presence_ratios(sorting_analyzer=sorting_analyzer) # presence_ratio is a dict containing the unit IDs as keys # and their presence ratio (between 0 and 1) as values. diff --git a/doc/modules/qualitymetrics/sd_ratio.rst b/doc/modules/qualitymetrics/sd_ratio.rst index 0ee3a3fa12..260a2ec38e 100644 --- a/doc/modules/qualitymetrics/sd_ratio.rst +++ b/doc/modules/qualitymetrics/sd_ratio.rst @@ -28,7 +28,8 @@ Example code import spikeinterface.qualitymetrics as sqm - sd_ratio = sqm.compute_sd_ratio(wvf_extractor, censored_period_ms=4.0) + # In this case we need to combine our sorting and recording into a sorting_analyzer + sd_ratio = sqm.compute_sd_ratio(sorting_analyzer=sorting_analyzer censored_period_ms=4.0) References diff --git a/doc/modules/qualitymetrics/sliding_rp_violations.rst b/doc/modules/qualitymetrics/sliding_rp_violations.rst index fd53d7da3b..1913062cd9 100644 --- a/doc/modules/qualitymetrics/sliding_rp_violations.rst +++ b/doc/modules/qualitymetrics/sliding_rp_violations.rst @@ -29,9 +29,9 @@ With SpikeInterface: import spikeinterface.qualitymetrics as sqm - # Make recording, sorting and wvf_extractor object for your data. + # Combine sorting and recording into a sorting_analyzer - contamination = sqm.compute_sliding_rp_violations(waveform_extractor=wvf_extractor, bin_size_ms=0.25) + contamination = sqm.compute_sliding_rp_violations(sorting_analyzer=sorting_analyzer, bin_size_ms=0.25) References ---------- diff --git a/doc/modules/qualitymetrics/snr.rst b/doc/modules/qualitymetrics/snr.rst index 7f27a5078a..e640ec026f 100644 --- a/doc/modules/qualitymetrics/snr.rst +++ b/doc/modules/qualitymetrics/snr.rst @@ -43,8 +43,8 @@ With SpikeInterface: import spikeinterface.qualitymetrics as sqm - # Make recording, sorting and wvf_extractor object for your data. - SNRs = sqm.compute_snrs(waveform_extractor=wvf_extractor) + # Combining sorting and recording into a sorting_analzyer + SNRs = sqm.compute_snrs(sorting_analzyer=sorting_analzyer) # SNRs is a dict containing the unit IDs as keys and their SNRs as values. Links to original implementations diff --git a/doc/modules/qualitymetrics/synchrony.rst b/doc/modules/qualitymetrics/synchrony.rst index d1a3c70a97..41c92dd99e 100644 --- a/doc/modules/qualitymetrics/synchrony.rst +++ b/doc/modules/qualitymetrics/synchrony.rst @@ -28,8 +28,8 @@ Example code .. code-block:: python import spikeinterface.qualitymetrics as sqm - # Make recording, sorting and wvf_extractor object for your data. - synchrony = sqm.compute_synchrony_metrics(waveform_extractor=wvf_extractor, synchrony_sizes=(2, 4, 8)) + # Combine a sorting and recording into a sorting_analyzer + synchrony = sqm.compute_synchrony_metrics(sorting_analyzer=sorting_analyzer synchrony_sizes=(2, 4, 8)) # synchrony is a tuple of dicts with the synchrony metrics for each unit diff --git a/doc/releases/0.100.0.rst b/doc/releases/0.100.0.rst deleted file mode 100644 index d39b5569da..0000000000 --- a/doc/releases/0.100.0.rst +++ /dev/null @@ -1,158 +0,0 @@ -.. _release0.100.0: - -SpikeInterface 0.100.0 release notes ------------------------------------- - -6th February 2024 - -Main changes: - -* Several improvements and bug fixes for Windows users -* Important refactoring of NWB extractors: - * implemented direct backend implementation (to avoid using `pynwb`) - * sped up streaming using `remfile` - * added support for `zarr` backend -* Removed `joblib` dependency in favor of `ParallelProcessExecutor` -* Improved flexibility when running sorters in containers by adding several options for installing `spikeinterface` -* Add `Templates` class to core, which handles unit templates and sparsity (#1982) -* Added Zarr-backend to `Sorting` objects (`sorting.save(folder="...", format="zarr")`) (#2403) -* Added `SharedmemRecording` for shared memory recordings (#2365) -* Added machinery for moving/interpolating templates for generating hybrid recordings with drift (#2291) -* Added new fast method for unit/spike/peak localization: `grid_convolution` (#2172) - - -core: - -* Add `Templates` class (#1982) -* Use python methods instead of parsing and eleminate try-except in to_dict -(#2157) -* `WaveformExtractor.is_extension` --> `has_extension` (#2158) -* Speed improvement to `get_empty_units()` (#2173) -* Allow precomputing spike trains (#2175) -* Add 'percentile' to template modes and `plot_unit_templates` (#2179) -* Add `rename_units` method in sorting (#2207) -* Add an option for count_num_spikes_per_unit (#2209) -* Remove joblib in favor of `ParallelProcessExecutor` (#2218) -* Fixed a bug when caching recording noise levels (#2220) -* Various fixes for Windows (#2221) -* Fix num_samples in concatenation (#2223) -* Disable writing templates modes npy in read-only mode (#2251) -* Assert renamed_channels/unit_ids is unique (#2252) -* Implement save_to_zarr for BaseSorting (#2254) -* Improve the BaseExtractor.to_dict() relative_to machanism to make it safer on Windows (#2279) -* Make sure sampling frequency is always float (#2283) -* `NumpySorting.from_peaks`: make `unit_ids` mandatory (#2315) -* Make chunksize in `get_random_data_chunks` throw warning and clip if under limit (#2321) -* ids can be a tuple in `ids_to_indices` (#2324) -* `get_num_frames` to return a python int (#2326) -* Add an auto adjustment if n_jobs too high on Windows (#2329) -* Cache spike_vector from parent (#2353) -* Refactor recording tools (#2363) -* Add rename_channels method to recording extractors (#2364) -* Create `SharedmemRecording` (#2365) -* `WaveformExtractor.select_units` also functional if `we.has_recording()=False` (#2368) -* Add zarrrecordingextractor.py for backward compatibility (#2377, #2395, #2451) -* Improve `ZarrSortingExtractor` (#2403) -* Improvement to compute sparsity without `WaveformsExtractor` (#2410) -* Zarr backcompatibility: map `root_path` to `folder_path` (#2451) -* Fix spikes generation on borders (#2453) -* Zarr IO for `Templates` object (#2423) -* Avoid double parsing in Plexon (#2459) - -extractors: - -* Add .stream.cbin compatibility to `CompressedBinaryIblExtractor` (#2297) -* Add stream_folders path to `OpenEphysBinaryRecordingExtractor` (#2369) -* Deprecate `ignore_timestamps_errors` in `OpenEphysLegacyRecordingExtractor` (#2450) -* Better auto-guess of open-ephys format (#2465) -* Several improvements to NWB extractors: - * Add option for no caching option to the NWB extractor when streaming (#2246, #2248, #2268) - * Fix `NwbSortingExtractor` reading of ragged arrays (#2255) - * Add nwb sorting `remfile` support (#2275) - * Avoid loading `channel_name` property in `NwbRecordingExtractor` (#2285) - * Add hdf5 backend support for Nwb extractors (#2294, #2297, #2341) - * Refactor `NwbSortingSegment` (#2313) - * Add `t_start` argument to NwbSortingExtractor (#2333) - * Add support for NWB-Zarr enhancement and zarr streaming (#2441, #2464) - -preprocessing: - -* Fix filtering rounding error (#2189) -* Fix: save a copy of group ids in `CommonReferenceRecording` (#2215) -* Add `outside_channels_location` option in `detect_bad_channels` (#2250) -* Fix overflow problems with CAR (#2362) -* Fix for Silence periods (saving noise levels) (#2375) -* Add `DecimateRecording` (#2385) -* Add `margin_sd` argument to gaussian filtering (#2389) -* Faster Gaussian filter implementation preprocessing (#2420) -* Faster unpickling of ZScoreRecording (#2431) -* Add bit depth compensation to unsigned_to_signed (#2438) -* Renaming: `GaussianBandpassFilter` -> `GaussianFilter` (and option for low/high pass filter) (#2397, #2466) - -sorters: - -* Several updates to SpykingCircus2 (#2205, #2236, #2244, #2276) -* Handling segments in SpykingCircus2 and Tridesclous2 (#2208) -* A couple updates to `mountainsort5` sorter (#2225) -* `run_sorter` in containers: dump to json or pickle (#2271) -* `run_sorter` in containers: add several options for installing spikeinterface (#2273) -* Close `ShellScript` and pipes process at deletion (#2292, #2338) -* Remove deprecated direct function to `run_sorter` (e.g., `run_kilosort2` -> `run_sorter('kilosort2')` (#2355) -* Expose `lam` and `momentum` params in the appropriate kilosorts (#2358) -* Tridesclous2 update (#2267) - -postprocessing: - -* Use sampling_frequency instead of get_sampling_frequency in _make_bins (#2284) -* Multi-channel template metrics fix (#2323) -* Fix bug in get_repolarization_slope with wrong index type (#2432) -* Estimation of depth for `grid_convolution` localization (#2172) - - -qualitymetrics: - -* Implemented sd_ratio as quality metric (#2146, #2402) -* Avoid duplicated template and quality metric names (#2210) -* Fix rp_violations when specifying unit_ids (#2247) - -curation: - -* Fix bug in `mergeunits` (#2443) -* Fix sortingview curation and merge units with array properties (#2427) -* Move computation away from __init__ in duplicated spikes (#2446) - -widgets: - -* Sorting summary updates in sortingview (#2318) -* Add a more robust `delta_x` to unit_waveforms (#2287) -* Prevent users from providing a `time_range` after the ending of the segment in `plot_traces` (#2286) -* Fix sortingview checks for NaN if strings (#2243) - -generation: - -* Creation of a TransformSorting object to track modifications and bencharmk (#1999) -* Add a minimum distance in generate_unit_locations (#2147) -* Add Poisson statistics to generate_sorting and optimize memory profile (#2226) -* Fix add_shift_shuffle section in synthesize_random_firings (#2334) -* Machinery for moving templates and generating hybrid recordings with drift (#2291) - -sortingcomponents: - -* Strict inegality for sparsity with radius_um (#2277) by yger was merged on Dec 1, 2023 -* Fix memory leak in lsmr solver and optimize correct_motion (#2263) - -docs: - -* Various improvements to docs (#2168, #2229, #2407) -* Improve `ids_to_indices` docstring (#2301) -* Fix for docstring of `get_traces` (#2320) -* Fix RTD warnings (#2348) -* Improve CMR docstring (#2354) -* Correct warning format in neo base extractors (#2357) -* Typo fix for verbose setting in `Multicomparison` (#2399) - -ci / packaging / tests: - -* Add tests for unique names in channel slice and unit selection (#2258) -* Add from `__future__` import annotations to all files for Python3.8 (#2340, #2468) -* Add pickling test to streamers (#2170) diff --git a/examples/how_to/analyse_neuropixels.py b/examples/how_to/analyse_neuropixels.py index eed05a0ee5..ce5bacdda0 100644 --- a/examples/how_to/analyse_neuropixels.py +++ b/examples/how_to/analyse_neuropixels.py @@ -7,7 +7,7 @@ # extension: .py # format_name: light # format_version: '1.5' -# jupytext_version: 1.14.4 +# jupytext_version: 1.14.6 # kernelspec: # display_name: Python 3 (ipykernel) # language: python @@ -28,7 +28,7 @@ from pathlib import Path # + -base_folder = Path('/mnt/data/sam/DataSpikeSorting/neuropixel_example/') +base_folder = Path('/mnt/data/sam/DataSpikeSorting/howto_si/neuropixel_example/') spikeglx_folder = base_folder / 'Rec_1_10_11_2021_g0' @@ -47,7 +47,7 @@ raw_rec = si.read_spikeglx(spikeglx_folder, stream_name='imec0.ap', load_sync_channel=False) raw_rec -# we automatically have the probe loaded! +# we automaticaly have the probe loaded! raw_rec.get_probe().to_dataframe() fig, ax = plt.subplots(figsize=(15, 10)) @@ -58,7 +58,7 @@ # # Let's do something similar to the IBL destriping chain (See :ref:`ibl_destripe`) to preprocess the data but: # -# * instead of interpolating bad channels, we remove them. +# * instead of interpolating bad channels, we remove then. # * instead of highpass_spatial_filter() we use common_reference() # @@ -78,20 +78,20 @@ # # -# The preprocessing steps can be interactively explored with the ipywidgets interactive plotter +# Interactive explore the preprocess steps could de done with this with the ipywydgets interactive ploter # # ```python # # %matplotlib widget # si.plot_traces({'filter':rec1, 'cmr': rec4}, backend='ipywidgets') # ``` # -# Note that using this ipywidgets make possible to explore different preprocessing chains without saving the entire file to disk. -# Everything is lazy, so you can change the previous cell (parameters, step order, ...) and visualize it immediately. +# Note that using this ipywydgets make possible to explore diffrents preprocessing chain wihtout to save the entire file to disk. +# Everything is lazy, so you can change the previsous cell (parameters, step order, ...) and visualize it immediatly. # # # + -# here we use a static plot using matplotlib backend +# here we use static plot using matplotlib backend fig, axs = plt.subplots(ncols=3, figsize=(20, 10)) si.plot_traces(rec1, backend='matplotlib', clim=(-50, 50), ax=axs[0]) @@ -113,7 +113,7 @@ # # Saving is not necessarily a good choice, as it consumes a lot of disk space and sometimes the writing to disk can be slower than recomputing the preprocessing chain on-the-fly. # -# Here, we decide to save it because Kilosort requires a binary file as input, so the preprocessed recording will need to be saved at some point. +# Here, we decide to do save it because Kilosort requires a binary file as input, so the preprocessed recording will need to be saved at some point. # # Depending on the complexity of the preprocessing chain, this operation can take a while. However, we can make use of the powerful parallelization mechanism of SpikeInterface. @@ -128,7 +128,7 @@ # ## Check spiking activity and drift before spike sorting # -# A good practice before running a spike sorter is to check the "peaks activity" and the presence of drift. +# A good practice before running a spike sorter is to check the "peaks activity" and the presence of drifts. # # SpikeInterface has several tools to: # @@ -142,7 +142,7 @@ # Noise levels can be estimated on the scaled traces or on the raw (`int16`) traces. # -# we can estimate the noise on the scaled traces (microV) or on the raw ones (which in our case are int16). +# we can estimate the noise on the scaled traces (microV) or on the raw one (which is in our case int16). noise_levels_microV = si.get_noise_levels(rec, return_scaled=True) noise_levels_int16 = si.get_noise_levels(rec, return_scaled=False) @@ -153,13 +153,13 @@ # ### Detect and localize peaks # -# SpikeInterface includes built-in algorithms to detect peaks and also to localize their positions. +# SpikeInterface includes built-in algorithms to detect peaks and also to localize their position. # # This is part of the **sortingcomponents** module and needs to be imported explicitly. # # The two functions (detect + localize): # -# * can be run in parallel +# * can be run parallel # * are very fast when the preprocessed recording is already saved (and a bit slower otherwise) # * implement several methods # @@ -179,22 +179,22 @@ peak_locations = localize_peaks(rec, peaks, method='center_of_mass', radius_um=50., **job_kwargs) # - -# ### Check for drift +# ### Check for drifts # -# We can *manually* check for drift with a simple scatter plots of peak times VS estimated peak depths. +# We can *manually* check for drifts with a simple scatter plots of peak times VS estimated peak depths. # # In this example, we do not see any apparent drift. # -# In case we notice apparent drift in the recording, one can use the SpikeInterface modules to estimate and correct motion. See the documentation for motion estimation and correction for more details. +# In case we notice apparent drifts in the recording, one can use the SpikeInterface modules to estimate and correct motion. See the documentation for motion estimation and correction for more details. -# check for drift +# check for drifts fs = rec.sampling_frequency fig, ax = plt.subplots(figsize=(10, 8)) -ax.scatter(peaks['sample_index'] / fs, peak_locations['y'], color='k', marker='.', alpha=0.002) +ax.scatter(peaks['sample_ind'] / fs, peak_locations['y'], color='k', marker='.', alpha=0.002) # + -# we can also use the peak location estimates to have insight of cluster separation before sorting +# we can also use the peak location estimates to have an insight of cluster separation before sorting fig, ax = plt.subplots(figsize=(15, 10)) si.plot_probe_map(rec, ax=ax, with_channel_ids=True) ax.set_ylim(-100, 150) @@ -204,15 +204,15 @@ # ## Run a spike sorter # -# Despite beingthe most critical part of the pipeline, spike sorting in SpikeInterface is dead-simple: one function. +# Even if running spike sorting is probably the most critical part of the pipeline, in SpikeInterface this is dead-simple: one function. # # **Important notes**: # -# * most of sorters are wrapped from external tools (kilosort, kilosort2.5, spykingcircus, mountainsort4 ...) that often also need other requirements (e.g., MATLAB, CUDA) -# * some sorters are internally developed (spykingcircus2) -# * external sorters can be run inside of a container (docker, singularity) WITHOUT pre-installation +# * most of sorters are wrapped from external tools (kilosort, kisolort2.5, spykingcircus, montainsort4 ...) that often also need other requirements (e.g., MATLAB, CUDA) +# * some sorters are internally developed (spyekingcircus2) +# * external sorter can be run inside a container (docker, singularity) WITHOUT pre-installation # -# Please carefully read the `spikeinterface.sorters` documentation for more information. +# Please carwfully read the `spikeinterface.sorters` documentation for more information. # # In this example: # @@ -232,58 +232,84 @@ docker_image=True, verbose=True, **params_kilosort2_5) # - -# the results can be read back for future sessions +# the results can be read back for futur session sorting = si.read_sorter_folder(base_folder / 'kilosort2.5_output') -# here we have 31 units in our recording +# here we have 31 untis in our recording sorting # ## Post processing # -# All postprocessing steps are based on the **WaveformExtractor** object. +# All the postprocessing step is based on the **SortingAnalyzer** object. # -# This object combines a `recording` and a `sorting` object and extracts some waveform snippets (500 by default) for each unit. +# This object combines a `sorting` and a `recording` object. It will also help to run some computation aka "extensions" to +# get an insight on the qulity of units. +# +# The first extentions we will run are: +# * select some spikes per units +# * etxract waveforms +# * compute templates +# * compute noise levels # # Note that we use the `sparse=True` option. This option is important because the waveforms will be extracted only for a few channels around the main channel of each unit. This saves tons of disk space and speeds up the waveforms extraction and further processing. # +# Note that our object is not persistent to disk because we use `format="memory"` we could use `format="binary_folder"` or `format="zarr"`. -we = si.extract_waveforms(rec, sorting, folder=base_folder / 'waveforms_kilosort2.5', - sparse=True, max_spikes_per_unit=500, ms_before=1.5,ms_after=2., - **job_kwargs) +# + -# the `WaveformExtractor` contains all information and is persistent on disk -print(we) -print(we.folder) +analyzer = si.create_sorting_analyzer(sorting, rec, sparse=True, format="memory") +analyzer +# - -# the `WaveformExtrator` can be easily loaded back from its folder -we = si.load_waveforms(base_folder / 'waveforms_kilosort2.5') -we +analyzer.compute("random_spikes", method="uniform", max_spikes_per_unit=500) +analyzer.compute("waveforms", ms_before=1.5,ms_after=2., **job_kwargs) +analyzer.compute("templates", operators=["average", "median", "std"]) +analyzer.compute("noise_levels") +analyzer -# Many additional computations rely on the `WaveformExtractor`. +# Many additional computations rely on the `SortingAnalyzer`. # Some computations are slower than others, but can be performed in parallel using the `**job_kwargs` mechanism. # -# Every computation will also be persistent on disk in the same folder, since they represent waveform extensions. +# -_ = si.compute_noise_levels(we) -_ = si.compute_correlograms(we) -_ = si.compute_unit_locations(we) -_ = si.compute_spike_amplitudes(we, **job_kwargs) -_ = si.compute_template_similarity(we) +analyzer.compute("correlograms") +analyzer.compute("unit_locations") +analyzer.compute("spike_amplitudes", **job_kwargs) +analyzer.compute("template_similarity") +analyzer +# Our `SortingAnalyzer` can be saved to disk using `save_as()` which make a copy of the analyzer and all computed extensions. + +analyzer_saved = analyzer.save_as(folder=base_folder / "analyzer", format="binary_folder") +analyzer_saved + # ## Quality metrics # -# We have a single function `compute_quality_metrics(WaveformExtractor)` that returns a `pandas.Dataframe` with the desired metrics. +# We have a single function `compute_quality_metrics(SortingAnalyzer)` that returns a `pandas.Dataframe` with the desired metrics. +# +# Note that this function is also an extension and so can be saved. And so this is equivalent to do : +# `metrics = analyzer.compute("quality_metrics").get_data()` +# # # Please visit the [metrics documentation](https://spikeinterface.readthedocs.io/en/latest/modules/qualitymetrics.html) for more information and a list of all supported metrics. # -# Some metrics are based on PCA (like `'isolation_distance', 'l_ratio', 'd_prime'`) and require PCA values for their computation. This can be achieved with: +# Some metrics are based on PCA (like `'isolation_distance', 'l_ratio', 'd_prime'`) and require to estimate PCA for their computation. This can be achieved with: # -# `si.compute_principal_components(waveform_extractor)` +# `analyzer.compute("principal_components")` +# +# + +# + +metric_names=['firing_rate', 'presence_ratio', 'snr', 'isi_violation', 'amplitude_cutoff'] + + +# metrics = analyzer.compute("quality_metrics").get_data() +# equivalent to +metrics = si.compute_quality_metrics(analyzer, metric_names=metric_names) -metrics = si.compute_quality_metrics(we, metric_names=['firing_rate', 'presence_ratio', 'snr', - 'isi_violation', 'amplitude_cutoff']) metrics +# - # ## Curation using metrics # @@ -304,22 +330,22 @@ # ## Export final results to disk folder and visulize with sortingview # -# In order to export the final results we need to make a copy of the the waveforms, but only for the selected units (so we can avoid computing them again). +# In order to export the final results we need to make a copy of the the waveforms, but only for the selected units (so we can avoid to compute them again). -we_clean = we.select_units(keep_unit_ids, new_folder=base_folder / 'waveforms_clean') +analyzer_clean = analyzer.select_units(keep_unit_ids, folder=base_folder / 'analyzer_clean', format='binary_folder') -we_clean +analyzer_clean # Then we export figures to a report folder # export spike sorting report to a folder -si.export_report(we_clean, base_folder / 'report', format='png') +si.export_report(analyzer_clean, base_folder / 'report', format='png') -we_clean = si.load_waveforms(base_folder / 'waveforms_clean') -we_clean +analyzer_clean = si.load_sorting_analyzer(base_folder / 'analyzer_clean') +analyzer_clean # And push the results to sortingview webased viewer # # ```python -# si.plot_sorting_summary(we_clean, backend='sortingview') +# si.plot_sorting_summary(analyzer_clean, backend='sortingview') # ``` diff --git a/examples/how_to/get_started.py b/examples/how_to/get_started.py index 329a2b32b0..556153fce5 100644 --- a/examples/how_to/get_started.py +++ b/examples/how_to/get_started.py @@ -79,7 +79,7 @@ # Then we can open it. Note that [MEArec](https://mearec.readthedocs.io>) simulated file # contains both a "recording" and a "sorting" object. -local_path = si.download_dataset(remote_path='mearec/mearec_test_10s.h5') +local_path = si.download_dataset(remote_path="mearec/mearec_test_10s.h5") recording, sorting_true = se.read_mearec(local_path) print(recording) print(sorting_true) @@ -103,10 +103,10 @@ num_chan = recording.get_num_channels() num_seg = recording.get_num_segments() -print('Channel ids:', channel_ids) -print('Sampling frequency:', fs) -print('Number of channels:', num_chan) -print('Number of segments:', num_seg) +print("Channel ids:", channel_ids) +print("Sampling frequency:", fs) +print("Number of channels:", num_chan) +print("Number of segments:", num_seg) # - # ...and from a `BaseSorting` @@ -116,9 +116,9 @@ unit_ids = sorting_true.get_unit_ids() spike_train = sorting_true.get_unit_spike_train(unit_id=unit_ids[0]) -print('Number of segments:', num_seg) -print('Unit ids:', unit_ids) -print('Spike train of first unit:', spike_train) +print("Number of segments:", num_seg) +print("Unit ids:", unit_ids) +print("Spike train of first unit:", spike_train) # - # SpikeInterface internally uses the [`ProbeInterface`](https://probeinterface.readthedocs.io/en/main/) to handle `probeinterface.Probe` and @@ -144,19 +144,19 @@ recording_cmr = recording recording_f = si.bandpass_filter(recording, freq_min=300, freq_max=6000) print(recording_f) -recording_cmr = si.common_reference(recording_f, reference='global', operator='median') +recording_cmr = si.common_reference(recording_f, reference="global", operator="median") print(recording_cmr) # this computes and saves the recording after applying the preprocessing chain -recording_preprocessed = recording_cmr.save(format='binary') +recording_preprocessed = recording_cmr.save(format="binary") print(recording_preprocessed) # - # Now you are ready to spike sort using the `spikeinterface.sorters` module! # Let's first check which sorters are implemented and which are installed -print('Available sorters', ss.available_sorters()) -print('Installed sorters', ss.installed_sorters()) +print("Available sorters", ss.available_sorters()) +print("Installed sorters", ss.installed_sorters()) # The `ss.installed_sorters()` will list the sorters installed on the machine. # We can see we have HerdingSpikes and Tridesclous installed. @@ -164,9 +164,9 @@ # The available parameters are dictionaries and can be accessed with: print("Tridesclous params:") -pprint(ss.get_default_sorter_params('tridesclous')) +pprint(ss.get_default_sorter_params("tridesclous")) print("SpykingCircus2 params:") -pprint(ss.get_default_sorter_params('spykingcircus2')) +pprint(ss.get_default_sorter_params("spykingcircus2")) # Let's run `tridesclous` and change one of the parameters, say, the `detect_threshold`: @@ -176,12 +176,13 @@ # Alternatively we can pass a full dictionary containing the parameters: # + -other_params = ss.get_default_sorter_params('tridesclous') -other_params['detect_threshold'] = 6 +other_params = ss.get_default_sorter_params("tridesclous") +other_params["detect_threshold"] = 6 # parameters set by params dictionary -sorting_TDC_2 = ss.run_sorter(sorter_name="tridesclous", recording=recording_preprocessed, - output_folder="tdc_output2", **other_params) +sorting_TDC_2 = ss.run_sorter( + sorter_name="tridesclous", recording=recording_preprocessed, output_folder="tdc_output2", **other_params +) print(sorting_TDC_2) # - @@ -192,13 +193,12 @@ # The `sorting_TDC` and `sorting_SC2` are `BaseSorting` objects. We can print the units found using: -print('Units found by tridesclous:', sorting_TDC.get_unit_ids()) -print('Units found by spyking-circus2:', sorting_SC2.get_unit_ids()) +print("Units found by tridesclous:", sorting_TDC.get_unit_ids()) +print("Units found by spyking-circus2:", sorting_SC2.get_unit_ids()) # If a sorter is not installed locally, we can also avoid installing it and run it anyways, using a container (Docker or Singularity). For example, let's run `Kilosort2` using Docker: -sorting_KS2 = ss.run_sorter(sorter_name="kilosort2", recording=recording_preprocessed, - docker_image=True, verbose=True) +sorting_KS2 = ss.run_sorter(sorter_name="kilosort2", recording=recording_preprocessed, docker_image=True, verbose=True) print(sorting_KS2) # SpikeInterface provides a efficient way to extract waveforms from paired recording/sorting objects. @@ -206,7 +206,7 @@ # for each unit, extracts their waveforms, and stores them to disk. These waveforms are helpful to compute the average waveform, or "template", for each unit and then to compute, for example, quality metrics. # + -we_TDC = si.extract_waveforms(recording_preprocessed, sorting_TDC, 'waveforms_folder', overwrite=True) +we_TDC = si.extract_waveforms(recording_preprocessed, sorting_TDC, "waveforms_folder", overwrite=True) print(we_TDC) unit_id0 = sorting_TDC.unit_ids[0] @@ -236,7 +236,7 @@ # Importantly, waveform extractors (and all extensions) can be reloaded at later times: -we_loaded = si.load_waveforms('waveforms_folder') +we_loaded = si.load_waveforms("waveforms_folder") print(we_loaded.get_available_extension_names()) # Once we have computed all of the postprocessing information, we can compute quality metrics (different quality metrics require different extensions - e.g., drift metrics require `spike_locations`): @@ -277,21 +277,21 @@ # Alternatively, we can export the data locally to Phy. [Phy]() is a GUI for manual # curation of the spike sorting output. To export to phy you can run: -sexp.export_to_phy(we_TDC, 'phy_folder_for_TDC', verbose=True) +sexp.export_to_phy(we_TDC, "phy_folder_for_TDC", verbose=True) # Then you can run the template-gui with: `phy template-gui phy_folder_for_TDC/params.py` # and manually curate the results. # After curating with Phy, the curated sorting can be reloaded to SpikeInterface. In this case, we exclude the units that have been labeled as "noise": -sorting_curated_phy = se.read_phy('phy_folder_for_TDC', exclude_cluster_groups=["noise"]) +sorting_curated_phy = se.read_phy("phy_folder_for_TDC", exclude_cluster_groups=["noise"]) # Quality metrics can be also used to automatically curate the spike sorting # output. For example, you can select sorted units with a SNR above a # certain threshold: # + -keep_mask = (qm['snr'] > 10) & (qm['isi_violations_ratio'] < 0.01) +keep_mask = (qm["snr"] > 10) & (qm["isi_violations_ratio"] < 0.01) print("Mask:", keep_mask.values) sorting_curated_auto = sorting_TDC.select_units(sorting_TDC.unit_ids[keep_mask]) @@ -310,8 +310,9 @@ comp_gt = sc.compare_sorter_to_ground_truth(gt_sorting=sorting_true, tested_sorting=sorting_TDC) comp_pair = sc.compare_two_sorters(sorting1=sorting_TDC, sorting2=sorting_SC2) -comp_multi = sc.compare_multiple_sorters(sorting_list=[sorting_TDC, sorting_SC2, sorting_KS2], - name_list=['tdc', 'sc2', 'ks2']) +comp_multi = sc.compare_multiple_sorters( + sorting_list=[sorting_TDC, sorting_SC2, sorting_KS2], name_list=["tdc", "sc2", "ks2"] +) # When comparing with a ground-truth sorting (1,), you can get the sorting performance and plot a confusion # matrix @@ -335,7 +336,7 @@ # + sorting_agreement = comp_multi.get_agreement_sorting(minimum_agreement_count=2) -print('Units in agreement between TDC, SC2, and KS2:', sorting_agreement.get_unit_ids()) +print("Units in agreement between TDC, SC2, and KS2:", sorting_agreement.get_unit_ids()) w_multi = sw.plot_multicomparison_agreement(comp_multi) w_multi = sw.plot_multicomparison_agreement_by_sorter(comp_multi) diff --git a/examples/how_to/handle_drift.py b/examples/how_to/handle_drift.py index a1671a7424..79a7c899f5 100644 --- a/examples/how_to/handle_drift.py +++ b/examples/how_to/handle_drift.py @@ -54,10 +54,11 @@ import shutil import spikeinterface.full as si + # - -base_folder = Path('/mnt/data/sam/DataSpikeSorting/imposed_motion_nick') -dataset_folder = base_folder / 'dataset1/NP1' +base_folder = Path("/mnt/data/sam/DataSpikeSorting/imposed_motion_nick") +dataset_folder = base_folder / "dataset1/NP1" # read the file raw_rec = si.read_spikeglx(dataset_folder) @@ -67,13 +68,16 @@ # We preprocess the recording with bandpass filter and a common median reference. # Note, that it is better to not whiten the recording before motion estimation to get a better estimate of peak locations! + def preprocess_chain(rec): - rec = si.bandpass_filter(rec, freq_min=300., freq_max=6000.) - rec = si.common_reference(rec, reference='global', operator='median') + rec = si.bandpass_filter(rec, freq_min=300.0, freq_max=6000.0) + rec = si.common_reference(rec, reference="global", operator="median") return rec + + rec = preprocess_chain(raw_rec) -job_kwargs = dict(n_jobs=40, chunk_duration='1s', progress_bar=True) +job_kwargs = dict(n_jobs=40, chunk_duration="1s", progress_bar=True) # ### Run motion correction with one function! # @@ -87,21 +91,22 @@ def preprocess_chain(rec): # internally, we can explore a preset like this # every parameter can be overwritten at runtime from spikeinterface.preprocessing.motion import motion_options_preset -motion_options_preset['kilosort_like'] + +motion_options_preset["kilosort_like"] # lets try theses 3 presets -some_presets = ('rigid_fast', 'kilosort_like', 'nonrigid_accurate') +some_presets = ("rigid_fast", "kilosort_like", "nonrigid_accurate") # some_presets = ('kilosort_like', ) # compute motion with 3 presets for preset in some_presets: - print('Computing with', preset) - folder = base_folder / 'motion_folder_dataset1' / preset + print("Computing with", preset) + folder = base_folder / "motion_folder_dataset1" / preset if folder.exists(): shutil.rmtree(folder) - recording_corrected, motion_info = si.correct_motion(rec, preset=preset, - folder=folder, - output_motion_info=True, **job_kwargs) + recording_corrected, motion_info = si.correct_motion( + rec, preset=preset, folder=folder, output_motion_info=True, **job_kwargs + ) # ### Plot the results # @@ -130,13 +135,19 @@ def preprocess_chain(rec): for preset in some_presets: # load - folder = base_folder / 'motion_folder_dataset1' / preset + folder = base_folder / "motion_folder_dataset1" / preset motion_info = si.load_motion_info(folder) # and plot fig = plt.figure(figsize=(14, 8)) - si.plot_motion(motion_info, figure=fig, depth_lim=(400, 600), - color_amplitude=True, amplitude_cmap='inferno', scatter_decimate=10) + si.plot_motion( + motion_info, + figure=fig, + depth_lim=(400, 600), + color_amplitude=True, + amplitude_cmap="inferno", + scatter_decimate=10, + ) fig.suptitle(f"{preset=}") @@ -159,7 +170,7 @@ def preprocess_chain(rec): from spikeinterface.sortingcomponents.motion_interpolation import correct_motion_on_peaks for preset in some_presets: - folder = base_folder / 'motion_folder_dataset1' / preset + folder = base_folder / "motion_folder_dataset1" / preset motion_info = si.load_motion_info(folder) fig, axs = plt.subplots(ncols=2, figsize=(12, 8), sharey=True) @@ -167,29 +178,36 @@ def preprocess_chain(rec): ax = axs[0] si.plot_probe_map(rec, ax=ax) - peaks = motion_info['peaks'] + peaks = motion_info["peaks"] sr = rec.get_sampling_frequency() - time_lim0 = 750. - time_lim1 = 1500. - mask = (peaks['sample_index'] > int(sr * time_lim0)) & (peaks['sample_index'] < int(sr * time_lim1)) + time_lim0 = 750.0 + time_lim1 = 1500.0 + mask = (peaks["sample_index"] > int(sr * time_lim0)) & (peaks["sample_index"] < int(sr * time_lim1)) sl = slice(None, None, 5) - amps = np.abs(peaks['amplitude'][mask][sl]) + amps = np.abs(peaks["amplitude"][mask][sl]) amps /= np.quantile(amps, 0.95) - c = plt.get_cmap('inferno')(amps) + c = plt.get_cmap("inferno")(amps) color_kargs = dict(alpha=0.2, s=2, c=c) - loc = motion_info['peak_locations'] - #color='black', - ax.scatter(loc['x'][mask][sl], loc['y'][mask][sl], **color_kargs) + loc = motion_info["peak_locations"] + # color='black', + ax.scatter(loc["x"][mask][sl], loc["y"][mask][sl], **color_kargs) - loc2 = correct_motion_on_peaks(motion_info['peaks'], motion_info['peak_locations'], rec.sampling_frequency, - motion_info['motion'], motion_info['temporal_bins'], motion_info['spatial_bins'], direction="y") + loc2 = correct_motion_on_peaks( + motion_info["peaks"], + motion_info["peak_locations"], + rec.sampling_frequency, + motion_info["motion"], + motion_info["temporal_bins"], + motion_info["spatial_bins"], + direction="y", + ) ax = axs[1] si.plot_probe_map(rec, ax=ax) # color='black', - ax.scatter(loc2['x'][mask][sl], loc2['y'][mask][sl], **color_kargs) + ax.scatter(loc2["x"][mask][sl], loc2["y"][mask][sl], **color_kargs) ax.set_ylim(400, 600) fig.suptitle(f"{preset=}") @@ -204,16 +222,16 @@ def preprocess_chain(rec): # + run_times = [] for preset in some_presets: - folder = base_folder / 'motion_folder_dataset1' / preset + folder = base_folder / "motion_folder_dataset1" / preset motion_info = si.load_motion_info(folder) - run_times.append(motion_info['run_times']) + run_times.append(motion_info["run_times"]) keys = run_times[0].keys() bottom = np.zeros(len(run_times)) fig, ax = plt.subplots() for k in keys: rtimes = np.array([rt[k] for rt in run_times]) - if np.any(rtimes>0.): + if np.any(rtimes > 0.0): ax.bar(some_presets, rtimes, bottom=bottom, label=k) bottom += rtimes ax.legend() diff --git a/examples/modules_gallery/comparison/generate_erroneous_sorting.py b/examples/modules_gallery/comparison/generate_erroneous_sorting.py index d62a15bdc0..608e23d7f5 100644 --- a/examples/modules_gallery/comparison/generate_erroneous_sorting.py +++ b/examples/modules_gallery/comparison/generate_erroneous_sorting.py @@ -11,6 +11,7 @@ import spikeinterface.comparison as sc import spikeinterface.widgets as sw + def generate_erroneous_sorting(): """ Generate an erroneous spike sorting for illustration purposes. @@ -36,14 +37,13 @@ def generate_erroneous_sorting(): rec, sorting_true = se.toy_example(num_channels=4, num_units=10, duration=10, seed=10, num_segments=1) # artificially remap to one based - sorting_true = sorting_true.select_units(unit_ids=None, - renamed_unit_ids=np.arange(10, dtype='int64')+1) + sorting_true = sorting_true.select_units(unit_ids=None, renamed_unit_ids=np.arange(10, dtype="int64") + 1) sampling_frequency = sorting_true.get_sampling_frequency() units_err = {} - # sorting_true have 10 units + # sorting_true have 10 units np.random.seed(0) # unit 1 2 are perfect @@ -52,16 +52,16 @@ def generate_erroneous_sorting(): units_err[u] = st # unit 3 4 (medium) 10 (low) have medium to low agreement - for u, score in [(3, 0.8), (4, 0.75), (10, 0.3)]: + for u, score in [(3, 0.8), (4, 0.75), (10, 0.3)]: st = sorting_true.get_unit_spike_train(u) - st = np.sort(np.random.choice(st, size=int(st.size*score), replace=False)) + st = np.sort(np.random.choice(st, size=int(st.size * score), replace=False)) units_err[u] = st # unit 5 6 are over merge st5 = sorting_true.get_unit_spike_train(5) st6 = sorting_true.get_unit_spike_train(6) st = np.unique(np.concatenate([st5, st6])) - st = np.sort(np.random.choice(st, size=int(st.size*0.7), replace=False)) + st = np.sort(np.random.choice(st, size=int(st.size * 0.7), replace=False)) units_err[56] = st # unit 7 is over split in 2 part @@ -69,14 +69,14 @@ def generate_erroneous_sorting(): st70 = st7[::2] units_err[70] = st70 st71 = st7[1::2] - st71 = np.sort(np.random.choice(st71, size=int(st71.size*0.9), replace=False)) + st71 = np.sort(np.random.choice(st71, size=int(st71.size * 0.9), replace=False)) units_err[71] = st71 # unit 8 is redundant 3 times st8 = sorting_true.get_unit_spike_train(8) - st80 = np.sort(np.random.choice(st8, size=int(st8.size*0.65), replace=False)) - st81 = np.sort(np.random.choice(st8, size=int(st8.size*0.6), replace=False)) - st82 = np.sort(np.random.choice(st8, size=int(st8.size*0.55), replace=False)) + st80 = np.sort(np.random.choice(st8, size=int(st8.size * 0.65), replace=False)) + st81 = np.sort(np.random.choice(st8, size=int(st8.size * 0.6), replace=False)) + st82 = np.sort(np.random.choice(st8, size=int(st8.size * 0.55), replace=False)) units_err[80] = st80 units_err[81] = st81 units_err[82] = st82 @@ -85,18 +85,15 @@ def generate_erroneous_sorting(): # there are some units that do not exist 15 16 and 17 nframes = rec.get_num_frames(segment_index=0) - for u in [15,16,17]: + for u in [15, 16, 17]: st = np.sort(np.random.randint(0, high=nframes, size=35)) units_err[u] = st sorting_err = se.NumpySorting.from_unit_dict(units_err, sampling_frequency) - return sorting_true, sorting_err - - -if __name__ == '__main__': +if __name__ == "__main__": # just for check sorting_true, sorting_err = generate_erroneous_sorting() comp = sc.compare_sorter_to_ground_truth(sorting_true, sorting_err, exhaustive_gt=True) diff --git a/examples/modules_gallery/comparison/plot_5_comparison_sorter_weaknesses.py b/examples/modules_gallery/comparison/plot_5_comparison_sorter_weaknesses.py index c32c683941..562b174a31 100644 --- a/examples/modules_gallery/comparison/plot_5_comparison_sorter_weaknesses.py +++ b/examples/modules_gallery/comparison/plot_5_comparison_sorter_weaknesses.py @@ -31,7 +31,6 @@ """ - ############################################################################## # Import @@ -55,36 +54,36 @@ ############################################################################## # Here the same matrix but **ordered** -# It is now quite trivial to check that fake injected errors are enlighted here. +# It is now quite trivial to check that fake injected errors are enlighted here. sw.plot_agreement_matrix(comp, ordered=True) ############################################################################## # Here we can see that only Units 1 2 and 3 are well detected with 'accuracy'>0.75 -print('well_detected', comp.get_well_detected_units(well_detected_score=0.75)) +print("well_detected", comp.get_well_detected_units(well_detected_score=0.75)) ############################################################################## # Here we can explore **"false positive units"** units that do not exists in ground truth -print('false_positive', comp.get_false_positive_units(redundant_score=0.2)) +print("false_positive", comp.get_false_positive_units(redundant_score=0.2)) ############################################################################## # Here we can explore **"redundant units"** units that do not exists in ground truth -print('redundant', comp.get_redundant_units(redundant_score=0.2)) +print("redundant", comp.get_redundant_units(redundant_score=0.2)) ############################################################################## # Here we can explore **"overmerged units"** units that do not exists in ground truth -print('overmerged', comp.get_overmerged_units(overmerged_score=0.2)) +print("overmerged", comp.get_overmerged_units(overmerged_score=0.2)) ############################################################################## # Here we can explore **"bad units"** units that a mixed a several possible errors. -print('bad', comp.get_bad_units()) +print("bad", comp.get_bad_units()) ############################################################################## @@ -93,5 +92,4 @@ comp.print_summary(well_detected_score=0.75, redundant_score=0.2, overmerged_score=0.2) - plt.show() diff --git a/examples/modules_gallery/core/plot_1_recording_extractor.py b/examples/modules_gallery/core/plot_1_recording_extractor.py index f5d3ee1db2..aa59abd76d 100644 --- a/examples/modules_gallery/core/plot_1_recording_extractor.py +++ b/examples/modules_gallery/core/plot_1_recording_extractor.py @@ -1,4 +1,4 @@ -''' +""" Recording objects ================= @@ -12,7 +12,8 @@ * saving (caching) -''' +""" + import matplotlib.pyplot as plt import numpy as np @@ -25,8 +26,8 @@ # Let's define the properties of the dataset: num_channels = 7 -sampling_frequency = 30000. # in Hz -durations = [10., 15.] # in s for 2 segments +sampling_frequency = 30000.0 # in Hz +durations = [10.0, 15.0] # in s for 2 segments num_segments = 2 num_timepoints = [int(sampling_frequency * d) for d in durations] @@ -47,11 +48,11 @@ ############################################################################## # We can now print properties that the :code:`RecordingExtractor` retrieves from the underlying recording. -print(f'Number of channels = {recording.get_channel_ids()}') -print(f'Sampling frequency = {recording.get_sampling_frequency()} Hz') -print(f'Number of segments= {recording.get_num_segments()}') -print(f'Number of timepoints in seg0= {recording.get_num_frames(segment_index=0)}') -print(f'Number of timepoints in seg1= {recording.get_num_frames(segment_index=1)}') +print(f"Number of channels = {recording.get_channel_ids()}") +print(f"Sampling frequency = {recording.get_sampling_frequency()} Hz") +print(f"Number of segments= {recording.get_num_segments()}") +print(f"Number of timepoints in seg0= {recording.get_num_frames(segment_index=0)}") +print(f"Number of timepoints in seg1= {recording.get_num_frames(segment_index=1)}") ############################################################################## # The geometry of the Probe is handled with the :probeinterface:`ProbeInterface <>` library. @@ -62,7 +63,7 @@ from probeinterface import generate_linear_probe from probeinterface.plotting import plot_probe -probe = generate_linear_probe(num_elec=7, ypitch=20, contact_shapes='circle', contact_shape_params={'radius': 6}) +probe = generate_linear_probe(num_elec=7, ypitch=20, contact_shapes="circle", contact_shape_params={"radius": 6}) # the probe has to be wired to the recording device (i.e., which electrode corresponds to an entry in the data # matrix) @@ -75,7 +76,7 @@ ############################################################################## # Some extractors also implement a :code:`write` function. -file_paths = ['traces0.raw', 'traces1.raw'] +file_paths = ["traces0.raw", "traces1.raw"] se.BinaryRecordingExtractor.write_recording(recording, file_paths) ############################################################################## @@ -83,7 +84,9 @@ # Note that this new recording is now "on disk" and not "in memory" as the Numpy recording was. # This means that the loading is "lazy" and the data are not loaded into memory. -recording2 = se.BinaryRecordingExtractor(file_paths=file_paths, sampling_frequency=sampling_frequency, num_channels=num_channels, dtype=traces0.dtype) +recording2 = se.BinaryRecordingExtractor( + file_paths=file_paths, sampling_frequency=sampling_frequency, num_channels=num_channels, dtype=traces0.dtype +) print(recording2) ############################################################################## @@ -100,38 +103,40 @@ # Internally, a recording has :code:`channel_ids`: that are a vector that can have a # dtype of :code:`int` or :code:`str`: -print('chan_ids (dtype=int):', recording.get_channel_ids()) +print("chan_ids (dtype=int):", recording.get_channel_ids()) -recording3 = se.NumpyRecording(traces_list=[traces0, traces1], - sampling_frequency=sampling_frequency, - channel_ids=['a', 'b', 'c', 'd', 'e', 'f', 'g']) -print('chan_ids (dtype=str):', recording3.get_channel_ids()) +recording3 = se.NumpyRecording( + traces_list=[traces0, traces1], + sampling_frequency=sampling_frequency, + channel_ids=["a", "b", "c", "d", "e", "f", "g"], +) +print("chan_ids (dtype=str):", recording3.get_channel_ids()) ############################################################################## # :code:`channel_ids` are used to retrieve information (e.g. traces) only on a # subset of channels: -traces = recording3.get_traces(segment_index=1, end_frame=50, channel_ids=['a', 'd']) +traces = recording3.get_traces(segment_index=1, end_frame=50, channel_ids=["a", "d"]) print(traces.shape) ############################################################################## # You can also get a recording with a subset of channels (i.e. a channel slice): -recording4 = recording3.channel_slice(channel_ids=['a', 'c', 'e']) +recording4 = recording3.channel_slice(channel_ids=["a", "c", "e"]) print(recording4) print(recording4.get_channel_ids()) # which is equivalent to from spikeinterface import ChannelSliceRecording -recording4 = ChannelSliceRecording(recording3, channel_ids=['a', 'c', 'e']) +recording4 = ChannelSliceRecording(recording3, channel_ids=["a", "c", "e"]) ############################################################################## # Another possibility is to split a recording based on a certain property (e.g. 'group') -recording3.set_property('group', [0, 0, 0, 1, 1, 1, 2]) +recording3.set_property("group", [0, 0, 0, 1, 1, 1, 2]) -recordings = recording3.split_by(property='group') +recordings = recording3.split_by(property="group") print(recordings) print(recordings[0].get_channel_ids()) print(recordings[1].get_channel_ids()) @@ -158,9 +163,9 @@ ############################################################################### # The dictionary can also be dumped directly to a JSON file on disk: -recording2.dump('my_recording.json') +recording2.dump("my_recording.json") -recording2_loaded = load_extractor('my_recording.json') +recording2_loaded = load_extractor("my_recording.json") print(recording2_loaded) ############################################################################### @@ -170,11 +175,11 @@ # :code:`save()` function. This operation is very useful to save traces obtained # after long computations (e.g. filtering or referencing): -recording2.save(folder='./my_recording') +recording2.save(folder="./my_recording") import os -pprint(os.listdir('./my_recording')) +pprint(os.listdir("./my_recording")) -recording2_cached = load_extractor('my_recording.json') +recording2_cached = load_extractor("my_recording.json") print(recording2_cached) diff --git a/examples/modules_gallery/core/plot_2_sorting_extractor.py b/examples/modules_gallery/core/plot_2_sorting_extractor.py index 59acf82712..b572218ed8 100644 --- a/examples/modules_gallery/core/plot_2_sorting_extractor.py +++ b/examples/modules_gallery/core/plot_2_sorting_extractor.py @@ -1,4 +1,4 @@ -''' +""" Sorting objects =============== @@ -11,7 +11,7 @@ * dumping to/loading from dict-json * saving (caching) -''' +""" import numpy as np import spikeinterface.extractors as se @@ -22,8 +22,8 @@ # # Let's define the properties of the dataset: -sampling_frequency = 30000. -duration = 20. +sampling_frequency = 30000.0 +duration = 20.0 num_timepoints = int(sampling_frequency * duration) num_units = 4 num_spikes = 1000 @@ -47,18 +47,18 @@ # We can now print properties that the :code:`SortingExtractor` retrieves from # the underlying sorted dataset. -print('Unit ids = {}'.format(sorting.get_unit_ids())) +print("Unit ids = {}".format(sorting.get_unit_ids())) st = sorting.get_unit_spike_train(unit_id=1, segment_index=0) -print('Num. events for unit 1seg0 = {}'.format(len(st))) +print("Num. events for unit 1seg0 = {}".format(len(st))) st1 = sorting.get_unit_spike_train(unit_id=1, start_frame=0, end_frame=30000, segment_index=1) -print('Num. events for first second of unit 1 seg1 = {}'.format(len(st1))) +print("Num. events for first second of unit 1 seg1 = {}".format(len(st1))) ############################################################################## # Some extractors also implement a :code:`write` function. We can for example # save our newly created sorting object to NPZ format (a simple format based # on numpy used in :code:`spikeinterface`): -file_path = 'my_sorting.npz' +file_path = "my_sorting.npz" se.NpzSortingExtractor.write_sorting(sorting, file_path) ############################################################################## @@ -76,9 +76,9 @@ for unit_id in sorting2.get_unit_ids(): st = sorting2.get_unit_spike_train(unit_id=unit_id, segment_index=0) firing_rates.append(st.size / duration) -sorting2.set_property('firing_rate', firing_rates) +sorting2.set_property("firing_rate", firing_rates) -print(sorting2.get_property('firing_rate')) +print(sorting2.get_property("firing_rate")) ############################################################################## # You can also get a a sorting with a subset of unit. Properties are @@ -87,7 +87,7 @@ sorting3 = sorting2.select_units(unit_ids=[1, 4]) print(sorting3) -print(sorting3.get_property('firing_rate')) +print(sorting3.get_property("firing_rate")) # which is equivalent to from spikeinterface import UnitsSelectionSorting @@ -115,9 +115,9 @@ ############################################################################### # The dictionary can also be dumped directly to a JSON file on disk: -sorting2.dump('my_sorting.json') +sorting2.dump("my_sorting.json") -sorting2_loaded = load_extractor('my_sorting.json') +sorting2_loaded = load_extractor("my_sorting.json") print(sorting2_loaded) ############################################################################### @@ -127,11 +127,11 @@ # :code:`save()` function: -sorting2.save(folder='./my_sorting') +sorting2.save(folder="./my_sorting") import os -pprint(os.listdir('./my_sorting')) +pprint(os.listdir("./my_sorting")) -sorting2_cached = load_extractor('./my_sorting') +sorting2_cached = load_extractor("./my_sorting") print(sorting2_cached) diff --git a/examples/modules_gallery/core/plot_3_handle_probe_info.py b/examples/modules_gallery/core/plot_3_handle_probe_info.py index d134b29ec5..75b2b56be8 100644 --- a/examples/modules_gallery/core/plot_3_handle_probe_info.py +++ b/examples/modules_gallery/core/plot_3_handle_probe_info.py @@ -1,4 +1,4 @@ -''' +""" Handling probe information =========================== @@ -10,7 +10,8 @@ manually. Here's how! -''' +""" + import numpy as np import spikeinterface.extractors as se @@ -38,11 +39,11 @@ from probeinterface import get_probe -other_probe = get_probe(manufacturer='cambridgeneurotech', probe_name='ASSY-37-E-1') +other_probe = get_probe(manufacturer="cambridgeneurotech", probe_name="ASSY-37-E-1") print(other_probe) other_probe.set_device_channel_indices(np.arange(32)) -recording_2_shanks = recording.set_probe(other_probe, group_mode='by_shank') +recording_2_shanks = recording.set_probe(other_probe, group_mode="by_shank") plot_probe(recording_2_shanks.get_probe()) ############################################################################### @@ -51,9 +52,9 @@ # We can use this information to split the recording into two sub-recordings: print(recording_2_shanks) -print(recording_2_shanks.get_property('group')) +print(recording_2_shanks.get_property("group")) -rec0, rec1 = recording_2_shanks.split_by(property='group') +rec0, rec1 = recording_2_shanks.split_by(property="group") print(rec0) print(rec1) diff --git a/examples/modules_gallery/core/plot_4_sorting_analyzer.py b/examples/modules_gallery/core/plot_4_sorting_analyzer.py new file mode 100644 index 0000000000..20dc078197 --- /dev/null +++ b/examples/modules_gallery/core/plot_4_sorting_analyzer.py @@ -0,0 +1,163 @@ +""" +SortingAnalyzer +=============== + +SpikeInterface provides an object to gather a Recording and a Sorting to make +analyzer and visualization of the sorting : :py:class:`~spikeinterface.core.SortingAnalyzer`. + +This :py:class:`~spikeinterface.core.SortingAnalyzer` class: + + * is the first step for all post post processing, quality metrics, and visualization. + * gather a recording and a sorting + * can be sparse or dense : all channel are used for all units or not. + * handle a list of "extensions" + * "core extensions" are the one to extract some waveforms to compute templates: + * "random_spikes" : select randomly a subset of spikes per unit + * "waveforms" : extract waveforms per unit + * "templates": compute template using average or median + * "noise_levels" : compute noise level from traces (usefull to get snr of units) + * can be in memory or persistent to disk (2 formats binary/npy or zarr) + +More extesions are available in `spikeinterface.postprocessing` like "principal_components", "spike_amplitudes", +"unit_lcations", ... + + +Here the how! +""" + +import matplotlib.pyplot as plt + +from spikeinterface import download_dataset +from spikeinterface import create_sorting_analyzer, load_sorting_analyzer +import spikeinterface.extractors as se + +############################################################################## +# First let's use the repo https://gin.g-node.org/NeuralEnsemble/ephy_testing_data +# to download a MEArec dataset. It is a simulated dataset that contains "ground truth" +# sorting information: + +repo = "https://gin.g-node.org/NeuralEnsemble/ephy_testing_data" +remote_path = "mearec/mearec_test_10s.h5" +local_path = download_dataset(repo=repo, remote_path=remote_path, local_folder=None) + +############################################################################## +# Let's now instantiate the recording and sorting objects: + +recording = se.MEArecRecordingExtractor(local_path) +print(recording) +sorting = se.MEArecSortingExtractor(local_path) +print(recording) + +############################################################################### +# The MEArec dataset already contains a probe object that you can retrieve +# an plot: + +probe = recording.get_probe() +print(probe) +from probeinterface.plotting import plot_probe + +plot_probe(probe) + +############################################################################### +# A :py:class:`~spikeinterface.core.SortingAnalyzer` object can be created with the +# :py:func:`~spikeinterface.core.create_sorting_analyzer` function (this defaults to a sparse +# representation of the waveforms) +# Here the format is "memory". + +analyzer = create_sorting_analyzer(sorting=sorting, recording=recording, format="memory") +print(analyzer) + +############################################################################### +# A :py:class:`~spikeinterface.core.SortingAnalyzer` object can be persistane to disk +# when using format="binary_folder" or format="zarr" + +folder = "analyzer_folder" +analyzer = create_sorting_analyzer(sorting=sorting, recording=recording, format="binary_folder", folder=folder) +print(analyzer) + +# then it can be load back +analyzer = load_sorting_analyzer(folder) +print(analyzer) + +############################################################################### +# No extension are computed yet. +# Lets compute the most basic ones : select some random spikes per units, +# extract waveforms (sparse in this examples) and compute templates. +# You can see that printing the object indicate which extension are computed yet. + +analyzer.compute( + "random_spikes", + method="uniform", + max_spikes_per_unit=500, +) +analyzer.compute("waveforms", ms_before=1.0, ms_after=2.0, return_scaled=True) +analyzer.compute("templates", operators=["average", "median", "std"]) +print(analyzer) + + +############################################################################### +# To speed up computation, some steps like ""waveforms" can also be extracted +# using parallel processing (recommended!). Like this + +analyzer.compute( + "waveforms", ms_before=1.0, ms_after=2.0, return_scaled=True, n_jobs=8, chunk_duration="1s", progress_bar=True +) + +# which is equivalent of this +job_kwargs = dict(n_jobs=8, chunk_duration="1s", progress_bar=True) +analyzer.compute("waveforms", ms_before=1.0, ms_after=2.0, return_scaled=True, **job_kwargs) + + +############################################################################### +# Each extension can retrieve some data +# For instance "waveforms" extension can retrieve wavfroms per units +# which is a numpy array of shape (num_spikes, num_sample, num_channel): + +ext_wf = analyzer.get_extension("waveforms") +for unit_id in analyzer.unit_ids: + wfs = ext_wf.get_waveforms_one_unit(unit_id) + print(unit_id, ":", wfs.shape) + +############################################################################### +# Same for the "templates" extension. Here we can get all templates at once +# with shape (num_units, num_sample, num_channel): +# For this extension, we can get the template for all units either using the median +# or the average + +ext_templates = analyzer.get_extension("templates") + +av_templates = ext_templates.get_data(operator="average") +print(av_templates.shape) + +median_templates = ext_templates.get_data(operator="median") +print(median_templates.shape) + + +############################################################################### +# This can be plot easily. + +for unit_index, unit_id in enumerate(analyzer.unit_ids[:3]): + fig, ax = plt.subplots() + template = av_templates[unit_index] + ax.plot(template) + ax.set_title(f"{unit_id}") + + +############################################################################### +# The SortingAnalyzer can be saved as to another format using save_as() +# So the computation can be done with format="memory" and + +analyzer.save_as(folder="analyzer.zarr", format="zarr") + + +############################################################################### +# The SortingAnalyzer offer also select_units() method wich allows to export +# only some relevant units for instance to a new SortingAnalyzer instance. + +analyzer_some_units = analyzer.select_units( + unit_ids=analyzer.unit_ids[:5], format="binary_folder", folder="analyzer_some_units" +) +print(analyzer_some_units) + + +plt.show() diff --git a/examples/modules_gallery/core/plot_4_waveform_extractor.py b/examples/modules_gallery/core/plot_4_waveform_extractor.py deleted file mode 100644 index bee8f4061b..0000000000 --- a/examples/modules_gallery/core/plot_4_waveform_extractor.py +++ /dev/null @@ -1,231 +0,0 @@ -''' -Waveform Extractor -================== - -SpikeInterface provides an efficient mechanism to extract waveform snippets. - -The :py:class:`~spikeinterface.core.WaveformExtractor` class: - - * randomly samples a subset spikes with max_spikes_per_unit - * extracts all waveforms snippets for each unit - * saves waveforms in a local folder - * can load stored waveforms - * retrieves template (average or median waveform) for each unit - -Here the how! -''' -import matplotlib.pyplot as plt - -from spikeinterface import download_dataset -from spikeinterface import WaveformExtractor, extract_waveforms -import spikeinterface.extractors as se - -############################################################################## -# First let's use the repo https://gin.g-node.org/NeuralEnsemble/ephy_testing_data -# to download a MEArec dataset. It is a simulated dataset that contains "ground truth" -# sorting information: - -repo = 'https://gin.g-node.org/NeuralEnsemble/ephy_testing_data' -remote_path = 'mearec/mearec_test_10s.h5' -local_path = download_dataset(repo=repo, remote_path=remote_path, local_folder=None) - -############################################################################## -# Let's now instantiate the recording and sorting objects: - -recording = se.MEArecRecordingExtractor(local_path) -print(recording) -sorting = se.MEArecSortingExtractor(local_path) -print(recording) - -############################################################################### -# The MEArec dataset already contains a probe object that you can retrieve -# an plot: - -probe = recording.get_probe() -print(probe) -from probeinterface.plotting import plot_probe - -plot_probe(probe) - -############################################################################### -# A :py:class:`~spikeinterface.core.WaveformExtractor` object can be created with the -# :py:func:`~spikeinterface.core.extract_waveforms` function (this defaults to a sparse -# representation of the waveforms): - -folder = 'waveform_folder' -we = extract_waveforms( - recording, - sorting, - folder, - ms_before=1.5, - ms_after=2., - max_spikes_per_unit=500, - overwrite=True -) -print(we) - -############################################################################### -# Alternatively, the :py:class:`~spikeinterface.core.WaveformExtractor` object can be instantiated -# directly. In this case, we need to :py:func:`~spikeinterface.core.WaveformExtractor.set_params` to set the desired -# parameters: - -folder = 'waveform_folder2' -we = WaveformExtractor.create(recording, sorting, folder, remove_if_exists=True) -we.set_params(ms_before=3., ms_after=4., max_spikes_per_unit=1000) -we.run_extract_waveforms(n_jobs=1, chunk_size=30000, progress_bar=True) -print(we) - - -############################################################################### -# To speed up computation, waveforms can also be extracted using parallel -# processing (recommended!). We can define some :code:`'job_kwargs'` to pass -# to the function as extra arguments: - -job_kwargs = dict(n_jobs=2, chunk_duration="1s", progress_bar=True) - -folder = 'waveform_folder_parallel' -we = extract_waveforms( - recording, - sorting, - folder, - sparse=False, - ms_before=3., - ms_after=4., - max_spikes_per_unit=500, - overwrite=True, - **job_kwargs -) -print(we) - - -############################################################################### -# The :code:`'waveform_folder'` folder contains: -# * the dumped recording (json) -# * the dumped sorting (json) -# * the parameters (json) -# * a subfolder with "waveforms_XXX.npy" and "sampled_index_XXX.npy" - -import os - -print(os.listdir(folder)) -print(os.listdir(folder + '/waveforms')) - -############################################################################### -# Now we can retrieve waveforms per unit on-the-fly. The waveforms shape -# is (num_spikes, num_sample, num_channel): - -unit_ids = sorting.unit_ids - -for unit_id in unit_ids: - wfs = we.get_waveforms(unit_id) - print(unit_id, ':', wfs.shape) - -############################################################################### -# We can also get the template for each units either using the median or the -# average: - -for unit_id in unit_ids[:3]: - fig, ax = plt.subplots() - template = we.get_template(unit_id=unit_id, mode='median') - print(template.shape) - ax.plot(template) - ax.set_title(f'{unit_id}') - - -############################################################################### -# Or retrieve templates for all units at once: - -all_templates = we.get_all_templates() -print(all_templates.shape) - - -''' -Sparse Waveform Extractor -------------------------- - -''' -############################################################################### -# For high-density probes, such as Neuropixels, we may want to work with sparse -# waveforms, i.e., waveforms computed on a subset of channels. To do so, we -# two options. -# -# Option 1) Save a dense waveform extractor to sparse: -# -# In this case, from an existing (dense) waveform extractor, we can first estimate a -# sparsity (which channels each unit is defined on) and then save to a new -# folder in sparse mode: - -from spikeinterface import compute_sparsity - -# define sparsity within a radius of 40um -sparsity = compute_sparsity(we, method="radius", radius_um=40) -print(sparsity) - -# save sparse waveforms -folder = 'waveform_folder_sparse' -we_sparse = we.save(folder=folder, sparsity=sparsity, overwrite=True) - -# we_sparse is a sparse WaveformExtractor -print(we_sparse) - -wf_full = we.get_waveforms(we.sorting.unit_ids[0]) -print(f"Dense waveforms shape for unit {we.sorting.unit_ids[0]}: {wf_full.shape}") -wf_sparse = we_sparse.get_waveforms(we.sorting.unit_ids[0]) -print(f"Sparse waveforms shape for unit {we.sorting.unit_ids[0]}: {wf_sparse.shape}") - - -############################################################################### -# Option 2) Directly extract sparse waveforms (current spikeinterface default): -# -# We can also directly extract sparse waveforms. To do so, dense waveforms are -# extracted first using a small number of spikes (:code:`'num_spikes_for_sparsity'`) - -folder = 'waveform_folder_sparse_direct' -we_sparse_direct = extract_waveforms( - recording, - sorting, - folder, - ms_before=3., - ms_after=4., - max_spikes_per_unit=500, - overwrite=True, - sparse=True, - num_spikes_for_sparsity=100, - method="radius", - radius_um=40, - **job_kwargs -) -print(we_sparse_direct) - -template_full = we.get_template(we.sorting.unit_ids[0]) -print(f"Dense template shape for unit {we.sorting.unit_ids[0]}: {template_full.shape}") -template_sparse = we_sparse_direct.get_template(we.sorting.unit_ids[0]) -print(f"Sparse template shape for unit {we.sorting.unit_ids[0]}: {template_sparse.shape}") - - -############################################################################### -# As shown above, when retrieving waveforms/template for a unit from a sparse -# :code:`'WaveformExtractor'`, the waveforms are returned on a subset of channels. -# To retrieve which channels each unit is associated with, we can use the sparsity -# object: - -# retrive channel ids for first unit: -unit_ids = we_sparse.unit_ids -channel_ids_0 = we_sparse.sparsity.unit_id_to_channel_ids[unit_ids[0]] -print(f"Channel ids associated to {unit_ids[0]}: {channel_ids_0}") - - -############################################################################### -# However, when retrieving all templates, a dense shape is returned. This is -# because different channels might have a different number of sparse channels! -# In this case, values on channels not belonging to a unit are filled with 0s. - -all_sparse_templates = we_sparse.get_all_templates() - -# this is a boolean mask with sparse channels for the 1st unit -mask0 = we_sparse.sparsity.mask[0] -# Let's plot values for the first 5 samples inside and outside sparsity mask -print("Values inside sparsity:\n", all_sparse_templates[0, :5, mask0]) -print("Values outside sparsity:\n", all_sparse_templates[0, :5, ~mask0]) - -plt.show() diff --git a/examples/modules_gallery/core/plot_5_append_concatenate_segments.py b/examples/modules_gallery/core/plot_5_append_concatenate_segments.py index db179859b0..b67a1ff0c2 100644 --- a/examples/modules_gallery/core/plot_5_append_concatenate_segments.py +++ b/examples/modules_gallery/core/plot_5_append_concatenate_segments.py @@ -32,16 +32,16 @@ ############################################################################## # First let's generate 2 recordings with 2 and 3 segments respectively: -sampling_frequency = 1000. +sampling_frequency = 1000.0 -trace0 = np.zeros((150, 5), dtype='float32') -trace1 = np.zeros((100, 5), dtype='float32') +trace0 = np.zeros((150, 5), dtype="float32") +trace1 = np.zeros((100, 5), dtype="float32") rec0 = NumpyRecording([trace0, trace1], sampling_frequency) print(rec0) -trace2 = np.zeros((50, 5), dtype='float32') -trace3 = np.zeros((200, 5), dtype='float32') -trace4 = np.zeros((120, 5), dtype='float32') +trace2 = np.zeros((50, 5), dtype="float32") +trace3 = np.zeros((200, 5), dtype="float32") +trace4 = np.zeros((120, 5), dtype="float32") rec1 = NumpyRecording([trace2, trace3, trace4], sampling_frequency) print(rec1) @@ -54,7 +54,7 @@ print(rec) for i in range(rec.get_num_segments()): s = rec.get_num_samples(segment_index=i) - print(f'segment {i} num_samples {s}') + print(f"segment {i} num_samples {s}") ############################################################################## # Let's use the :py:func:`~spikeinterface.core.concatenate_recordings()`: @@ -63,4 +63,4 @@ rec = concatenate_recordings(recording_list) print(rec) s = rec.get_num_samples(segment_index=0) -print(f'segment {0} num_samples {s}') +print(f"segment {0} num_samples {s}") diff --git a/examples/modules_gallery/core/plot_6_handle_times.py b/examples/modules_gallery/core/plot_6_handle_times.py index 4ca116e3c6..28abf68d84 100644 --- a/examples/modules_gallery/core/plot_6_handle_times.py +++ b/examples/modules_gallery/core/plot_6_handle_times.py @@ -7,6 +7,7 @@ This notebook shows how to handle time information in SpikeInterface recording and sorting objects. """ + from spikeinterface.extractors import toy_example ############################################################################## diff --git a/examples/modules_gallery/extractors/plot_1_read_various_formats.py b/examples/modules_gallery/extractors/plot_1_read_various_formats.py index df85946530..ef31b1dc76 100644 --- a/examples/modules_gallery/extractors/plot_1_read_various_formats.py +++ b/examples/modules_gallery/extractors/plot_1_read_various_formats.py @@ -1,4 +1,4 @@ -''' +""" Read various format into SpikeInterface ======================================= @@ -14,7 +14,7 @@ * file formats can be file-based (NWB, ...) or folder based (SpikeGLX, OpenEphys, ...) In this example we demonstrate how to read different file formats into SI -''' +""" import matplotlib.pyplot as plt @@ -29,10 +29,10 @@ # * Spike2: file from spike2 devices. It contains "recording" information only. -spike2_file_path = si.download_dataset(remote_path='spike2/130322-1LY.smr') +spike2_file_path = si.download_dataset(remote_path="spike2/130322-1LY.smr") print(spike2_file_path) -mearec_folder_path = si.download_dataset(remote_path='mearec/mearec_test_10s.h5') +mearec_folder_path = si.download_dataset(remote_path="mearec/mearec_test_10s.h5") print(mearec_folder_path) ############################################################################## @@ -45,13 +45,13 @@ # want to retrieve ('0' in our case). # the stream information can be retrieved by using the :py:func:`~spikeinterface.extractors.get_neo_streams` function. -stream_names, stream_ids = se.get_neo_streams('spike2', spike2_file_path) +stream_names, stream_ids = se.get_neo_streams("spike2", spike2_file_path) print(stream_names) print(stream_ids) stream_id = stream_ids[0] -print('stream_id', stream_id) +print("stream_id", stream_id) -recording = se.read_spike2(spike2_file_path, stream_id='0') +recording = se.read_spike2(spike2_file_path, stream_id="0") print(recording) print(type(recording)) print(isinstance(recording, si.BaseRecording)) @@ -61,7 +61,7 @@ # :py:class:`~spikeinterface.extractors.Spike2RecordingExtractor` object: # -recording = se.Spike2RecordingExtractor(spike2_file_path, stream_id='0') +recording = se.Spike2RecordingExtractor(spike2_file_path, stream_id="0") print(recording) ############################################################################## diff --git a/examples/modules_gallery/extractors/plot_2_working_with_unscaled_traces.py b/examples/modules_gallery/extractors/plot_2_working_with_unscaled_traces.py index a6a68a91f1..f2282297ea 100644 --- a/examples/modules_gallery/extractors/plot_2_working_with_unscaled_traces.py +++ b/examples/modules_gallery/extractors/plot_2_working_with_unscaled_traces.py @@ -1,4 +1,4 @@ -''' +""" Working with unscaled traces ============================ @@ -6,7 +6,7 @@ traces to uV. This example shows how to work with unscaled and scaled traces in the :py:mod:`spikeinterface.extractors` module. -''' +""" import numpy as np import matplotlib.pyplot as plt @@ -36,7 +36,7 @@ # (where 10 is the number of bits of our ADC) gain = 0.1 -offset = -2 ** (10 - 1) * gain +offset = -(2 ** (10 - 1)) * gain ############################################################################### # We are now ready to set gains and offsets for our extractor. We also have to set the :code:`has_unscaled` field to @@ -49,14 +49,14 @@ # Internally the gain and offset are handled with properties # So the gain could be "by channel". -print(recording.get_property('gain_to_uV')) -print(recording.get_property('offset_to_uV')) +print(recording.get_property("gain_to_uV")) +print(recording.get_property("offset_to_uV")) ############################################################################### # With gain and offset information, we can retrieve traces both in their unscaled (raw) type, and in their scaled # type: -traces_unscaled = recording.get_traces(return_scaled=False) # return_scaled is False by default +traces_unscaled = recording.get_traces(return_scaled=False) # return_scaled is False by default traces_scaled = recording.get_traces(return_scaled=True) print(f"Traces dtype after scaling: {traces_scaled.dtype}") diff --git a/examples/modules_gallery/qualitymetrics/plot_3_quality_mertics.py b/examples/modules_gallery/qualitymetrics/plot_3_quality_mertics.py index 7b2fa565b5..bfa6880cb0 100644 --- a/examples/modules_gallery/qualitymetrics/plot_3_quality_mertics.py +++ b/examples/modules_gallery/qualitymetrics/plot_3_quality_mertics.py @@ -10,62 +10,75 @@ import spikeinterface.core as si import spikeinterface.extractors as se from spikeinterface.postprocessing import compute_principal_components -from spikeinterface.qualitymetrics import (compute_snrs, compute_firing_rates, - compute_isi_violations, calculate_pc_metrics, compute_quality_metrics) +from spikeinterface.qualitymetrics import ( + compute_snrs, + compute_firing_rates, + compute_isi_violations, + calculate_pc_metrics, + compute_quality_metrics, +) ############################################################################## # First, let's download a simulated dataset # from the repo 'https://gin.g-node.org/NeuralEnsemble/ephy_testing_data' -local_path = si.download_dataset(remote_path='mearec/mearec_test_10s.h5') +local_path = si.download_dataset(remote_path="mearec/mearec_test_10s.h5") recording, sorting = se.read_mearec(local_path) print(recording) print(sorting) ############################################################################## -# Extract spike waveforms +# Create SortingAnalyzer # ----------------------- # -# For convenience, metrics are computed on the :code:`WaveformExtractor` object, -# because it contains a reference to the "Recording" and the "Sorting" objects: - -we = si.extract_waveforms(recording=recording, - sorting=sorting, - folder='waveforms_mearec', - sparse=False, - ms_before=1, - ms_after=2., - max_spikes_per_unit=500, - n_jobs=1, - chunk_durations='1s') -print(we) +# For quality metrics we need first to create a :code:`SortingAnalyzer`. + +analyzer = si.create_sorting_analyzer(sorting=sorting, recording=recording, format="memory") +print(analyzer) + +############################################################################## +# Depending on which metrics we want to compute we will need first to compute +# some necessary extensions. (if not computed an error message will be raised) + +analyzer.compute("random_spikes", method="uniform", max_spikes_per_unit=600, seed=2205) +analyzer.compute("waveforms", ms_before=1.3, ms_after=2.6, n_jobs=2) +analyzer.compute("templates", operators=["average", "median", "std"]) +analyzer.compute("noise_levels") + +print(analyzer) + ############################################################################## # The :code:`spikeinterface.qualitymetrics` submodule has a set of functions that allow users to compute # metrics in a compact and easy way. To compute a single metric, one can simply run one of the # quality metric functions as shown below. Each function has a variety of adjustable parameters that can be tuned. -firing_rates = compute_firing_rates(we) +firing_rates = compute_firing_rates(analyzer) print(firing_rates) -isi_violation_ratio, isi_violations_count = compute_isi_violations(we) +isi_violation_ratio, isi_violations_count = compute_isi_violations(analyzer) print(isi_violation_ratio) -snrs = compute_snrs(we) +snrs = compute_snrs(analyzer) print(snrs) -############################################################################## -# Some metrics are based on the principal component scores, so they require a -# :code:`WaveformsPrincipalComponent` object as input: - -pc = compute_principal_components(waveform_extractor=we, load_if_exists=True, - n_components=3, mode='by_channel_local') -print(pc) - -pc_metrics = calculate_pc_metrics(pc, metric_names=['nearest_neighbor']) -print(pc_metrics) ############################################################################## # To compute more than one metric at once, we can use the :code:`compute_quality_metrics` function and indicate # which metrics we want to compute. This will return a pandas dataframe: -metrics = compute_quality_metrics(we) +metrics = compute_quality_metrics(analyzer, metric_names=["firing_rate", "snr", "amplitude_cutoff"]) +print(metrics) + +############################################################################## +# Some metrics are based on the principal component scores, so the exwtension +# need to be computed before. For instance: + +analyzer.compute("principal_components", n_components=3, mode="by_channel_global", whiten=True) + +metrics = compute_quality_metrics( + analyzer, + metric_names=[ + "isolation_distance", + "d_prime", + ], +) print(metrics) diff --git a/examples/modules_gallery/qualitymetrics/plot_4_curation.py b/examples/modules_gallery/qualitymetrics/plot_4_curation.py index 2568452de3..f625914191 100644 --- a/examples/modules_gallery/qualitymetrics/plot_4_curation.py +++ b/examples/modules_gallery/qualitymetrics/plot_4_curation.py @@ -6,6 +6,7 @@ quality metrics that you have calculated. """ + ############################################################################# # Import the modules and/or functions necessary from spikeinterface @@ -22,32 +23,30 @@ # # Let's imagine that the ground-truth sorting is in fact the output of a sorter. -local_path = si.download_dataset(remote_path='mearec/mearec_test_10s.h5') +local_path = si.download_dataset(remote_path="mearec/mearec_test_10s.h5") recording, sorting = se.read_mearec(file_path=local_path) print(recording) print(sorting) ############################################################################## -# First, we extract waveforms (to be saved in the folder 'wfs_mearec') and -# compute their PC (principal component) scores: +# Create SortingAnalyzer +# ----------------------- +# +# For this example, we will need a :code:`SortingAnalyzer` and some extension +# to be computed fist -we = si.extract_waveforms(recording=recording, - sorting=sorting, - folder='wfs_mearec', - ms_before=1, - ms_after=2., - max_spikes_per_unit=500, - n_jobs=1, - chunk_size=30000) -print(we) -pc = compute_principal_components(we, load_if_exists=True, n_components=3, mode='by_channel_local') +analyzer = si.create_sorting_analyzer(sorting=sorting, recording=recording, format="memory") +analyzer.compute(["random_spikes", "waveforms", "templates", "noise_levels"]) + +analyzer.compute("principal_components", n_components=3, mode="by_channel_local") +print(analyzer) ############################################################################## # Then we compute some quality metrics: -metrics = compute_quality_metrics(waveform_extractor=we, metric_names=['snr', 'isi_violation', 'nearest_neighbor']) +metrics = compute_quality_metrics(analyzer, metric_names=["snr", "isi_violation", "nearest_neighbor"]) print(metrics) ############################################################################## @@ -57,7 +56,7 @@ # # Then create a list of unit ids that we want to keep -keep_mask = (metrics['snr'] > 7.5) & (metrics['isi_violations_ratio'] < 0.2) & (metrics['nn_hit_rate'] > 0.90) +keep_mask = (metrics["snr"] > 7.5) & (metrics["isi_violations_ratio"] < 0.2) & (metrics["nn_hit_rate"] > 0.90) print(keep_mask) keep_unit_ids = keep_mask[keep_mask].index.values @@ -65,10 +64,17 @@ print(keep_unit_ids) ############################################################################## -# And now let's create a sorting that contains only curated units and save it, -# for example to an NPZ file. +# And now let's create a sorting that contains only curated units and save it. curated_sorting = sorting.select_units(keep_unit_ids) print(curated_sorting) -se.NpzSortingExtractor.write_sorting(sorting=curated_sorting, save_path='curated_sorting.npz') + +curated_sorting.save(folder="curated_sorting") + +############################################################################## +# We can also save the analyzer with only theses units + +clean_analyzer = analyzer.select_units(unit_ids=keep_unit_ids, format="zarr", folder="clean_analyzer") + +print(clean_analyzer) diff --git a/examples/modules_gallery/widgets/plot_1_rec_gallery.py b/examples/modules_gallery/widgets/plot_1_rec_gallery.py index 1544bbfc54..bb121e26a2 100644 --- a/examples/modules_gallery/widgets/plot_1_rec_gallery.py +++ b/examples/modules_gallery/widgets/plot_1_rec_gallery.py @@ -1,9 +1,10 @@ -''' +""" RecordingExtractor Widgets Gallery =================================== Here is a gallery of all the available widgets using RecordingExtractor objects. -''' +""" + import matplotlib.pyplot as plt import spikeinterface.extractors as se @@ -39,10 +40,9 @@ w_ts.ax.set_ylabel("Channel_ids") ############################################################################## -# We can also use the 'map' mode useful for high channel count +# We can also use the 'map' mode useful for high channel count -w_ts = sw.plot_traces(recording, mode='map', time_range=(5, 8), - show_channel_ids=True, order_channel_by_depth=True) +w_ts = sw.plot_traces(recording, mode="map", time_range=(5, 8), show_channel_ids=True, order_channel_by_depth=True) ############################################################################## # plot_electrode_geometry() diff --git a/examples/modules_gallery/widgets/plot_2_sort_gallery.py b/examples/modules_gallery/widgets/plot_2_sort_gallery.py index bea6f34e4d..da5c611ce4 100644 --- a/examples/modules_gallery/widgets/plot_2_sort_gallery.py +++ b/examples/modules_gallery/widgets/plot_2_sort_gallery.py @@ -1,9 +1,10 @@ -''' +""" SortingExtractor Widgets Gallery =================================== Here is a gallery of all the available widgets using SortingExtractor objects. -''' +""" + import matplotlib.pyplot as plt import spikeinterface.extractors as se @@ -24,7 +25,7 @@ # plot_isi_distribution() # ~~~~~~~~~~~~~~~~~~~~~~~ -w_isi = sw.plot_isi_distribution(sorting, window_ms=150.0, bin_ms=5.0, figsize=(20,8)) +w_isi = sw.plot_isi_distribution(sorting, window_ms=150.0, bin_ms=5.0, figsize=(20, 8)) ############################################################################## # plot_autocorrelograms() diff --git a/examples/modules_gallery/widgets/plot_3_waveforms_gallery.py b/examples/modules_gallery/widgets/plot_3_waveforms_gallery.py index 1bc4d0afd7..fc4a7775d2 100644 --- a/examples/modules_gallery/widgets/plot_3_waveforms_gallery.py +++ b/examples/modules_gallery/widgets/plot_3_waveforms_gallery.py @@ -1,9 +1,10 @@ -''' +""" Waveforms Widgets Gallery ========================= Here is a gallery of all the available widgets using a pair of RecordingExtractor-SortingExtractor objects. -''' +""" + import matplotlib.pyplot as plt import spikeinterface as si @@ -15,9 +16,8 @@ # First, let's download a simulated dataset # from the repo 'https://gin.g-node.org/NeuralEnsemble/ephy_testing_data' -local_path = si.download_dataset(remote_path='mearec/mearec_test_10s.h5') -recording = se.MEArecRecordingExtractor(local_path) -sorting = se.MEArecSortingExtractor(local_path) +local_path = si.download_dataset(remote_path="mearec/mearec_test_10s.h5") +recording, sorting = si.read_mearec(local_path) print(recording) print(sorting) @@ -28,17 +28,13 @@ # For convenience, metrics are computed on the WaveformExtractor object that gather recording/sorting and # extracted waveforms in a single object -folder = 'waveforms_mearec' -we = si.extract_waveforms(recording, sorting, folder, - load_if_exists=True, - ms_before=1, ms_after=2., max_spikes_per_unit=500, - n_jobs=1, chunk_size=30000) -# pre-compute postprocessing data -_ = spost.compute_spike_amplitudes(we) -_ = spost.compute_unit_locations(we) -_ = spost.compute_spike_locations(we) -_ = spost.compute_template_metrics(we) +analyzer = si.create_sorting_analyzer(sorting=sorting, recording=recording, format="memory") +# core extensions +analyzer.compute(["random_spikes", "waveforms", "templates", "noise_levels"]) + +# more extensions +analyzer.compute(["spike_amplitudes", "unit_locations", "spike_locations", "template_metrics"]) ############################################################################## @@ -47,7 +43,7 @@ unit_ids = sorting.unit_ids[:4] -sw.plot_unit_waveforms(we, unit_ids=unit_ids, figsize=(16,4)) +sw.plot_unit_waveforms(analyzer, unit_ids=unit_ids, figsize=(16, 4)) ############################################################################## # plot_unit_templates() @@ -55,21 +51,21 @@ unit_ids = sorting.unit_ids -sw.plot_unit_templates(we, unit_ids=unit_ids, ncols=5, figsize=(16,8)) +sw.plot_unit_templates(analyzer, unit_ids=unit_ids, ncols=5, figsize=(16, 8)) ############################################################################## # plot_amplitudes() # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -sw.plot_amplitudes(we, plot_histograms=True, figsize=(12,8)) +sw.plot_amplitudes(analyzer, plot_histograms=True, figsize=(12, 8)) ############################################################################## # plot_unit_locations() # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -sw.plot_unit_locations(we, figsize=(4,8)) +sw.plot_unit_locations(analyzer, figsize=(4, 8)) ############################################################################## @@ -79,21 +75,20 @@ # This is your best friend to check over merge unit_ids = sorting.unit_ids[:4] -sw.plot_unit_waveforms_density_map(we, unit_ids=unit_ids, figsize=(14,8)) - +sw.plot_unit_waveforms_density_map(analyzer, unit_ids=unit_ids, figsize=(14, 8)) ############################################################################## # plot_amplitudes_distribution() # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -sw.plot_all_amplitudes_distributions(we, figsize=(10,10)) +sw.plot_all_amplitudes_distributions(analyzer, figsize=(10, 10)) ############################################################################## # plot_units_depths() # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -sw.plot_unit_depths(we, figsize=(10,10)) +sw.plot_unit_depths(analyzer, figsize=(10, 10)) ############################################################################## @@ -101,8 +96,7 @@ # ~~~~~~~~~~~~~~~~~~~~~ unit_ids = sorting.unit_ids[:4] -sw.plot_unit_probe_map(we, unit_ids=unit_ids, figsize=(20,8)) - +sw.plot_unit_probe_map(analyzer, unit_ids=unit_ids, figsize=(20, 8)) plt.show() diff --git a/examples/modules_gallery/widgets/plot_4_peaks_gallery.py b/examples/modules_gallery/widgets/plot_4_peaks_gallery.py index e3464dd1e8..cce04ae5a0 100644 --- a/examples/modules_gallery/widgets/plot_4_peaks_gallery.py +++ b/examples/modules_gallery/widgets/plot_4_peaks_gallery.py @@ -1,4 +1,4 @@ -''' +""" Peaks Widgets Gallery ===================== @@ -7,7 +7,8 @@ They are useful to check drift before running sorters. -''' +""" + import matplotlib.pyplot as plt import spikeinterface.full as si @@ -16,34 +17,40 @@ # First, let's download a simulated dataset # from the repo 'https://gin.g-node.org/NeuralEnsemble/ephy_testing_data' -local_path = si.download_dataset(remote_path='mearec/mearec_test_10s.h5') +local_path = si.download_dataset(remote_path="mearec/mearec_test_10s.h5") rec, sorting = si.read_mearec(local_path) ############################################################################## -# Let's filter and detect peaks on it +# Let's filter and detect peaks on it from spikeinterface.sortingcomponents.peak_detection import detect_peaks -rec_filtred = si.bandpass_filter(recording=rec, freq_min=300., freq_max=6000., margin_ms=5.0) +rec_filtred = si.bandpass_filter(recording=rec, freq_min=300.0, freq_max=6000.0, margin_ms=5.0) print(rec_filtred) peaks = detect_peaks( - recording=rec_filtred, method='locally_exclusive', - peak_sign='neg', detect_threshold=6, exclude_sweep_ms=0.3, - radius_um=100, - noise_levels=None, - random_chunk_kwargs={}, - chunk_memory='10M', n_jobs=1, progress_bar=True) + recording=rec_filtred, + method="locally_exclusive", + peak_sign="neg", + detect_threshold=6, + exclude_sweep_ms=0.3, + radius_um=100, + noise_levels=None, + random_chunk_kwargs={}, + chunk_memory="10M", + n_jobs=1, + progress_bar=True, +) ############################################################################## -# peaks is a numpy 1D array with structured dtype that contains several fields: +# peaks is a numpy 1D array with structured dtype that contains several fields: print(peaks.dtype) print(peaks.shape) print(peaks.dtype.fields.keys()) ############################################################################## -# This "peaks" vector can be used in several widgets, for instance +# This "peaks" vector can be used in several widgets, for instance # plot_peak_activity() si.plot_peak_activity(recording=rec_filtred, peaks=peaks) @@ -51,9 +58,9 @@ plt.show() ############################################################################## -# can be also animated with bin_duration_s=1. +# can be also animated with bin_duration_s=1. -si.plot_peak_activity(recording=rec_filtred, peaks=peaks, bin_duration_s=1.) +si.plot_peak_activity(recording=rec_filtred, peaks=peaks, bin_duration_s=1.0) plt.show() diff --git a/pyproject.toml b/pyproject.toml index a3384a5482..804c89178e 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -1,6 +1,6 @@ [project] name = "spikeinterface" -version = "0.100.0" +version = "0.101.0" authors = [ { name="Alessio Buccino", email="alessiop.buccino@gmail.com" }, { name="Samuel Garcia", email="sam.garcia.die@gmail.com" }, @@ -119,8 +119,8 @@ test_core = [ # for github test : probeinterface and neo from master # for release we need pypi, so this need to be commented - # "probeinterface @ git+https://github.com/SpikeInterface/probeinterface.git", - # "neo @ git+https://github.com/NeuralEnsemble/python-neo.git", + "probeinterface @ git+https://github.com/SpikeInterface/probeinterface.git", + "neo @ git+https://github.com/NeuralEnsemble/python-neo.git", ] test = [ @@ -152,8 +152,8 @@ test = [ # for github test : probeinterface and neo from master # for release we need pypi, so this need to be commented - # "probeinterface @ git+https://github.com/SpikeInterface/probeinterface.git", - # "neo @ git+https://github.com/NeuralEnsemble/python-neo.git", + "probeinterface @ git+https://github.com/SpikeInterface/probeinterface.git", + "neo @ git+https://github.com/NeuralEnsemble/python-neo.git", ] docs = [ @@ -170,8 +170,8 @@ docs = [ "hdbscan>=0.8.33", # For sorters spykingcircus2 + tridesclous "numba", # For many postprocessing functions # for release we need pypi, so this needs to be commented - # "probeinterface @ git+https://github.com/SpikeInterface/probeinterface.git", # We always build from the latest version - # "neo @ git+https://github.com/NeuralEnsemble/python-neo.git", # We always build from the latest version + "probeinterface @ git+https://github.com/SpikeInterface/probeinterface.git", # We always build from the latest version + "neo @ git+https://github.com/NeuralEnsemble/python-neo.git", # We always build from the latest version ] diff --git a/src/spikeinterface/__init__.py b/src/spikeinterface/__init__.py index 97fb95b623..306c12d516 100644 --- a/src/spikeinterface/__init__.py +++ b/src/spikeinterface/__init__.py @@ -30,5 +30,5 @@ # This flag must be set to False for release # This avoids using versioning that contains ".dev0" (and this is a better choice) # This is mainly useful when using run_sorter in a container and spikeinterface install -# DEV_MODE = True -DEV_MODE = False +DEV_MODE = True +# DEV_MODE = False diff --git a/src/spikeinterface/comparison/groundtruthstudy.py b/src/spikeinterface/comparison/groundtruthstudy.py index 448ac3b361..3a510dd522 100644 --- a/src/spikeinterface/comparison/groundtruthstudy.py +++ b/src/spikeinterface/comparison/groundtruthstudy.py @@ -8,12 +8,12 @@ import numpy as np -from spikeinterface.core import load_extractor, extract_waveforms, load_waveforms +from spikeinterface.core import load_extractor, create_sorting_analyzer, load_sorting_analyzer from spikeinterface.core.core_tools import SIJsonEncoder +from spikeinterface.core.job_tools import split_job_kwargs from spikeinterface.sorters import run_sorter_jobs, read_sorter_folder -from spikeinterface import WaveformExtractor from spikeinterface.qualitymetrics import compute_quality_metrics from .paircomparisons import compare_sorter_to_ground_truth, GroundTruthComparison @@ -284,28 +284,32 @@ def get_run_times(self, case_keys=None): return pd.Series(run_times, name="run_time") - def extract_waveforms_gt(self, case_keys=None, **extract_kwargs): + def create_sorting_analyzer_gt(self, case_keys=None, random_params={}, waveforms_params={}, **job_kwargs): if case_keys is None: case_keys = self.cases.keys() - base_folder = self.folder / "waveforms" + base_folder = self.folder / "sorting_analyzer" base_folder.mkdir(exist_ok=True) dataset_keys = [self.cases[key]["dataset"] for key in case_keys] dataset_keys = set(dataset_keys) for dataset_key in dataset_keys: # the waveforms depend on the dataset key - wf_folder = base_folder / self.key_to_str(dataset_key) + folder = base_folder / self.key_to_str(dataset_key) recording, gt_sorting = self.datasets[dataset_key] - we = extract_waveforms(recording, gt_sorting, folder=wf_folder, **extract_kwargs) + sorting_analyzer = create_sorting_analyzer(gt_sorting, recording, format="binary_folder", folder=folder) + sorting_analyzer.compute("random_spikes", **random_params) + sorting_analyzer.compute("waveforms", **waveforms_params, **job_kwargs) + sorting_analyzer.compute("templates") + sorting_analyzer.compute("noise_levels") def get_waveform_extractor(self, case_key=None, dataset_key=None): if case_key is not None: dataset_key = self.cases[case_key]["dataset"] - wf_folder = self.folder / "waveforms" / self.key_to_str(dataset_key) - we = load_waveforms(wf_folder, with_recording=True) - return we + folder = self.folder / "sorting_analyzer" / self.key_to_str(dataset_key) + sorting_analyzer = load_sorting_analyzer(folder) + return sorting_analyzer def get_templates(self, key, mode="average"): we = self.get_waveform_extractor(case_key=key) diff --git a/src/spikeinterface/comparison/hybrid.py b/src/spikeinterface/comparison/hybrid.py index e77ff584e7..75812bad17 100644 --- a/src/spikeinterface/comparison/hybrid.py +++ b/src/spikeinterface/comparison/hybrid.py @@ -6,8 +6,7 @@ from spikeinterface.core import ( BaseRecording, BaseSorting, - WaveformExtractor, - NumpySorting, + load_waveforms, ) from spikeinterface.core.core_tools import define_function_from_class from spikeinterface.core.generate import ( @@ -17,6 +16,8 @@ generate_sorting_to_inject, ) +# TODO aurelien : this is still using the WaveformExtractor!!! can you change it to use SortingAnalyzer ? + class HybridUnitsRecording(InjectTemplatesRecording): """ @@ -155,7 +156,7 @@ class HybridSpikesRecording(InjectTemplatesRecording): def __init__( self, - wvf_extractor: Union[WaveformExtractor, Path], + wvf_extractor, injected_sorting: Union[BaseSorting, None] = None, unit_ids: Union[List[int], None] = None, max_injected_per_unit: int = 1000, @@ -164,7 +165,7 @@ def __init__( injected_sorting_folder: Union[str, Path, None] = None, ) -> None: if isinstance(wvf_extractor, (Path, str)): - wvf_extractor = WaveformExtractor.load(wvf_extractor) + wvf_extractor = load_waveforms(wvf_extractor) target_recording = wvf_extractor.recording target_sorting = wvf_extractor.sorting diff --git a/src/spikeinterface/comparison/multicomparisons.py b/src/spikeinterface/comparison/multicomparisons.py index f0114bd5a3..77adcaa8ca 100644 --- a/src/spikeinterface/comparison/multicomparisons.py +++ b/src/spikeinterface/comparison/multicomparisons.py @@ -356,8 +356,8 @@ def _compare_ij(self, i, j): comp = TemplateComparison( self.object_list[i], self.object_list[j], - we1_name=self.name_list[i], - we2_name=self.name_list[j], + name1=self.name_list[i], + name2=self.name_list[j], match_score=self.match_score, verbose=False, ) diff --git a/src/spikeinterface/comparison/paircomparisons.py b/src/spikeinterface/comparison/paircomparisons.py index 64c13d60e4..50c3ee4071 100644 --- a/src/spikeinterface/comparison/paircomparisons.py +++ b/src/spikeinterface/comparison/paircomparisons.py @@ -13,7 +13,7 @@ do_count_score, compute_performance, ) -from ..postprocessing import compute_template_similarity +from ..postprocessing import compute_template_similarity_by_pair class BasePairSorterComparison(BasePairComparison, MixinSpikeTrainComparison): @@ -696,14 +696,14 @@ class TemplateComparison(BasePairComparison, MixinTemplateComparison): Parameters ---------- - we1 : WaveformExtractor - The first waveform extractor to get templates to compare - we2 : WaveformExtractor - The second waveform extractor to get templates to compare + sorting_analyzer_1 : SortingAnalyzer + The first SortingAnalyzer to get templates to compare + sorting_analyzer_2 : SortingAnalyzer + The second SortingAnalyzer to get templates to compare unit_ids1 : list, default: None - List of units from we1 to compare + List of units from sorting_analyzer_1 to compare unit_ids2 : list, default: None - List of units from we2 to compare + List of units from sorting_analyzer_2 to compare similarity_method : str, default: "cosine_similarity" Method for the similaroty matrix sparsity_dict : dict, default: None @@ -719,10 +719,10 @@ class TemplateComparison(BasePairComparison, MixinTemplateComparison): def __init__( self, - we1, - we2, - we1_name=None, - we2_name=None, + sorting_analyzer_1, + sorting_analyzer_2, + name1=None, + name2=None, unit_ids1=None, unit_ids2=None, match_score=0.7, @@ -731,29 +731,29 @@ def __init__( sparsity_dict=None, verbose=False, ): - if we1_name is None: - we1_name = "sess1" - if we2_name is None: - we2_name = "sess2" + if name1 is None: + name1 = "sess1" + if name2 is None: + name2 = "sess2" BasePairComparison.__init__( self, - object1=we1, - object2=we2, - name1=we1_name, - name2=we2_name, + object1=sorting_analyzer_1, + object2=sorting_analyzer_2, + name1=name1, + name2=name2, match_score=match_score, chance_score=chance_score, verbose=verbose, ) MixinTemplateComparison.__init__(self, similarity_method=similarity_method, sparsity_dict=sparsity_dict) - self.we1 = we1 - self.we2 = we2 - channel_ids1 = we1.recording.get_channel_ids() - channel_ids2 = we2.recording.get_channel_ids() + self.sorting_analyzer_1 = sorting_analyzer_1 + self.sorting_analyzer_2 = sorting_analyzer_2 + channel_ids1 = sorting_analyzer_1.recording.get_channel_ids() + channel_ids2 = sorting_analyzer_2.recording.get_channel_ids() # two options: all channels are shared or partial channels are shared - if we1.recording.get_num_channels() != we2.recording.get_num_channels(): + if sorting_analyzer_1.recording.get_num_channels() != sorting_analyzer_2.recording.get_num_channels(): raise NotImplementedError if np.any([ch1 != ch2 for (ch1, ch2) in zip(channel_ids1, channel_ids2)]): # TODO: here we can check location and run it on the union. Might be useful for reconfigurable probes @@ -762,10 +762,10 @@ def __init__( self.matches = dict() if unit_ids1 is None: - unit_ids1 = we1.sorting.get_unit_ids() + unit_ids1 = sorting_analyzer_1.sorting.get_unit_ids() if unit_ids2 is None: - unit_ids2 = we2.sorting.get_unit_ids() + unit_ids2 = sorting_analyzer_2.sorting.get_unit_ids() self.unit_ids = [unit_ids1, unit_ids2] if sparsity_dict is not None: @@ -780,8 +780,8 @@ def _do_agreement(self): if self._verbose: print("Agreement scores...") - agreement_scores = compute_template_similarity( - self.we1, waveform_extractor_other=self.we2, method=self.similarity_method + agreement_scores = compute_template_similarity_by_pair( + self.sorting_analyzer_1, self.sorting_analyzer_2, method=self.similarity_method ) import pandas as pd diff --git a/src/spikeinterface/comparison/tests/test_groundtruthstudy.py b/src/spikeinterface/comparison/tests/test_groundtruthstudy.py index 91c8c640e0..b7df085fab 100644 --- a/src/spikeinterface/comparison/tests/test_groundtruthstudy.py +++ b/src/spikeinterface/comparison/tests/test_groundtruthstudy.py @@ -86,7 +86,7 @@ def test_GroundTruthStudy(): study.run_comparisons() print(study.comparisons) - study.extract_waveforms_gt(n_jobs=-1) + study.create_sorting_analyzer_gt(n_jobs=-1) study.compute_metrics() diff --git a/src/spikeinterface/comparison/tests/test_hybrid.py b/src/spikeinterface/comparison/tests/test_hybrid.py index 144e7aacd0..8c392f7687 100644 --- a/src/spikeinterface/comparison/tests/test_hybrid.py +++ b/src/spikeinterface/comparison/tests/test_hybrid.py @@ -1,7 +1,7 @@ import pytest import shutil from pathlib import Path -from spikeinterface.core import WaveformExtractor, extract_waveforms, load_extractor +from spikeinterface.core import extract_waveforms, load_waveforms, load_extractor from spikeinterface.core.testing import check_recordings_equal from spikeinterface.comparison import ( create_hybrid_units_recording, @@ -34,7 +34,10 @@ def setup_module(): def test_hybrid_units_recording(): - wvf_extractor = WaveformExtractor.load(cache_folder / "wvf_extractor") + wvf_extractor = load_waveforms(cache_folder / "wvf_extractor") + print(wvf_extractor) + print(wvf_extractor.sorting_analyzer) + recording = wvf_extractor.recording templates = wvf_extractor.get_all_templates() templates[:, 0, :] = 0 @@ -61,7 +64,7 @@ def test_hybrid_units_recording(): def test_hybrid_spikes_recording(): - wvf_extractor = WaveformExtractor.load_from_folder(cache_folder / "wvf_extractor") + wvf_extractor = load_waveforms(cache_folder / "wvf_extractor") recording = wvf_extractor.recording sorting = wvf_extractor.sorting hybrid_spikes_recording = create_hybrid_spikes_recording( @@ -90,6 +93,5 @@ def test_hybrid_spikes_recording(): if __name__ == "__main__": setup_module() - test_generate_sorting_to_inject() test_hybrid_units_recording() test_hybrid_spikes_recording() diff --git a/src/spikeinterface/comparison/tests/test_templatecomparison.py b/src/spikeinterface/comparison/tests/test_templatecomparison.py index 14e9ebe1e6..595820b00b 100644 --- a/src/spikeinterface/comparison/tests/test_templatecomparison.py +++ b/src/spikeinterface/comparison/tests/test_templatecomparison.py @@ -3,24 +3,24 @@ from pathlib import Path import numpy as np -from spikeinterface.core import extract_waveforms +from spikeinterface.core import create_sorting_analyzer from spikeinterface.extractors import toy_example from spikeinterface.comparison import compare_templates, compare_multiple_templates -if hasattr(pytest, "global_test_folder"): - cache_folder = pytest.global_test_folder / "comparison" -else: - cache_folder = Path("cache_folder") / "comparison" +# if hasattr(pytest, "global_test_folder"): +# cache_folder = pytest.global_test_folder / "comparison" +# else: +# cache_folder = Path("cache_folder") / "comparison" -test_dir = cache_folder / "temp_comp_test" +# test_dir = cache_folder / "temp_comp_test" -def setup_module(): - if test_dir.is_dir(): - shutil.rmtree(test_dir) - test_dir.mkdir(exist_ok=True) +# def setup_module(): +# if test_dir.is_dir(): +# shutil.rmtree(test_dir) +# test_dir.mkdir(exist_ok=True) def test_compare_multiple_templates(): @@ -28,8 +28,8 @@ def test_compare_multiple_templates(): num_channels = 8 rec, sort = toy_example(duration=duration, num_segments=1, num_channels=num_channels) - rec = rec.save(folder=test_dir / "rec") - sort = sort.save(folder=test_dir / "sort") + # rec = rec.save(folder=test_dir / "rec") + # sort = sort.save(folder=test_dir / "sort") # split recording in 3 equal slices fs = rec.get_sampling_frequency() @@ -39,13 +39,17 @@ def test_compare_multiple_templates(): sort1 = sort.frame_slice(start_frame=0 * fs, end_frame=duration / 3 * fs) sort2 = sort.frame_slice(start_frame=duration / 3 * fs, end_frame=2 / 3 * duration * fs) sort3 = sort.frame_slice(start_frame=2 / 3 * duration * fs, end_frame=duration * fs) + # compute waveforms - we1 = extract_waveforms(rec1, sort1, test_dir / "wf1", n_jobs=1) - we2 = extract_waveforms(rec2, sort2, test_dir / "wf2", n_jobs=1) - we3 = extract_waveforms(rec3, sort3, test_dir / "wf3", n_jobs=1) + sorting_analyzer_1 = create_sorting_analyzer(sort1, rec1, format="memory") + sorting_analyzer_2 = create_sorting_analyzer(sort2, rec2, format="memory") + sorting_analyzer_3 = create_sorting_analyzer(sort3, rec3, format="memory") + + for sorting_analyzer in (sorting_analyzer_1, sorting_analyzer_2, sorting_analyzer_3): + sorting_analyzer.compute(["random_spikes", "fast_templates"]) # paired comparison - temp_cmp = compare_templates(we1, we2) + temp_cmp = compare_templates(sorting_analyzer_1, sorting_analyzer_2) for u1 in temp_cmp.hungarian_match_12.index.values: u2 = temp_cmp.hungarian_match_12[u1] @@ -53,7 +57,7 @@ def test_compare_multiple_templates(): assert u1 == u2 # multi-comparison - temp_mcmp = compare_multiple_templates([we1, we2, we3]) + temp_mcmp = compare_multiple_templates([sorting_analyzer_1, sorting_analyzer_2, sorting_analyzer_3]) # assert unit ids are the same across sessions (because of initial slicing) for unit_dict in temp_mcmp.units.values(): unit_ids = unit_dict["unit_ids"].values() diff --git a/src/spikeinterface/core/__init__.py b/src/spikeinterface/core/__init__.py index 9d948e7e02..b18676af92 100644 --- a/src/spikeinterface/core/__init__.py +++ b/src/spikeinterface/core/__init__.py @@ -101,19 +101,21 @@ get_chunk_with_margin, order_channels_by_depth, ) -from .sorting_tools import spike_vector_to_spike_trains +from .sorting_tools import spike_vector_to_spike_trains, random_spikes_selection -from .waveform_tools import extract_waveforms_to_buffers +from .waveform_tools import extract_waveforms_to_buffers, estimate_templates, estimate_templates_average from .snippets_tools import snippets_from_sorting # waveform extractor -from .waveform_extractor import ( - WaveformExtractor, - BaseWaveformExtractorExtension, - extract_waveforms, - load_waveforms, - precompute_sparsity, -) +# Important not for compatibility!! +# This wil be commented after 0.100 relase but the module will not be removed. +# from .waveform_extractor import ( +# WaveformExtractor, +# BaseWaveformExtractorExtension, +# extract_waveforms, +# load_waveforms, +# precompute_sparsity, +# ) # retrieve datasets from .datasets import download_dataset @@ -134,10 +136,26 @@ get_template_extremum_channel, get_template_extremum_channel_peak_shift, get_template_extremum_amplitude, - get_template_channel_sparsity, ) # channel sparsity from .sparsity import ChannelSparsity, compute_sparsity, estimate_sparsity from .template import Templates + +# SortingAnalyzer and AnalyzerExtension +from .sortinganalyzer import SortingAnalyzer, AnalyzerExtension, create_sorting_analyzer, load_sorting_analyzer +from .analyzer_extension_core import ( + ComputeWaveforms, + compute_waveforms, + ComputeTemplates, + compute_templates, + ComputeFastTemplates, + compute_fast_templates, + ComputeNoiseLevels, + compute_noise_levels, +) + +# Important not for compatibility!! +# This wil be uncommented after 0.100 +from .waveforms_extractor_backwards_compatibility import extract_waveforms, load_waveforms diff --git a/src/spikeinterface/core/analyzer_extension_core.py b/src/spikeinterface/core/analyzer_extension_core.py new file mode 100644 index 0000000000..268513dac8 --- /dev/null +++ b/src/spikeinterface/core/analyzer_extension_core.py @@ -0,0 +1,579 @@ +""" +Implement AnalyzerExtension that are essential and imported in core + * ComputeWaveforms + * ComputeTemplates +Theses two classes replace the WaveformExtractor + +It also implement: + * ComputeFastTemplates which is equivalent but without extacting waveforms. + * ComputeNoiseLevels which is very convinient to have +""" + +import numpy as np + +from .sortinganalyzer import AnalyzerExtension, register_result_extension +from .waveform_tools import extract_waveforms_to_single_buffer, estimate_templates_average +from .recording_tools import get_noise_levels +from .template import Templates +from .sorting_tools import random_spikes_selection + + +class SelectRandomSpikes(AnalyzerExtension): + """ + AnalyzerExtension that select some random spikes. + + This will be used by "compute_waveforms" and so "compute_templates" or "compute_fast_templates" + + This internally use `random_spikes_selection()` parameters are the same. + + Parameters + ---------- + unit_ids: list or None + Unit ids to retrieve waveforms for + mode: "average" | "median" | "std" | "percentile", default: "average" + The mode to compute the templates + percentile: float, default: None + Percentile to use for mode="percentile" + save: bool, default True + In case, the operator is not computed yet it can be saved to folder or zarr. + + Returns + ------- + + """ + + extension_name = "random_spikes" + depend_on = [] + need_recording = False + use_nodepipeline = False + need_job_kwargs = False + + def _run( + self, + ): + self.data["random_spikes_indices"] = random_spikes_selection( + self.sorting_analyzer.sorting, + num_samples=self.sorting_analyzer.rec_attributes["num_samples"], + **self.params, + ) + + def _set_params(self, method="uniform", max_spikes_per_unit=500, margin_size=None, seed=None): + params = dict(method=method, max_spikes_per_unit=max_spikes_per_unit, margin_size=margin_size, seed=seed) + return params + + def _select_extension_data(self, unit_ids): + random_spikes_indices = self.data["random_spikes_indices"] + + spikes = self.sorting_analyzer.sorting.to_spike_vector() + + keep_unit_indices = np.flatnonzero(np.isin(self.sorting_analyzer.unit_ids, unit_ids)) + keep_spike_mask = np.isin(spikes["unit_index"], keep_unit_indices) + + selected_mask = np.zeros(spikes.size, dtype=bool) + selected_mask[random_spikes_indices] = True + + new_data = dict() + new_data["random_spikes_indices"] = np.flatnonzero(selected_mask[keep_spike_mask]) + return new_data + + def _get_data(self): + return self.data["random_spikes_indices"] + + def some_spikes(self): + # utils to get the some_spikes vector + # use internal cache + if not hasattr(self, "_some_spikes"): + spikes = self.sorting_analyzer.sorting.to_spike_vector() + self._some_spikes = spikes[self.data["random_spikes_indices"]] + return self._some_spikes + + def get_selected_indices_in_spike_train(self, unit_id, segment_index): + # usefull for Waveforms extractor backwars compatibility + # In Waveforms extractor "selected_spikes" was a dict (key: unit_id) of list (segment_index) of indices of spikes in spiketrain + sorting = self.sorting_analyzer.sorting + random_spikes_indices = self.data["random_spikes_indices"] + + unit_index = sorting.id_to_index(unit_id) + spikes = sorting.to_spike_vector() + spike_indices_in_seg = np.flatnonzero( + (spikes["segment_index"] == segment_index) & (spikes["unit_index"] == unit_index) + ) + common_element, inds_left, inds_right = np.intersect1d( + spike_indices_in_seg, random_spikes_indices, return_indices=True + ) + selected_spikes_in_spike_train = inds_left + return selected_spikes_in_spike_train + + +register_result_extension(SelectRandomSpikes) + + +class ComputeWaveforms(AnalyzerExtension): + """ + AnalyzerExtension that extract some waveforms of each units. + + The sparsity is controlled by the SortingAnalyzer sparsity. + """ + + extension_name = "waveforms" + depend_on = ["random_spikes"] + need_recording = True + use_nodepipeline = False + need_job_kwargs = True + + @property + def nbefore(self): + return int(self.params["ms_before"] * self.sorting_analyzer.sampling_frequency / 1000.0) + + @property + def nafter(self): + return int(self.params["ms_after"] * self.sorting_analyzer.sampling_frequency / 1000.0) + + def _run(self, **job_kwargs): + self.data.clear() + + # if self.sorting_analyzer.random_spikes_indices is None: + # raise ValueError("compute_waveforms need SortingAnalyzer.select_random_spikes() need to be run first") + + # random_spikes_indices = self.sorting_analyzer.get_extension("random_spikes").get_data() + + recording = self.sorting_analyzer.recording + sorting = self.sorting_analyzer.sorting + unit_ids = sorting.unit_ids + + # retrieve spike vector and the sampling + # spikes = sorting.to_spike_vector() + # some_spikes = spikes[random_spikes_indices] + some_spikes = self.sorting_analyzer.get_extension("random_spikes").some_spikes() + + if self.format == "binary_folder": + # in that case waveforms are extacted directly in files + file_path = self._get_binary_extension_folder() / "waveforms.npy" + mode = "memmap" + copy = False + else: + file_path = None + mode = "shared_memory" + copy = True + + if self.sparsity is None: + sparsity_mask = None + else: + sparsity_mask = self.sparsity.mask + + all_waveforms = extract_waveforms_to_single_buffer( + recording, + some_spikes, + unit_ids, + self.nbefore, + self.nafter, + mode=mode, + return_scaled=self.params["return_scaled"], + file_path=file_path, + dtype=self.params["dtype"], + sparsity_mask=sparsity_mask, + copy=copy, + job_name="compute_waveforms", + **job_kwargs, + ) + + self.data["waveforms"] = all_waveforms + + def _set_params( + self, + ms_before: float = 1.0, + ms_after: float = 2.0, + return_scaled: bool = True, + dtype=None, + ): + recording = self.sorting_analyzer.recording + if dtype is None: + dtype = recording.get_dtype() + + if return_scaled: + # check if has scaled values: + if not recording.has_scaled() and recording.get_dtype().kind == "i": + print("Setting 'return_scaled' to False") + return_scaled = False + + if np.issubdtype(dtype, np.integer) and return_scaled: + dtype = "float32" + + dtype = np.dtype(dtype) + + params = dict( + ms_before=float(ms_before), + ms_after=float(ms_after), + return_scaled=return_scaled, + dtype=dtype.str, + ) + return params + + def _select_extension_data(self, unit_ids): + # random_spikes_indices = self.sorting_analyzer.get_extension("random_spikes").get_data() + some_spikes = self.sorting_analyzer.get_extension("random_spikes").some_spikes() + + keep_unit_indices = np.flatnonzero(np.isin(self.sorting_analyzer.unit_ids, unit_ids)) + spikes = self.sorting_analyzer.sorting.to_spike_vector() + # some_spikes = spikes[random_spikes_indices] + keep_spike_mask = np.isin(some_spikes["unit_index"], keep_unit_indices) + + new_data = dict() + new_data["waveforms"] = self.data["waveforms"][keep_spike_mask, :, :] + + return new_data + + def get_waveforms_one_unit( + self, + unit_id, + force_dense: bool = False, + ): + sorting = self.sorting_analyzer.sorting + unit_index = sorting.id_to_index(unit_id) + # spikes = sorting.to_spike_vector() + # some_spikes = spikes[self.sorting_analyzer.random_spikes_indices] + some_spikes = self.sorting_analyzer.get_extension("random_spikes").some_spikes() + spike_mask = some_spikes["unit_index"] == unit_index + wfs = self.data["waveforms"][spike_mask, :, :] + + if self.sorting_analyzer.sparsity is not None: + chan_inds = self.sorting_analyzer.sparsity.unit_id_to_channel_indices[unit_id] + wfs = wfs[:, :, : chan_inds.size] + if force_dense: + num_channels = self.get_num_channels() + dense_wfs = np.zeros((wfs.shape[0], wfs.shape[1], num_channels), dtype=wfs.dtype) + dense_wfs[:, :, chan_inds] = wfs + wfs = dense_wfs + + return wfs + + def _get_data(self): + return self.data["waveforms"] + + +compute_waveforms = ComputeWaveforms.function_factory() +register_result_extension(ComputeWaveforms) + + +class ComputeTemplates(AnalyzerExtension): + """ + AnalyzerExtension that compute templates (average, str, median, percentile, ...) + + This must be run after "waveforms" extension (`SortingAnalyzer.compute("waveforms")`) + + Note that when "waveforms" is already done, then the recording is not needed anymore for this extension. + + Note: by default only the average is computed. Other operator (std, median, percentile) can be computed on demand + after the SortingAnalyzer.compute("templates") and then the data dict is updated on demand. + + + """ + + extension_name = "templates" + depend_on = ["waveforms"] + need_recording = False + use_nodepipeline = False + need_job_kwargs = False + + def _set_params(self, operators=["average", "std"]): + assert isinstance(operators, list) + for operator in operators: + if isinstance(operator, str): + assert operator in ("average", "std", "median", "mad") + else: + assert isinstance(operator, (list, tuple)) + assert len(operator) == 2 + assert operator[0] == "percentile" + + waveforms_extension = self.sorting_analyzer.get_extension("waveforms") + + params = dict( + operators=operators, + nbefore=waveforms_extension.nbefore, + nafter=waveforms_extension.nafter, + return_scaled=waveforms_extension.params["return_scaled"], + ) + return params + + def _run(self): + self._compute_and_append(self.params["operators"]) + + def _compute_and_append(self, operators): + unit_ids = self.sorting_analyzer.unit_ids + channel_ids = self.sorting_analyzer.channel_ids + waveforms_extension = self.sorting_analyzer.get_extension("waveforms") + waveforms = waveforms_extension.data["waveforms"] + + num_samples = waveforms.shape[1] + + for operator in operators: + if isinstance(operator, str) and operator in ("average", "std", "median"): + key = operator + elif isinstance(operator, (list, tuple)): + operator, percentile = operator + assert operator == "percentile" + key = f"pencentile_{percentile}" + else: + raise ValueError(f"ComputeTemplates: wrong operator {operator}") + self.data[key] = np.zeros((unit_ids.size, num_samples, channel_ids.size)) + + # spikes = self.sorting_analyzer.sorting.to_spike_vector() + # some_spikes = spikes[self.sorting_analyzer.random_spikes_indices] + some_spikes = self.sorting_analyzer.get_extension("random_spikes").some_spikes() + for unit_index, unit_id in enumerate(unit_ids): + spike_mask = some_spikes["unit_index"] == unit_index + wfs = waveforms[spike_mask, :, :] + if wfs.shape[0] == 0: + continue + + for operator in operators: + if operator == "average": + arr = np.average(wfs, axis=0) + key = operator + elif operator == "std": + arr = np.std(wfs, axis=0) + key = operator + elif operator == "median": + arr = np.median(wfs, axis=0) + key = operator + elif isinstance(operator, (list, tuple)): + operator, percentile = operator + arr = np.percentile(wfs, percentile, axis=0) + key = f"pencentile_{percentile}" + + if self.sparsity is None: + self.data[key][unit_index, :, :] = arr + else: + channel_indices = self.sparsity.unit_id_to_channel_indices[unit_id] + self.data[key][unit_index, :, :][:, channel_indices] = arr[:, : channel_indices.size] + + @property + def nbefore(self): + return self.params["nbefore"] + + @property + def nafter(self): + return self.params["nafter"] + + def _select_extension_data(self, unit_ids): + keep_unit_indices = np.flatnonzero(np.isin(self.sorting_analyzer.unit_ids, unit_ids)) + + new_data = dict() + for key, arr in self.data.items(): + new_data[key] = arr[keep_unit_indices, :, :] + + return new_data + + def _get_data(self, operator="average", percentile=None, outputs="numpy"): + if operator != "percentile": + key = operator + else: + assert percentile is not None, "You must provide percentile=..." + key = f"pencentile_{percentile}" + + templates_array = self.data[key] + + if outputs == "numpy": + return templates_array + elif outputs == "Templates": + return Templates( + templates_array=templates_array, + sampling_frequency=self.sorting_analyzer.sampling_frequency, + nbefore=self.nbefore, + channel_ids=self.sorting_analyzer.channel_ids, + unit_ids=self.sorting_analyzer.unit_ids, + probe=self.sorting_analyzer.get_probe(), + ) + else: + raise ValueError("outputs must be numpy or Templates") + + def get_templates(self, unit_ids=None, operator="average", percentile=None, save=True): + """ + Return templates (average, std, median or percentil) for multiple units. + + I not computed yet then this is computed on demand and optionally saved. + + Parameters + ---------- + unit_ids: list or None + Unit ids to retrieve waveforms for + mode: "average" | "median" | "std" | "percentile", default: "average" + The mode to compute the templates + percentile: float, default: None + Percentile to use for mode="percentile" + save: bool, default True + In case, the operator is not computed yet it can be saved to folder or zarr. + + Returns + ------- + templates: np.array + The returned templates (num_units, num_samples, num_channels) + """ + if operator != "percentile": + key = operator + else: + assert percentile is not None, "You must provide percentile=..." + key = f"pencentile_{percentile}" + + if key in self.data: + templates = self.data[key] + else: + if operator != "percentile": + self._compute_and_append([operator]) + self.params["operators"] += [operator] + else: + self._compute_and_append([(operator, percentile)]) + self.params["operators"] += [(operator, percentile)] + templates = self.data[key] + + if save: + self.save() + + if unit_ids is not None: + unit_indices = self.sorting_analyzer.sorting.ids_to_indices(unit_ids) + templates = templates[unit_indices, :, :] + + return np.array(templates) + + +compute_templates = ComputeTemplates.function_factory() +register_result_extension(ComputeTemplates) + + +class ComputeFastTemplates(AnalyzerExtension): + """ + AnalyzerExtension which is similar to the extension "templates" (ComputeTemplates) **but only for average**. + This is way faster because it do not need "waveforms" to be computed first. + """ + + extension_name = "fast_templates" + depend_on = ["random_spikes"] + need_recording = True + use_nodepipeline = False + need_job_kwargs = True + + @property + def nbefore(self): + return int(self.params["ms_before"] * self.sorting_analyzer.sampling_frequency / 1000.0) + + @property + def nafter(self): + return int(self.params["ms_after"] * self.sorting_analyzer.sampling_frequency / 1000.0) + + def _run(self, **job_kwargs): + self.data.clear() + + # if self.sorting_analyzer.random_spikes_indices is None: + # raise ValueError("compute_waveforms need SortingAnalyzer.select_random_spikes() need to be run first") + + recording = self.sorting_analyzer.recording + sorting = self.sorting_analyzer.sorting + unit_ids = sorting.unit_ids + + # retrieve spike vector and the sampling + # spikes = sorting.to_spike_vector() + # some_spikes = spikes[self.sorting_analyzer.random_spikes_indices] + some_spikes = self.sorting_analyzer.get_extension("random_spikes").some_spikes() + + return_scaled = self.params["return_scaled"] + + # TODO jobw_kwargs + self.data["average"] = estimate_templates_average( + recording, some_spikes, unit_ids, self.nbefore, self.nafter, return_scaled=return_scaled, **job_kwargs + ) + + def _set_params( + self, + ms_before: float = 1.0, + ms_after: float = 2.0, + return_scaled: bool = True, + ): + params = dict( + ms_before=float(ms_before), + ms_after=float(ms_after), + return_scaled=return_scaled, + ) + return params + + def _get_data(self, outputs="numpy"): + templates_array = self.data["average"] + + if outputs == "numpy": + return templates_array + elif outputs == "Templates": + return Templates( + templates_array=templates_array, + sampling_frequency=self.sorting_analyzer.sampling_frequency, + nbefore=self.nbefore, + channel_ids=self.sorting_analyzer.channel_ids, + unit_ids=self.sorting_analyzer.unit_ids, + probe=self.sorting_analyzer.get_probe(), + ) + else: + raise ValueError("outputs must be numpy or Templates") + + def _select_extension_data(self, unit_ids): + keep_unit_indices = np.flatnonzero(np.isin(self.sorting_analyzer.unit_ids, unit_ids)) + + new_data = dict() + new_data["average"] = self.data["average"][keep_unit_indices, :, :] + + return new_data + + +compute_fast_templates = ComputeFastTemplates.function_factory() +register_result_extension(ComputeFastTemplates) + + +class ComputeNoiseLevels(AnalyzerExtension): + """ + Computes the noise level associated to each recording channel. + + This function will wraps the `get_noise_levels(recording)` to make the noise levels persistent + on disk (folder or zarr) as a `WaveformExtension`. + The noise levels do not depend on the unit list, only the recording, but it is a convenient way to + retrieve the noise levels directly ine the WaveformExtractor. + + Note that the noise levels can be scaled or not, depending on the `return_scaled` parameter + of the `WaveformExtractor`. + + Parameters + ---------- + sorting_analyzer: SortingAnalyzer + A SortingAnalyzer object + **params: dict with additional parameters + + Returns + ------- + noise_levels: np.array + noise level vector. + """ + + extension_name = "noise_levels" + depend_on = [] + need_recording = True + use_nodepipeline = False + need_job_kwargs = False + + def __init__(self, sorting_analyzer): + AnalyzerExtension.__init__(self, sorting_analyzer) + + def _set_params(self, num_chunks_per_segment=20, chunk_size=10000, return_scaled=True, seed=None): + params = dict( + num_chunks_per_segment=num_chunks_per_segment, chunk_size=chunk_size, return_scaled=return_scaled, seed=seed + ) + return params + + def _select_extension_data(self, unit_ids): + # this do not depend on units + return self.data + + def _run(self): + self.data["noise_levels"] = get_noise_levels(self.sorting_analyzer.recording, **self.params) + + def _get_data(self): + return self.data["noise_levels"] + + +register_result_extension(ComputeNoiseLevels) +compute_noise_levels = ComputeNoiseLevels.function_factory() diff --git a/src/spikeinterface/core/baserecording.py b/src/spikeinterface/core/baserecording.py index b65409e033..74937d0861 100644 --- a/src/spikeinterface/core/baserecording.py +++ b/src/spikeinterface/core/baserecording.py @@ -310,10 +310,15 @@ def get_traces( warnings.warn(message) if not self.has_scaled(): - raise ValueError( - "This recording does not support return_scaled=True (need gain_to_uV and offset_" - "to_uV properties)" - ) + if self._dtype.kind == "f": + # here we do not truely have scale but we assume this is scaled + # this helps a lot for simulated data + pass + else: + raise ValueError( + "This recording does not support return_scaled=True (need gain_to_uV and offset_" + "to_uV properties)" + ) else: gains = self.get_property("gain_to_uV") offsets = self.get_property("offset_to_uV") diff --git a/src/spikeinterface/core/generate.py b/src/spikeinterface/core/generate.py index 0c92eab0e4..1dbb061696 100644 --- a/src/spikeinterface/core/generate.py +++ b/src/spikeinterface/core/generate.py @@ -1259,7 +1259,7 @@ def generate_single_fake_waveform( bins = np.arange(-n, n + 1) smooth_kernel = np.exp(-(bins**2) / (2 * smooth_size**2)) smooth_kernel /= np.sum(smooth_kernel) - smooth_kernel = smooth_kernel[4:] + # smooth_kernel = smooth_kernel[4:] wf = np.convolve(wf, smooth_kernel, mode="same") # ensure the the peak to be extatly at nbefore (smooth can modify this) diff --git a/src/spikeinterface/core/job_tools.py b/src/spikeinterface/core/job_tools.py index 981ad6320b..db8d8f6339 100644 --- a/src/spikeinterface/core/job_tools.py +++ b/src/spikeinterface/core/job_tools.py @@ -259,7 +259,7 @@ class ChunkRecordingExecutor: * in parallel with ProcessPoolExecutor (higher speed) The initializer ("init_func") allows to set a global context to avoid heavy serialization - (for examples, see implementation in `core.WaveformExtractor`). + (for examples, see implementation in `core.waveform_tools`). Parameters ---------- diff --git a/src/spikeinterface/core/node_pipeline.py b/src/spikeinterface/core/node_pipeline.py index 954241a2c1..78e9a82cf0 100644 --- a/src/spikeinterface/core/node_pipeline.py +++ b/src/spikeinterface/core/node_pipeline.py @@ -42,6 +42,11 @@ ] +spike_peak_dtype = base_peak_dtype + [ + ("unit_index", "int64"), +] + + class PipelineNode: def __init__( self, @@ -162,10 +167,19 @@ class SpikeRetriever(PeakSource): peak_sign: "neg" | "pos", default: "neg" Peak sign to find the max channel. Used only when channel_from_template=False + include_spikes_in_margin: bool, default False + If not None then spikes in margin are added and an extra filed in dtype is added """ def __init__( - self, recording, sorting, channel_from_template=True, extremum_channel_inds=None, radius_um=50, peak_sign="neg" + self, + recording, + sorting, + channel_from_template=True, + extremum_channel_inds=None, + radius_um=50, + peak_sign="neg", + include_spikes_in_margin=False, ): PipelineNode.__init__(self, recording, return_output=False) @@ -173,7 +187,13 @@ def __init__( assert extremum_channel_inds is not None, "SpikeRetriever needs the extremum_channel_inds dictionary" - self.peaks = sorting_to_peaks(sorting, extremum_channel_inds) + self._dtype = spike_peak_dtype + + self.include_spikes_in_margin = include_spikes_in_margin + if include_spikes_in_margin is not None: + self._dtype = spike_peak_dtype + [("in_margin", "bool")] + + self.peaks = sorting_to_peaks(sorting, extremum_channel_inds, self._dtype) if not channel_from_template: channel_distance = get_channel_distances(recording) @@ -190,19 +210,32 @@ def get_trace_margin(self): return 0 def get_dtype(self): - return base_peak_dtype + return self._dtype def compute(self, traces, start_frame, end_frame, segment_index, max_margin): # get local peaks sl = self.segment_slices[segment_index] peaks_in_segment = self.peaks[sl] - i0, i1 = np.searchsorted(peaks_in_segment["sample_index"], [start_frame, end_frame]) + if self.include_spikes_in_margin: + i0, i1 = np.searchsorted( + peaks_in_segment["sample_index"], [start_frame - max_margin, end_frame + max_margin] + ) + else: + i0, i1 = np.searchsorted(peaks_in_segment["sample_index"], [start_frame, end_frame]) local_peaks = peaks_in_segment[i0:i1] # make sample index local to traces local_peaks = local_peaks.copy() local_peaks["sample_index"] -= start_frame - max_margin + # handle flag for margin + if self.include_spikes_in_margin: + local_peaks["in_margin"][:] = False + mask = local_peaks["sample_index"] < max_margin + local_peaks["in_margin"][mask] = True + mask = local_peaks["sample_index"] >= traces.shape[0] - max_margin + local_peaks["in_margin"][mask] = True + if not self.channel_from_template: # handle channel spike per spike for i, peak in enumerate(local_peaks): @@ -222,14 +255,15 @@ def compute(self, traces, start_frame, end_frame, segment_index, max_margin): return (local_peaks,) -def sorting_to_peaks(sorting, extremum_channel_inds): +def sorting_to_peaks(sorting, extremum_channel_inds, dtype): spikes = sorting.to_spike_vector() - peaks = np.zeros(spikes.size, dtype=base_peak_dtype) + peaks = np.zeros(spikes.size, dtype=dtype) peaks["sample_index"] = spikes["sample_index"] extremum_channel_inds_ = np.array([extremum_channel_inds[unit_id] for unit_id in sorting.unit_ids]) peaks["channel_index"] = extremum_channel_inds_[spikes["unit_index"]] peaks["amplitude"] = 0.0 peaks["segment_index"] = spikes["segment_index"] + peaks["unit_index"] = spikes["unit_index"] return peaks diff --git a/src/spikeinterface/core/numpyextractors.py b/src/spikeinterface/core/numpyextractors.py index e50e92e33d..5ce64fcc49 100644 --- a/src/spikeinterface/core/numpyextractors.py +++ b/src/spikeinterface/core/numpyextractors.py @@ -504,7 +504,7 @@ def __del__(self): self.shm.unlink() @staticmethod - def from_sorting(source_sorting): + def from_sorting(source_sorting, with_metadata=False): spikes = source_sorting.to_spike_vector() shm_spikes, shm = make_shared_array(spikes.shape, spikes.dtype) shm_spikes[:] = spikes @@ -517,6 +517,8 @@ def from_sorting(source_sorting): main_shm_owner=True, ) shm.close() + if with_metadata: + source_sorting.copy_metadata(sorting) return sorting diff --git a/src/spikeinterface/core/recording_tools.py b/src/spikeinterface/core/recording_tools.py index ecb8564163..26f94cb84e 100644 --- a/src/spikeinterface/core/recording_tools.py +++ b/src/spikeinterface/core/recording_tools.py @@ -898,5 +898,6 @@ def get_rec_attributes(recording): num_samples=[recording.get_num_samples(seg_index) for seg_index in range(recording.get_num_segments())], is_filtered=recording.is_filtered(), properties=properties_to_attrs, + dtype=recording.get_dtype(), ) return rec_attributes diff --git a/src/spikeinterface/core/sorting_tools.py b/src/spikeinterface/core/sorting_tools.py index df0af26fc0..99c6a6e75a 100644 --- a/src/spikeinterface/core/sorting_tools.py +++ b/src/spikeinterface/core/sorting_tools.py @@ -47,6 +47,50 @@ def spike_vector_to_spike_trains(spike_vector: list[np.array], unit_ids: np.arra return spike_trains +def spike_vector_to_indices(spike_vector: list[np.array], unit_ids: np.array): + """ + Similar to spike_vector_to_spike_trains but instead having the spike_trains (aka spike times) return + spike indices by segment and units. + + This is usefull to split back other unique vector like "spike_amplitudes", "spike_locations" into dict of dict + Internally calls numba if numba is installed. + + Parameters + ---------- + spike_vector: list[np.ndarray] + List of spike vectors optained with sorting.to_spike_vector(concatenated=False) + unit_ids: np.array + Unit ids + Returns + ------- + spike_indices: dict[dict]: + A dict containing, for each segment, the spike indices of all units + (as a dict: unit_id --> index). + """ + try: + import numba + + HAVE_NUMBA = True + except: + HAVE_NUMBA = False + + if HAVE_NUMBA: + # the trick here is to have a function getter + vector_to_list_of_spiketrain = get_numba_vector_to_list_of_spiketrain() + else: + vector_to_list_of_spiketrain = vector_to_list_of_spiketrain_numpy + + num_units = unit_ids.size + spike_indices = {} + for segment_index, spikes in enumerate(spike_vector): + indices = np.arange(spikes.size, dtype=np.int64) + unit_indices = np.array(spikes["unit_index"]).astype(np.int64, copy=False) + list_of_spike_indices = vector_to_list_of_spiketrain(indices, unit_indices, num_units) + spike_indices[segment_index] = dict(zip(unit_ids, list_of_spike_indices)) + + return spike_indices + + def vector_to_list_of_spiketrain_numpy(sample_indices, unit_indices, num_units): """ Slower implementation of vetor_to_dict using numpy boolean mask. @@ -96,7 +140,7 @@ def vector_to_list_of_spiketrain_numba(sample_indices, unit_indices, num_units): # TODO later : implement other method like "maximum_rate", "by_percent", ... def random_spikes_selection( sorting: BaseSorting, - num_samples: int, + num_samples: int | None = None, method: str = "uniform", max_spikes_per_unit: int = 500, margin_size: int | None = None, @@ -145,6 +189,7 @@ def random_spikes_selection( raise ValueError(f"random_spikes_selection wrong method {method}, currently only 'uniform' can be used.") if margin_size is not None: + assert num_samples is not None margin_size = int(margin_size) keep = np.ones(selected_unit_indices.size, dtype=bool) # left margin diff --git a/src/spikeinterface/core/sortinganalyzer.py b/src/spikeinterface/core/sortinganalyzer.py new file mode 100644 index 0000000000..062ad3b60a --- /dev/null +++ b/src/spikeinterface/core/sortinganalyzer.py @@ -0,0 +1,1473 @@ +from __future__ import annotations +from typing import Literal, Optional + +from pathlib import Path +import os +import json +import pickle +import weakref +import shutil +import warnings + +import numpy as np + +import probeinterface + +import spikeinterface + +from .baserecording import BaseRecording +from .basesorting import BaseSorting + +from .base import load_extractor +from .recording_tools import check_probe_do_not_overlap, get_rec_attributes +from .core_tools import check_json +from .job_tools import split_job_kwargs +from .numpyextractors import SharedMemorySorting +from .sparsity import ChannelSparsity, estimate_sparsity +from .sortingfolder import NumpyFolderSorting +from .zarrextractors import get_default_zarr_compressor, ZarrSortingExtractor +from .node_pipeline import run_node_pipeline + + +# high level function +def create_sorting_analyzer( + sorting, recording, format="memory", folder=None, sparse=True, sparsity=None, **sparsity_kwargs +): + """ + Create a SortingAnalyzer by pairing a Sorting and the corresponding Recording. + + This object will handle a list of AnalyzerExtension for all the post processing steps like: waveforms, + templates, unit locations, spike locations, quality metrics ... + + This object will be also use used for plotting purpose. + + + Parameters + ---------- + sorting: Sorting + The sorting object + recording: Recording + The recording object + folder: str or Path or None, default: None + The folder where waveforms are cached + format: "memory | "binary_folder" | "zarr", default: "memory" + The mode to store waveforms. If "folder", waveforms are stored on disk in the specified folder. + The "folder" argument must be specified in case of mode "folder". + If "memory" is used, the waveforms are stored in RAM. Use this option carefully! + sparse: bool, default: True + If True, then a sparsity mask is computed using the `estimate_sparsity()` function using + a few spikes to get an estimate of dense templates to create a ChannelSparsity object. + Then, the sparsity will be propagated to all ResultExtention that handle sparsity (like wavforms, pca, ...) + You can control `estimate_sparsity()` : all extra arguments are propagated to it (included job_kwargs) + sparsity: ChannelSparsity or None, default: None + The sparsity used to compute waveforms. If this is given, `sparse` is ignored. + + Returns + ------- + sorting_analyzer: SortingAnalyzer + The SortingAnalyzer object + + Examples + -------- + >>> import spikeinterface as si + + >>> # Extract dense waveforms and save to disk with binary_folder format. + >>> sorting_analyzer = si.create_sorting_analyzer(sorting, recording, format="binary_folder", folder="/path/to_my/result") + + >>> # Can be reload + >>> sorting_analyzer = si.load_sorting_analyzer(folder="/path/to_my/result") + + >>> # Can run extension + >>> sorting_analyzer = si.compute("unit_locations", ...) + + >>> # Can be copy to another format (extensions are propagated) + >>> sorting_analyzer2 = sorting_analyzer.save_as(format="memory") + >>> sorting_analyzer3 = sorting_analyzer.save_as(format="zarr", folder="/path/to_my/result.zarr") + + >>> # Can make a copy with a subset of units (extensions are propagated for the unit subset) + >>> sorting_analyzer4 = sorting_analyzer.select_units(unit_ids=sorting.units_ids[:5], format="memory") + >>> sorting_analyzer5 = sorting_analyzer.select_units(unit_ids=sorting.units_ids[:5], format="binary_folder", folder="/result_5units") + + Notes + ----- + + By default creating a SortingAnalyzer can be slow because the sparsity is estimated by default. + In some situation, sparsity is not needed, so to make it fast creation, you need to turn + sparsity off (or give external sparsity) like this. + """ + + # handle sparsity + if sparsity is not None: + # some checks + assert isinstance(sparsity, ChannelSparsity), "'sparsity' must be a ChannelSparsity object" + assert np.array_equal( + sorting.unit_ids, sparsity.unit_ids + ), "create_sorting_analyzer(): if external sparsity is given unit_ids must correspond" + assert np.array_equal( + recording.channel_ids, sparsity.channel_ids + ), "create_sorting_analyzer(): if external sparsity is given unit_ids must correspond" + elif sparse: + sparsity = estimate_sparsity(recording, sorting, **sparsity_kwargs) + else: + sparsity = None + + sorting_analyzer = SortingAnalyzer.create(sorting, recording, format=format, folder=folder, sparsity=sparsity) + + return sorting_analyzer + + +def load_sorting_analyzer(folder, load_extensions=True, format="auto"): + """ + Load a SortingAnalyzer object from disk. + + Parameters + ---------- + folder : str or Path + The folder / zarr folder where the waveform extractor is stored + load_extensions : bool, default: True + Load all extensions or not. + format: "auto" | "binary_folder" | "zarr" + The format of the folder. + + Returns + ------- + sorting_analyzer: SortingAnalyzer + The loaded SortingAnalyzer + + """ + return SortingAnalyzer.load(folder, load_extensions=load_extensions, format=format) + + +class SortingAnalyzer: + """ + Class to make a pair of Recording-Sorting which will be used used for all post postprocessing, + visualization and quality metric computation. + + This internally maintains a list of computed ResultExtention (waveform, pca, unit position, spike position, ...). + + This can live in memory and/or can be be persistent to disk in 2 internal formats (folder/json/npz or zarr). + A SortingAnalyzer can be transfer to another format using `save_as()` + + This handle unit sparsity that can be propagated to ResultExtention. + + This handle spike sampling that can be propagated to ResultExtention : works on only a subset of spikes. + + This internally saves a copy of the Sorting and extracts main recording attributes (without traces) so + the SortingAnalyzer object can be reloaded even if references to the original sorting and/or to the original recording + are lost. + + SortingAnalyzer() should not never be used directly for creating: use instead create_sorting_analyzer(sorting, resording, ...) + or eventually SortingAnalyzer.create(...) + """ + + def __init__( + self, + sorting=None, + recording=None, + rec_attributes=None, + format=None, + sparsity=None, + ): + # very fast init because checks are done in load and create + self.sorting = sorting + # self.recorsding will be a property + self._recording = recording + self.rec_attributes = rec_attributes + self.format = format + self.sparsity = sparsity + + # extensions are not loaded at init + self.extensions = dict() + + def __repr__(self) -> str: + clsname = self.__class__.__name__ + nseg = self.get_num_segments() + nchan = self.get_num_channels() + nunits = self.sorting.get_num_units() + txt = f"{clsname}: {nchan} channels - {nunits} units - {nseg} segments - {self.format}" + if self.is_sparse(): + txt += " - sparse" + if self.has_recording(): + txt += " - has recording" + ext_txt = f"Loaded {len(self.extensions)} extenstions: " + ", ".join(self.extensions.keys()) + txt += "\n" + ext_txt + return txt + + ## create and load zone + + @classmethod + def create( + cls, + sorting: BaseSorting, + recording: BaseRecording, + format: Literal[ + "memory", + "binary_folder", + "zarr", + ] = "memory", + folder=None, + sparsity=None, + ): + # some checks + assert sorting.sampling_frequency == recording.sampling_frequency + # check that multiple probes are non-overlapping + all_probes = recording.get_probegroup().probes + check_probe_do_not_overlap(all_probes) + + if format == "memory": + sorting_analyzer = cls.create_memory(sorting, recording, sparsity, rec_attributes=None) + elif format == "binary_folder": + cls.create_binary_folder(folder, sorting, recording, sparsity, rec_attributes=None) + sorting_analyzer = cls.load_from_binary_folder(folder, recording=recording) + sorting_analyzer.folder = folder + elif format == "zarr": + cls.create_zarr(folder, sorting, recording, sparsity, rec_attributes=None) + sorting_analyzer = cls.load_from_zarr(folder, recording=recording) + sorting_analyzer.folder = folder + else: + raise ValueError("SortingAnalyzer.create: wrong format") + + return sorting_analyzer + + @classmethod + def load(cls, folder, recording=None, load_extensions=True, format="auto"): + """ + Load folder or zarr. + The recording can be given if the recording location has changed. + Otherwise the recording is loaded when possible. + """ + folder = Path(folder) + assert folder.is_dir(), "Waveform folder does not exists" + if format == "auto": + # make better assumption and check for auto guess format + if folder.suffix == ".zarr": + format = "zarr" + else: + format = "binary_folder" + + if format == "binary_folder": + sorting_analyzer = SortingAnalyzer.load_from_binary_folder(folder, recording=recording) + elif format == "zarr": + sorting_analyzer = SortingAnalyzer.load_from_zarr(folder, recording=recording) + + sorting_analyzer.folder = folder + + if load_extensions: + sorting_analyzer.load_all_saved_extension() + + return sorting_analyzer + + @classmethod + def create_memory(cls, sorting, recording, sparsity, rec_attributes): + # used by create and save_as + + if rec_attributes is None: + assert recording is not None + rec_attributes = get_rec_attributes(recording) + rec_attributes["probegroup"] = recording.get_probegroup() + else: + # a copy is done to avoid shared dict between instances (which can block garbage collector) + rec_attributes = rec_attributes.copy() + + # a copy of sorting is created directly in shared memory format to avoid further duplication of spikes. + sorting_copy = SharedMemorySorting.from_sorting(sorting, with_metadata=True) + sorting_analyzer = SortingAnalyzer( + sorting=sorting_copy, recording=recording, rec_attributes=rec_attributes, format="memory", sparsity=sparsity + ) + return sorting_analyzer + + @classmethod + def create_binary_folder(cls, folder, sorting, recording, sparsity, rec_attributes): + # used by create and save_as + + assert recording is not None, "To create a SortingAnalyzer you need recording not None" + + folder = Path(folder) + if folder.is_dir(): + raise ValueError(f"Folder already exists {folder}") + folder.mkdir(parents=True) + + info_file = folder / f"spikeinterface_info.json" + info = dict( + version=spikeinterface.__version__, + dev_mode=spikeinterface.DEV_MODE, + object="SortingAnalyzer", + ) + with open(info_file, mode="w") as f: + json.dump(check_json(info), f, indent=4) + + # save a copy of the sorting + NumpyFolderSorting.write_sorting(sorting, folder / "sorting") + + # save recording and sorting provenance + if recording.check_serializability("json"): + recording.dump(folder / "recording.json", relative_to=folder) + elif recording.check_serializability("pickle"): + recording.dump(folder / "recording.pickle", relative_to=folder) + + if sorting.check_serializability("json"): + sorting.dump(folder / "sorting_provenance.json", relative_to=folder) + elif sorting.check_serializability("pickle"): + sorting.dump(folder / "sorting_provenance.pickle", relative_to=folder) + + # dump recording attributes + probegroup = None + rec_attributes_file = folder / "recording_info" / "recording_attributes.json" + rec_attributes_file.parent.mkdir() + if rec_attributes is None: + assert recording is not None + rec_attributes = get_rec_attributes(recording) + rec_attributes_file.write_text(json.dumps(check_json(rec_attributes), indent=4), encoding="utf8") + probegroup = recording.get_probegroup() + else: + rec_attributes_copy = rec_attributes.copy() + probegroup = rec_attributes_copy.pop("probegroup") + rec_attributes_file.write_text(json.dumps(check_json(rec_attributes_copy), indent=4), encoding="utf8") + + if probegroup is not None: + probegroup_file = folder / "recording_info" / "probegroup.json" + probeinterface.write_probeinterface(probegroup_file, probegroup) + + if sparsity is not None: + np.save(folder / "sparsity_mask.npy", sparsity.mask) + + @classmethod + def load_from_binary_folder(cls, folder, recording=None): + folder = Path(folder) + assert folder.is_dir(), f"This folder does not exists {folder}" + + # load internal sorting copy and make it sharedmem + sorting = SharedMemorySorting.from_sorting(NumpyFolderSorting(folder / "sorting"), with_metadata=True) + + # load recording if possible + if recording is None: + # try to load the recording if not provided + for type in ("json", "pickle"): + filename = folder / f"recording.{type}" + if filename.exists(): + try: + recording = load_extractor(filename, base_folder=folder) + break + except: + recording = None + else: + # TODO maybe maybe not??? : do we need to check attributes match internal rec_attributes + # Note this will make the loading too slow + pass + + # recording attributes + rec_attributes_file = folder / "recording_info" / "recording_attributes.json" + if not rec_attributes_file.exists(): + raise ValueError("This folder is not a SortingAnalyzer with format='binary_folder'") + with open(rec_attributes_file, "r") as f: + rec_attributes = json.load(f) + # the probe is handle ouside the main json + probegroup_file = folder / "recording_info" / "probegroup.json" + + if probegroup_file.is_file(): + rec_attributes["probegroup"] = probeinterface.read_probeinterface(probegroup_file) + else: + rec_attributes["probegroup"] = None + + # sparsity + sparsity_file = folder / "sparsity_mask.npy" + if sparsity_file.is_file(): + sparsity_mask = np.load(sparsity_file) + sparsity = ChannelSparsity(sparsity_mask, sorting.unit_ids, rec_attributes["channel_ids"]) + else: + sparsity = None + + sorting_analyzer = SortingAnalyzer( + sorting=sorting, + recording=recording, + rec_attributes=rec_attributes, + format="binary_folder", + sparsity=sparsity, + ) + + return sorting_analyzer + + def _get_zarr_root(self, mode="r+"): + import zarr + + zarr_root = zarr.open(self.folder, mode=mode) + return zarr_root + + @classmethod + def create_zarr(cls, folder, sorting, recording, sparsity, rec_attributes): + # used by create and save_as + import zarr + import numcodecs + + folder = Path(folder) + # force zarr sufix + if folder.suffix != ".zarr": + folder = folder.parent / f"{folder.stem}.zarr" + + if folder.is_dir(): + raise ValueError(f"Folder already exists {folder}") + + zarr_root = zarr.open(folder, mode="w") + + info = dict(version=spikeinterface.__version__, dev_mode=spikeinterface.DEV_MODE, object="SortingAnalyzer") + zarr_root.attrs["spikeinterface_info"] = check_json(info) + + # the recording + rec_dict = recording.to_dict(relative_to=folder, recursive=True) + + if recording.check_serializability("json"): + # zarr_root.create_dataset("recording", data=rec_dict, object_codec=numcodecs.JSON()) + zarr_rec = np.array([check_json(rec_dict)], dtype=object) + zarr_root.create_dataset("recording", data=zarr_rec, object_codec=numcodecs.JSON()) + elif recording.check_serializability("pickle"): + # zarr_root.create_dataset("recording", data=rec_dict, object_codec=numcodecs.Pickle()) + zarr_rec = np.array([rec_dict], dtype=object) + zarr_root.create_dataset("recording", data=zarr_rec, object_codec=numcodecs.Pickle()) + else: + warnings.warn( + "SortingAnalyzer with zarr : the Recording is not json serializable, the recording link will be lost for future load" + ) + + # sorting provenance + sort_dict = sorting.to_dict(relative_to=folder, recursive=True) + if sorting.check_serializability("json"): + zarr_sort = np.array([sort_dict], dtype=object) + zarr_root.create_dataset("sorting_provenance", data=zarr_sort, object_codec=numcodecs.JSON()) + elif sorting.check_serializability("pickle"): + zarr_sort = np.array([sort_dict], dtype=object) + zarr_root.create_dataset("sorting_provenance", data=zarr_sort, object_codec=numcodecs.Pickle()) + + # else: + # warnings.warn("SortingAnalyzer with zarr : the sorting provenance is not json serializable, the sorting provenance link will be lost for futur load") + + recording_info = zarr_root.create_group("recording_info") + + if rec_attributes is None: + assert recording is not None + rec_attributes = get_rec_attributes(recording) + probegroup = recording.get_probegroup() + else: + rec_attributes = rec_attributes.copy() + probegroup = rec_attributes.pop("probegroup") + + recording_info.attrs["recording_attributes"] = check_json(rec_attributes) + + if probegroup is not None: + recording_info.attrs["probegroup"] = check_json(probegroup.to_dict()) + + if sparsity is not None: + zarr_root.create_dataset("sparsity_mask", data=sparsity.mask) + + # write sorting copy + from .zarrextractors import add_sorting_to_zarr_group + + # Alessio : we need to find a way to propagate compressor for all steps. + # kwargs = dict(compressor=...) + zarr_kwargs = dict() + add_sorting_to_zarr_group(sorting, zarr_root.create_group("sorting"), **zarr_kwargs) + + recording_info = zarr_root.create_group("extensions") + + @classmethod + def load_from_zarr(cls, folder, recording=None): + import zarr + + folder = Path(folder) + assert folder.is_dir(), f"This folder does not exist {folder}" + + zarr_root = zarr.open(folder, mode="r") + + # load internal sorting and make it sharedmem + # TODO propagate storage_options + sorting = SharedMemorySorting.from_sorting( + ZarrSortingExtractor(folder, zarr_group="sorting"), with_metadata=True + ) + + # load recording if possible + if recording is None: + rec_dict = zarr_root["recording"][0] + try: + + recording = load_extractor(rec_dict, base_folder=folder) + except: + recording = None + else: + # TODO maybe maybe not??? : do we need to check attributes match internal rec_attributes + # Note this will make the loading too slow + pass + + # recording attributes + rec_attributes = zarr_root["recording_info"].attrs["recording_attributes"] + if "probegroup" in zarr_root["recording_info"].attrs: + probegroup_dict = zarr_root["recording_info"].attrs["probegroup"] + rec_attributes["probegroup"] = probeinterface.ProbeGroup.from_dict(probegroup_dict) + else: + rec_attributes["probegroup"] = None + + # sparsity + if "sparsity_mask" in zarr_root.attrs: + # sparsity = zarr_root.attrs["sparsity"] + sparsity = ChannelSparsity(zarr_root["sparsity_mask"], self.unit_ids, rec_attributes["channel_ids"]) + else: + sparsity = None + + sorting_analyzer = SortingAnalyzer( + sorting=sorting, + recording=recording, + rec_attributes=rec_attributes, + format="zarr", + sparsity=sparsity, + ) + + return sorting_analyzer + + def _save_or_select(self, format="binary_folder", folder=None, unit_ids=None) -> "SortingAnalyzer": + """ + Internal used by both save_as(), copy() and select_units() which are more or less the same. + """ + + if self.has_recording(): + recording = self.recording + else: + recording = None + + if self.sparsity is not None and unit_ids is None: + sparsity = self.sparsity + elif self.sparsity is not None and unit_ids is not None: + sparsity_mask = self.sparsity.mask[np.isin(self.unit_ids, unit_ids), :] + sparsity = ChannelSparsity(sparsity_mask, unit_ids, self.channel_ids) + else: + sparsity = None + + # Note that the sorting is a copy we need to go back to the orginal sorting (if available) + sorting_provenance = self.get_sorting_provenance() + if sorting_provenance is None: + # if the original sorting objetc is not available anymore (kilosort folder deleted, ....), take the copy + sorting_provenance = self.sorting + + if unit_ids is not None: + # when only some unit_ids then the sorting must be sliced + # TODO check that unit_ids are in same order otherwise many extension do handle it properly!!!! + sorting_provenance = sorting_provenance.select_units(unit_ids) + + if format == "memory": + # This make a copy of actual SortingAnalyzer + new_sorting_analyzer = SortingAnalyzer.create_memory( + sorting_provenance, recording, sparsity, self.rec_attributes + ) + + elif format == "binary_folder": + # create a new folder + assert folder is not None, "For format='binary_folder' folder must be provided" + folder = Path(folder) + SortingAnalyzer.create_binary_folder(folder, sorting_provenance, recording, sparsity, self.rec_attributes) + new_sorting_analyzer = SortingAnalyzer.load_from_binary_folder(folder, recording=recording) + new_sorting_analyzer.folder = folder + + elif format == "zarr": + assert folder is not None, "For format='zarr' folder must be provided" + folder = Path(folder) + if folder.suffix != ".zarr": + folder = folder.parent / f"{folder.stem}.zarr" + SortingAnalyzer.create_zarr(folder, sorting_provenance, recording, sparsity, self.rec_attributes) + new_sorting_analyzer = SortingAnalyzer.load_from_zarr(folder, recording=recording) + new_sorting_analyzer.folder = folder + else: + raise ValueError(f"SortingAnalyzer.save: unsupported format: {format}") + + # make a copy of extensions + # note that the copy of extension handle itself the slicing of units when necessary and also the saveing + for extension_name, extension in self.extensions.items(): + new_ext = new_sorting_analyzer.extensions[extension_name] = extension.copy( + new_sorting_analyzer, unit_ids=unit_ids + ) + + return new_sorting_analyzer + + def save_as(self, format="memory", folder=None) -> "SortingAnalyzer": + """ + Save SortingAnalyzer object into another format. + Uselful for memory to zarr or memory to binary. + + Note that the recording provenance or sorting provenance can be lost. + + Mainly propagates the copied sorting and recording properties. + + Parameters + ---------- + folder : str or Path + The output waveform folder + format : "binary_folder" | "zarr", default: "binary_folder" + The backend to use for saving the waveforms + """ + return self._save_or_select(format=format, folder=folder, unit_ids=None) + + def select_units(self, unit_ids, format="memory", folder=None) -> "SortingAnalyzer": + """ + This method is equivalent to `save_as()`but with a subset of units. + Filters units by creating a new sorting analyzer object in a new folder. + + Extensions are also updated to filter the selected unit ids. + + Parameters + ---------- + unit_ids : list or array + The unit ids to keep in the new SortingAnalyzer object + folder : Path or None + The new folder where selected waveforms are copied + format: + a + Returns + ------- + we : SortingAnalyzer + The newly create sorting_analyzer with the selected units + """ + # TODO check that unit_ids are in same order otherwise many extension do handle it properly!!!! + return self._save_or_select(format=format, folder=folder, unit_ids=unit_ids) + + def copy(self): + """ + Create a a copy of SortingAnalyzer with format "memory". + """ + return self._save_or_select(format="memory", folder=None, unit_ids=None) + + def is_read_only(self) -> bool: + if self.format == "memory": + return False + return not os.access(self.folder, os.W_OK) + + ## map attribute and property zone + + @property + def recording(self) -> BaseRecording: + if not self.has_recording(): + raise ValueError("SortingAnalyzer could not load the recording") + return self._recording + + @property + def channel_ids(self) -> np.ndarray: + return np.array(self.rec_attributes["channel_ids"]) + + @property + def sampling_frequency(self) -> float: + return self.sorting.get_sampling_frequency() + + @property + def unit_ids(self) -> np.ndarray: + return self.sorting.unit_ids + + def has_recording(self) -> bool: + return self._recording is not None + + def is_sparse(self) -> bool: + return self.sparsity is not None + + def get_sorting_provenance(self): + """ + Get the original sorting if possible otherwise return None + """ + if self.format == "memory": + # the orginal sorting provenance is not keps in that case + sorting_provenance = None + + elif self.format == "binary_folder": + for type in ("json", "pickle"): + filename = self.folder / f"sorting_provenance.{type}" + sorting_provenance = None + if filename.exists(): + try: + sorting_provenance = load_extractor(filename, base_folder=self.folder) + break + except: + pass + # sorting_provenance = None + + elif self.format == "zarr": + zarr_root = self._get_zarr_root(mode="r") + if "sorting_provenance" in zarr_root.keys(): + sort_dict = zarr_root["sorting_provenance"][0] + sorting_provenance = load_extractor(sort_dict, base_folder=self.folder) + else: + sorting_provenance = None + + return sorting_provenance + + def get_num_samples(self, segment_index: Optional[int] = None) -> int: + # we use self.sorting to check segment_index + segment_index = self.sorting._check_segment_index(segment_index) + return self.rec_attributes["num_samples"][segment_index] + + def get_total_samples(self) -> int: + s = 0 + for segment_index in range(self.get_num_segments()): + s += self.get_num_samples(segment_index) + return s + + def get_total_duration(self) -> float: + duration = self.get_total_samples() / self.sampling_frequency + return duration + + def get_num_channels(self) -> int: + return self.rec_attributes["num_channels"] + + def get_num_segments(self) -> int: + return self.sorting.get_num_segments() + + def get_probegroup(self): + return self.rec_attributes["probegroup"] + + def get_probe(self): + probegroup = self.get_probegroup() + assert len(probegroup.probes) == 1, "There are several probes. Use `get_probegroup()`" + return probegroup.probes[0] + + def get_channel_locations(self) -> np.ndarray: + # important note : contrary to recording + # this give all channel locations, so no kwargs like channel_ids and axes + all_probes = self.get_probegroup().probes + all_positions = np.vstack([probe.contact_positions for probe in all_probes]) + return all_positions + + def channel_ids_to_indices(self, channel_ids) -> np.ndarray: + all_channel_ids = list(self.rec_attributes["channel_ids"]) + indices = np.array([all_channel_ids.index(id) for id in channel_ids], dtype=int) + return indices + + def get_recording_property(self, key) -> np.ndarray: + values = np.array(self.rec_attributes["properties"].get(key, None)) + return values + + def get_sorting_property(self, key) -> np.ndarray: + return self.sorting.get_property(key) + + def get_dtype(self): + return self.rec_attributes["dtype"] + + ## extensions zone + + def compute(self, input, save=True, **kwargs): + """ + Compute one extension or several extensiosn. + Internally calls compute_one_extension() or compute_several_extensions() depending on the input type. + + Parameters + ---------- + input: str or dict + If the input is a string then computes one extension with compute_one_extension(extension_name=input, ...) + If the input is a dict then compute several extensions with compute_several_extensions(extensions=input) + """ + if isinstance(input, str): + return self.compute_one_extension(extension_name=input, save=save, **kwargs) + elif isinstance(input, dict): + params_, job_kwargs = split_job_kwargs(kwargs) + assert len(params_) == 0, "Too many arguments for SortingAnalyzer.compute_several_extensions()" + self.compute_several_extensions(extensions=input, save=save, **job_kwargs) + elif isinstance(input, list): + params_, job_kwargs = split_job_kwargs(kwargs) + assert len(params_) == 0, "Too many arguments for SortingAnalyzer.compute_several_extensions()" + extensions = {k: {} for k in input} + self.compute_several_extensions(extensions=extensions, save=save, **job_kwargs) + else: + raise ValueError("SortingAnalyzer.compute() need str, dict or list") + + def compute_one_extension(self, extension_name, save=True, **kwargs): + """ + Compute one extension + + Parameters + ---------- + extension_name: str + The name of the extension. + For instance "waveforms", "templates", ... + save: bool, default True + It the extension can be saved then it is saved. + If not then the extension will only live in memory as long as the object is deleted. + save=False is convenient to try some parameters without changing an already saved extension. + + **kwargs: + All other kwargs are transmitted to extension.set_params() or job_kwargs + + Returns + ------- + result_extension: AnalyzerExtension + Return the extension instance. + + Examples + -------- + + >>> Note that the return is the instance extension. + >>> extension = sorting_analyzer.compute("waveforms", **some_params) + >>> extension = sorting_analyzer.compute_one_extension("waveforms", **some_params) + >>> wfs = extension.data["waveforms"] + >>> # Note this can be be done in the old way style BUT the return is not the same it return directly data + >>> wfs = compute_waveforms(sorting_analyzer, **some_params) + + """ + + extension_class = get_extension_class(extension_name) + + if extension_class.need_job_kwargs: + params, job_kwargs = split_job_kwargs(kwargs) + else: + params = kwargs + job_kwargs = {} + + # check dependencies + if extension_class.need_recording: + assert self.has_recording(), f"Extension {extension_name} requires the recording" + for dependency_name in extension_class.depend_on: + if "|" in dependency_name: + # at least one extension must be done : usefull for "templates|fast_templates" for instance + ok = any(self.get_extension(name) is not None for name in dependency_name.split("|")) + else: + ok = self.get_extension(dependency_name) is not None + assert ok, f"Extension {extension_name} requires {dependency_name} to be computed first" + + extension_instance = extension_class(self) + extension_instance.set_params(save=save, **params) + extension_instance.run(save=save, **job_kwargs) + + self.extensions[extension_name] = extension_instance + + return extension_instance + + def compute_several_extensions(self, extensions, save=True, **job_kwargs): + """ + Compute several extensions + + Parameters + ---------- + extensions: dict + Keys are extension_names and values are params. + save: bool, default True + It the extension can be saved then it is saved. + If not then the extension will only live in memory as long as the object is deleted. + save=False is convenient to try some parameters without changing an already saved extension. + + Returns + ------- + No return + + Examples + -------- + + >>> sorting_analyzer.compute({"waveforms": {"ms_before": 1.2}, "templates" : {"operators": ["average", "std", ]} }) + >>> sorting_analyzer.compute_several_extensions({"waveforms": {"ms_before": 1.2}, "templates" : {"operators": ["average", "std"]}}) + + """ + # TODO this is a simple implementation + # this will be improved with nodepipeline!!! + + pipeline_mode = True + for extension_name, extension_params in extensions.items(): + extension_class = get_extension_class(extension_name) + if not extension_class.use_nodepipeline: + pipeline_mode = False + break + + if not pipeline_mode: + # simple loop + for extension_name, extension_params in extensions.items(): + extension_class = get_extension_class(extension_name) + if extension_class.need_job_kwargs: + self.compute_one_extension(extension_name, save=save, **extension_params) + else: + self.compute_one_extension(extension_name, save=save, **extension_params) + else: + + all_nodes = [] + result_routage = [] + extension_instances = {} + for extension_name, extension_params in extensions.items(): + extension_class = get_extension_class(extension_name) + assert self.has_recording(), f"Extension {extension_name} need the recording" + + for variable_name in extension_class.nodepipeline_variables: + result_routage.append((extension_name, variable_name)) + + extension_instance = extension_class(self) + extension_instance.set_params(save=save, **extension_params) + extension_instances[extension_name] = extension_instance + + nodes = extension_instance.get_pipeline_nodes() + all_nodes.extend(nodes) + + job_name = "Compute : " + " + ".join(extensions.keys()) + results = run_node_pipeline( + self.recording, all_nodes, job_kwargs=job_kwargs, job_name=job_name, gather_mode="memory" + ) + + for r, result in enumerate(results): + extension_name, variable_name = result_routage[r] + extension_instances[extension_name].data[variable_name] = result + + for extension_name, extension_instance in extension_instances.items(): + self.extensions[extension_name] = extension_instance + if save: + extension_instance.save() + + def get_saved_extension_names(self): + """ + Get extension saved in folder or zarr that can be loaded. + """ + assert self.format != "memory" + global _possible_extensions + + if self.format == "zarr": + zarr_root = self._get_zarr_root(mode="r") + if "extensions" in zarr_root.keys(): + extension_group = zarr_root["extensions"] + else: + extension_group = None + + saved_extension_names = [] + for extension_class in _possible_extensions: + extension_name = extension_class.extension_name + + if self.format == "binary_folder": + extension_folder = self.folder / "extensions" / extension_name + is_saved = extension_folder.is_dir() and (extension_folder / "params.json").is_file() + elif self.format == "zarr": + if extension_group is not None: + is_saved = ( + extension_name in extension_group.keys() + and "params" in extension_group[extension_name].attrs.keys() + ) + else: + is_saved = False + if is_saved: + saved_extension_names.append(extension_class.extension_name) + + return saved_extension_names + + def get_extension(self, extension_name: str): + """ + Get a AnalyzerExtension. + If not loaded then load is automatic. + + Return None if the extension is not computed yet (this avoids the use of has_extension() and then get it) + + """ + if extension_name in self.extensions: + return self.extensions[extension_name] + + elif self.format != "memory" and self.has_extension(extension_name): + self.load_extension(extension_name) + return self.extensions[extension_name] + + else: + return None + + def load_extension(self, extension_name: str): + """ + Load an extension from a folder or zarr into the `ResultSorting.extensions` dict. + + Parameters + ---------- + extension_name: str + The extension name. + + Returns + ------- + ext_instanace: + The loaded instance of the extension + + """ + assert ( + self.format != "memory" + ), "SortingAnalyzer.load_extension() does not work for format='memory' use SortingAnalyzer.get_extension() instead" + + extension_class = get_extension_class(extension_name) + + extension_instance = extension_class(self) + extension_instance.load_params() + extension_instance.load_data() + + self.extensions[extension_name] = extension_instance + + return extension_instance + + def load_all_saved_extension(self): + """ + Load all saved extensions in memory. + """ + for extension_name in self.get_saved_extension_names(): + self.load_extension(extension_name) + + def delete_extension(self, extension_name) -> None: + """ + Delete the extension from the dict and also in the persistent zarr or folder. + """ + + # delete from folder or zarr + if self.format != "memory" and self.has_extension(extension_name): + # need a reload to reset the folder + ext = self.load_extension(extension_name) + ext.reset() + + # remove from dict + self.extensions.pop(extension_name, None) + + def get_loaded_extension_names(self): + """ + Return the loaded or already computed extensions names. + """ + return list(self.extensions.keys()) + + def has_extension(self, extension_name: str) -> bool: + """ + Check if the extension exists in memory (dict) or in the folder or in zarr. + """ + if extension_name in self.extensions: + return True + elif self.format == "memory": + return False + elif extension_name in self.get_saved_extension_names(): + return True + else: + return False + + +global _possible_extensions +_possible_extensions = [] + + +def register_result_extension(extension_class): + """ + This maintains a list of possible extensions that are available. + It depends on the imported submodules (e.g. for postprocessing module). + + For instance with: + import spikeinterface as si + only one extension will be available + but with + import spikeinterface.postprocessing + more extensions will be available + """ + assert issubclass(extension_class, AnalyzerExtension) + assert extension_class.extension_name is not None, "extension_name must not be None" + global _possible_extensions + + already_registered = any(extension_class is ext for ext in _possible_extensions) + if not already_registered: + assert all( + extension_class.extension_name != ext.extension_name for ext in _possible_extensions + ), "Extension name already exists" + + _possible_extensions.append(extension_class) + + +def get_extension_class(extension_name: str): + """ + Get extension class from name and check if registered. + + Parameters + ---------- + extension_name: str + The extension name. + + Returns + ------- + ext_class: + The class of the extension. + """ + global _possible_extensions + extensions_dict = {ext.extension_name: ext for ext in _possible_extensions} + assert ( + extension_name in extensions_dict + ), f"Extension '{extension_name}' is not registered, please import related module before use" + ext_class = extensions_dict[extension_name] + return ext_class + + +class AnalyzerExtension: + """ + This the base class to extend the SortingAnalyzer. + It can handle persistency to disk for any computations related to: + + For instance: + * waveforms + * principal components + * spike amplitudes + * quality metrics + + Possible extension can be registered on-the-fly at import time with register_result_extension() mechanism. + It also enables any custom computation on top of the SortingAnalyzer to be implemented by the user. + + An extension needs to inherit from this class and implement some attributes and abstract methods: + * extension_name + * depend_on + * need_recording + * use_nodepipeline + * nodepipeline_variables only if use_nodepipeline=True + * need_job_kwargs + * _set_params() + * _run() + * _select_extension_data() + * _get_data() + + The subclass must also set an `extension_name` class attribute which is not None by default. + + The subclass must also hanle an attribute `data` which is a dict contain the results after the `run()`. + + All AnalyzerExtension will have a function associate for instance (this use the function_factory): + compute_unit_location(sorting_analyzer, ...) will be equivalent to sorting_analyzer.compute("unit_location", ...) + + + """ + + extension_name = None + depend_on = [] + need_recording = False + use_nodepipeline = False + nodepipeline_variables = None + need_job_kwargs = False + + def __init__(self, sorting_analyzer): + self._sorting_analyzer = weakref.ref(sorting_analyzer) + + self.params = None + self.data = dict() + + ####### + # This 3 methods must be implemented in the subclass!!! + # See DummyAnalyzerExtension in test_sortinganalyzer.py as a simple example + def _run(self, **kwargs): + # must be implemented in subclass + # must populate the self.data dictionary + raise NotImplementedError + + def _set_params(self, **params): + # must be implemented in subclass + # must return a cleaned version of params dict + raise NotImplementedError + + def _select_extension_data(self, unit_ids): + # must be implemented in subclass + raise NotImplementedError + + def _get_pipeline_nodes(self): + # must be implemented in subclass only if use_nodepipeline=True + raise NotImplementedError + + def _get_data(self): + # must be implemented in subclass + raise NotImplementedError + + # + ####### + + @classmethod + def function_factory(cls): + # make equivalent + # comptute_unit_location(sorting_analyzer, ...) <> sorting_analyzer.compute("unit_location", ...) + # this also make backcompatibility + # comptute_unit_location(we, ...) + + class FuncWrapper: + def __init__(self, extension_name): + self.extension_name = extension_name + + def __call__(self, sorting_analyzer, load_if_exists=None, *args, **kwargs): + from .waveforms_extractor_backwards_compatibility import MockWaveformExtractor + + if isinstance(sorting_analyzer, MockWaveformExtractor): + # backward compatibility with WaveformsExtractor + sorting_analyzer = sorting_analyzer.sorting_analyzer + + if not isinstance(sorting_analyzer, SortingAnalyzer): + raise ValueError(f"compute_{self.extension_name}() needs a SortingAnalyzer instance") + + if load_if_exists is not None: + # backward compatibility with "load_if_exists" + warnings.warn( + f"compute_{cls.extension_name}(..., load_if_exists=True/False) is kept for backward compatibility but should not be used anymore" + ) + assert isinstance(load_if_exists, bool) + if load_if_exists: + ext = sorting_analyzer.get_extension(self.extension_name) + return ext + + ext = sorting_analyzer.compute(cls.extension_name, *args, **kwargs) + return ext.get_data() + + func = FuncWrapper(cls.extension_name) + func.__doc__ = cls.__doc__ + return func + + @property + def sorting_analyzer(self): + # Important : to avoid the SortingAnalyzer referencing a AnalyzerExtension + # and AnalyzerExtension referencing a SortingAnalyzer we need a weakref. + # Otherwise the garbage collector is not working properly. + # and so the SortingAnalyzer + its recording are still alive even after deleting explicitly + # the SortingAnalyzer which makes it impossible to delete the folder when using memmap. + sorting_analyzer = self._sorting_analyzer() + if sorting_analyzer is None: + raise ValueError(f"The extension {self.extension_name} has lost its SortingAnalyzer") + return sorting_analyzer + + # some attribuites come from sorting_analyzer + @property + def format(self): + return self.sorting_analyzer.format + + @property + def sparsity(self): + return self.sorting_analyzer.sparsity + + @property + def folder(self): + return self.sorting_analyzer.folder + + def _get_binary_extension_folder(self): + extension_folder = self.folder / "extensions" / self.extension_name + return extension_folder + + def _get_zarr_extension_group(self, mode="r+"): + zarr_root = self.sorting_analyzer._get_zarr_root(mode=mode) + extension_group = zarr_root["extensions"][self.extension_name] + return extension_group + + @classmethod + def load(cls, sorting_analyzer): + ext = cls(sorting_analyzer) + ext.load_params() + ext.load_data() + return ext + + def load_params(self): + if self.format == "binary_folder": + extension_folder = self._get_binary_extension_folder() + params_file = extension_folder / "params.json" + assert params_file.is_file(), f"No params file in extension {self.extension_name} folder" + with open(str(params_file), "r") as f: + params = json.load(f) + + elif self.format == "zarr": + extension_group = self._get_zarr_extension_group(mode="r") + assert "params" in extension_group.attrs, f"No params file in extension {self.extension_name} folder" + params = extension_group.attrs["params"] + + self.params = params + + def load_data(self): + if self.format == "binary_folder": + extension_folder = self._get_binary_extension_folder() + for ext_data_file in extension_folder.iterdir(): + if ext_data_file.name == "params.json": + continue + ext_data_name = ext_data_file.stem + if ext_data_file.suffix == ".json": + ext_data = json.load(ext_data_file.open("r")) + elif ext_data_file.suffix == ".npy": + # The lazy loading of an extension is complicated because if we compute again + # and have a link to the old buffer on windows then it fails + # ext_data = np.load(ext_data_file, mmap_mode="r") + # so we go back to full loading + ext_data = np.load(ext_data_file) + elif ext_data_file.suffix == ".csv": + import pandas as pd + + ext_data = pd.read_csv(ext_data_file, index_col=0) + elif ext_data_file.suffix == ".pkl": + ext_data = pickle.load(ext_data_file.open("rb")) + else: + continue + self.data[ext_data_name] = ext_data + + elif self.format == "zarr": + # Alessio + # TODO: we need decide if we make a copy to memory or keep the lazy loading. For binary_folder it used to be lazy with memmap + # but this make the garbage complicated when a data is hold by a plot but the o SortingAnalyzer is delete + # lets talk + extension_group = self._get_zarr_extension_group(mode="r") + for ext_data_name in extension_group.keys(): + ext_data_ = extension_group[ext_data_name] + if "dict" in ext_data_.attrs: + ext_data = ext_data_[0] + elif "dataframe" in ext_data_.attrs: + import xarray + + ext_data = xarray.open_zarr( + ext_data_.store, group=f"{extension_group.name}/{ext_data_name}" + ).to_pandas() + ext_data.index.rename("", inplace=True) + elif "object" in ext_data_.attrs: + ext_data = ext_data_[0] + else: + ext_data = ext_data_ + self.data[ext_data_name] = ext_data + + def copy(self, new_sorting_analyzer, unit_ids=None): + # alessio : please note that this also replace the old select_units!!! + new_extension = self.__class__(new_sorting_analyzer) + new_extension.params = self.params.copy() + if unit_ids is None: + new_extension.data = self.data + else: + new_extension.data = self._select_extension_data(unit_ids) + new_extension.save() + return new_extension + + def run(self, save=True, **kwargs): + if save and not self.sorting_analyzer.is_read_only(): + # this also reset the folder or zarr group + self._save_params() + + self._run(**kwargs) + + if save and not self.sorting_analyzer.is_read_only(): + self._save_data(**kwargs) + + def save(self, **kwargs): + self._save_params() + self._save_data(**kwargs) + + def _save_data(self, **kwargs): + if self.format == "memory": + return + + if self.sorting_analyzer.is_read_only(): + raise ValueError(f"The SortingAnalyzer is read-only saving extension {self.extension_name} is not possible") + + try: + # pandas is a weak dependency for spikeinterface.core + import pandas as pd + + HAS_PANDAS = True + except: + HAS_PANDAS = False + + if self.format == "binary_folder": + + extension_folder = self._get_binary_extension_folder() + for ext_data_name, ext_data in self.data.items(): + if isinstance(ext_data, dict): + with (extension_folder / f"{ext_data_name}.json").open("w") as f: + json.dump(ext_data, f) + elif isinstance(ext_data, np.ndarray): + data_file = extension_folder / f"{ext_data_name}.npy" + if isinstance(ext_data, np.memmap) and data_file.exists(): + # important some SortingAnalyzer like ComputeWaveforms already run the computation with memmap + # so no need to save theses array + pass + else: + np.save(data_file, ext_data) + elif HAS_PANDAS and isinstance(ext_data, pd.DataFrame): + ext_data.to_csv(extension_folder / f"{ext_data_name}.csv", index=True) + else: + try: + with (extension_folder / f"{ext_data_name}.pkl").open("wb") as f: + pickle.dump(ext_data, f) + except: + raise Exception(f"Could not save {ext_data_name} as extension data") + elif self.format == "zarr": + + import numcodecs + + extension_group = self._get_zarr_extension_group(mode="r+") + + compressor = kwargs.get("compressor", None) + if compressor is None: + compressor = get_default_zarr_compressor() + + for ext_data_name, ext_data in self.data.items(): + if ext_data_name in extension_group: + del extension_group[ext_data_name] + if isinstance(ext_data, dict): + extension_group.create_dataset( + name=ext_data_name, data=np.array([ext_data], dtype=object), object_codec=numcodecs.JSON() + ) + elif isinstance(ext_data, np.ndarray): + extension_group.create_dataset(name=ext_data_name, data=ext_data, compressor=compressor) + elif HAS_PANDAS and isinstance(ext_data, pd.DataFrame): + ext_data.to_xarray().to_zarr( + store=extension_group.store, + group=f"{extension_group.name}/{ext_data_name}", + mode="a", + ) + extension_group[ext_data_name].attrs["dataframe"] = True + else: + # any object + try: + extension_group.create_dataset( + name=ext_data_name, data=np.array([ext_data], dtype=object), object_codec=numcodecs.Pickle() + ) + except: + raise Exception(f"Could not save {ext_data_name} as extension data") + extension_group[ext_data_name].attrs["object"] = True + + def _reset_extension_folder(self): + """ + Delete the extension in a folder (binary or zarr) and create an empty one. + """ + if self.format == "binary_folder": + extension_folder = self._get_binary_extension_folder() + if extension_folder.is_dir(): + shutil.rmtree(extension_folder) + extension_folder.mkdir(exist_ok=False, parents=True) + + elif self.format == "zarr": + import zarr + + zarr_root = zarr.open(self.folder, mode="r+") + extension_group = zarr_root["extensions"].create_group(self.extension_name, overwrite=True) + + def reset(self): + """ + Reset the waveform extension. + Delete the sub folder and create a new empty one. + """ + self._reset_extension_folder() + self.params = None + self.data = dict() + + def set_params(self, save=True, **params): + """ + Set parameters for the extension and + make it persistent in json. + """ + # this ensure data is also deleted and corresponf to params + # this also ensure the group is created + self._reset_extension_folder() + + params = self._set_params(**params) + self.params = params + + if self.sorting_analyzer.is_read_only(): + return + + if save: + self._save_params() + + def _save_params(self): + params_to_save = self.params.copy() + + self._reset_extension_folder() + + # TODO make sparsity local Result specific + # if "sparsity" in params_to_save and params_to_save["sparsity"] is not None: + # assert isinstance( + # params_to_save["sparsity"], ChannelSparsity + # ), "'sparsity' parameter must be a ChannelSparsity object!" + # params_to_save["sparsity"] = params_to_save["sparsity"].to_dict() + + if self.format == "binary_folder": + extension_folder = self._get_binary_extension_folder() + extension_folder.mkdir(exist_ok=True, parents=True) + param_file = extension_folder / "params.json" + param_file.write_text(json.dumps(check_json(params_to_save), indent=4), encoding="utf8") + elif self.format == "zarr": + extension_group = self._get_zarr_extension_group(mode="r+") + extension_group.attrs["params"] = check_json(params_to_save) + + def get_pipeline_nodes(self): + assert ( + self.use_nodepipeline + ), "AnalyzerExtension.get_pipeline_nodes() must be called only when use_nodepipeline=True" + return self._get_pipeline_nodes() + + def get_data(self, *args, **kwargs): + assert len(self.data) > 0, f"You must run the extension {self.extension_name} before retrieving data" + return self._get_data(*args, **kwargs) diff --git a/src/spikeinterface/core/sparsity.py b/src/spikeinterface/core/sparsity.py index ec7f52527e..5d69464569 100644 --- a/src/spikeinterface/core/sparsity.py +++ b/src/spikeinterface/core/sparsity.py @@ -2,12 +2,12 @@ import numpy as np + from .basesorting import BaseSorting from .baserecording import BaseRecording -from .recording_tools import get_noise_levels from .sorting_tools import random_spikes_selection from .job_tools import _shared_job_kwargs_doc -from .waveform_tools import estimate_templates +from .waveform_tools import estimate_templates_average _sparsity_doc = """ @@ -71,26 +71,26 @@ class ChannelSparsity: Examples -------- - The class can also be used to construct/estimate the sparsity from a Waveformextractor + The class can also be used to construct/estimate the sparsity from a SortingAnalyzer or a Templates with several methods: Using the N best channels (largest template amplitude): - >>> sparsity = ChannelSparsity.from_best_channels(we, num_channels, peak_sign="neg") + >>> sparsity = ChannelSparsity.from_best_channels(sorting_analyzer, num_channels, peak_sign="neg") Using a neighborhood by radius: - >>> sparsity = ChannelSparsity.from_radius(we, radius_um, peak_sign="neg") + >>> sparsity = ChannelSparsity.from_radius(sorting_analyzer, radius_um, peak_sign="neg") Using a SNR threshold: - >>> sparsity = ChannelSparsity.from_snr(we, threshold, peak_sign="neg") + >>> sparsity = ChannelSparsity.from_snr(sorting_analyzer, threshold, peak_sign="neg") Using a template energy threshold: - >>> sparsity = ChannelSparsity.from_energy(we, threshold) + >>> sparsity = ChannelSparsity.from_energy(sorting_analyzer, threshold) Using a recording/sorting property (e.g. "group"): - >>> sparsity = ChannelSparsity.from_property(we, by_property="group") + >>> sparsity = ChannelSparsity.from_property(sorting_analyzer, by_property="group") """ @@ -159,9 +159,6 @@ def sparsify_waveforms(self, waveforms: np.ndarray, unit_id: str | int) -> np.nd or a single sparsified waveform (template) with shape (num_samples, num_active_channels). """ - if self.are_waveforms_sparse(waveforms=waveforms, unit_id=unit_id): - return waveforms - non_zero_indices = self.unit_id_to_channel_indices[unit_id] sparsified_waveforms = waveforms[..., non_zero_indices] @@ -220,13 +217,17 @@ def are_waveforms_sparse(self, waveforms: np.ndarray, unit_id: str | int) -> boo return int(excess_zeros) == 0 - def sparisfy_templates(self, templates_array: np.ndarray) -> np.ndarray: + def sparsify_templates(self, templates_array: np.ndarray) -> np.ndarray: + assert templates_array.shape[0] == self.num_units + assert templates_array.shape[2] == self.num_channels + max_num_active_channels = self.max_num_active_channels - sparisfied_shape = (self.num_units, self.num_samples, max_num_active_channels) - sparse_templates = np.zeros(shape=sparisfied_shape, dtype=templates_array.dtype) + sparsified_shape = (self.num_units, templates_array.shape[1], max_num_active_channels) + sparse_templates = np.zeros(shape=sparsified_shape, dtype=templates_array.dtype) for unit_index, unit_id in enumerate(self.unit_ids): template = templates_array[unit_index, ...] - sparse_templates[unit_index, ...] = self.sparsify_waveforms(waveforms=template, unit_id=unit_id) + sparse_template = self.sparsify_waveforms(waveforms=template[np.newaxis, :, :], unit_id=unit_id) + sparse_templates[unit_index, :, : sparse_template.shape[2]] = sparse_template return sparse_templates @@ -268,118 +269,188 @@ def from_dict(cls, dictionary: dict): ## Some convinient function to compute sparsity from several strategy @classmethod - def from_best_channels(cls, templates_or_we, num_channels, peak_sign="neg"): + def from_best_channels(cls, templates_or_sorting_analyzer, num_channels, peak_sign="neg"): """ Construct sparsity from N best channels with the largest amplitude. Use the "num_channels" argument to specify the number of channels. """ from .template_tools import get_template_amplitudes - mask = np.zeros((templates_or_we.unit_ids.size, templates_or_we.channel_ids.size), dtype="bool") - peak_values = get_template_amplitudes(templates_or_we, peak_sign=peak_sign) - for unit_ind, unit_id in enumerate(templates_or_we.unit_ids): + mask = np.zeros( + (templates_or_sorting_analyzer.unit_ids.size, templates_or_sorting_analyzer.channel_ids.size), dtype="bool" + ) + peak_values = get_template_amplitudes(templates_or_sorting_analyzer, peak_sign=peak_sign) + for unit_ind, unit_id in enumerate(templates_or_sorting_analyzer.unit_ids): chan_inds = np.argsort(np.abs(peak_values[unit_id]))[::-1] chan_inds = chan_inds[:num_channels] mask[unit_ind, chan_inds] = True - return cls(mask, templates_or_we.unit_ids, templates_or_we.channel_ids) + return cls(mask, templates_or_sorting_analyzer.unit_ids, templates_or_sorting_analyzer.channel_ids) @classmethod - def from_radius(cls, templates_or_we, radius_um, peak_sign="neg"): + def from_radius(cls, templates_or_sorting_analyzer, radius_um, peak_sign="neg"): """ Construct sparsity from a radius around the best channel. Use the "radius_um" argument to specify the radius in um """ from .template_tools import get_template_extremum_channel - mask = np.zeros((templates_or_we.unit_ids.size, templates_or_we.channel_ids.size), dtype="bool") - channel_locations = templates_or_we.get_channel_locations() + mask = np.zeros( + (templates_or_sorting_analyzer.unit_ids.size, templates_or_sorting_analyzer.channel_ids.size), dtype="bool" + ) + channel_locations = templates_or_sorting_analyzer.get_channel_locations() distances = np.linalg.norm(channel_locations[:, np.newaxis] - channel_locations[np.newaxis, :], axis=2) - best_chan = get_template_extremum_channel(templates_or_we, peak_sign=peak_sign, outputs="index") - for unit_ind, unit_id in enumerate(templates_or_we.unit_ids): + best_chan = get_template_extremum_channel(templates_or_sorting_analyzer, peak_sign=peak_sign, outputs="index") + for unit_ind, unit_id in enumerate(templates_or_sorting_analyzer.unit_ids): chan_ind = best_chan[unit_id] (chan_inds,) = np.nonzero(distances[chan_ind, :] <= radius_um) mask[unit_ind, chan_inds] = True - return cls(mask, templates_or_we.unit_ids, templates_or_we.channel_ids) + return cls(mask, templates_or_sorting_analyzer.unit_ids, templates_or_sorting_analyzer.channel_ids) @classmethod - def from_snr(cls, we, threshold, peak_sign="neg"): + def from_snr(cls, templates_or_sorting_analyzer, threshold, noise_levels=None, peak_sign="neg"): """ Construct sparsity from a thresholds based on template signal-to-noise ratio. Use the "threshold" argument to specify the SNR threshold. """ from .template_tools import get_template_amplitudes + from .sortinganalyzer import SortingAnalyzer + from .template import Templates - mask = np.zeros((we.unit_ids.size, we.channel_ids.size), dtype="bool") + assert ( + templates_or_sorting_analyzer.sparsity is None + ), "To compute sparsity you need a dense SortingAnalyzer or Templates" + + unit_ids = templates_or_sorting_analyzer.unit_ids + channel_ids = templates_or_sorting_analyzer.channel_ids + + if isinstance(templates_or_sorting_analyzer, SortingAnalyzer): + ext = templates_or_sorting_analyzer.get_extension("noise_levels") + assert ext is not None, "To compute sparsity from snr you need to compute 'noise_levels' first" + assert ext.params[ + "return_scaled" + ], "To compute sparsity from snr you need return_scaled=True for extensions" + noise_levels = ext.data["noise_levels"] + elif isinstance(templates_or_sorting_analyzer, Templates): + assert noise_levels is not None + + mask = np.zeros((unit_ids.size, channel_ids.size), dtype="bool") + + peak_values = get_template_amplitudes( + templates_or_sorting_analyzer, peak_sign=peak_sign, mode="extremum", return_scaled=True + ) - peak_values = get_template_amplitudes(we, peak_sign=peak_sign, mode="extremum") - noise = get_noise_levels(we.recording, return_scaled=we.return_scaled) - for unit_ind, unit_id in enumerate(we.unit_ids): - chan_inds = np.nonzero((np.abs(peak_values[unit_id]) / noise) >= threshold) + for unit_ind, unit_id in enumerate(unit_ids): + chan_inds = np.nonzero((np.abs(peak_values[unit_id]) / noise_levels) >= threshold) mask[unit_ind, chan_inds] = True - return cls(mask, we.unit_ids, we.channel_ids) + return cls(mask, unit_ids, channel_ids) @classmethod - def from_ptp(cls, we, threshold): + def from_ptp(cls, templates_or_sorting_analyzer, threshold, noise_levels=None): """ Construct sparsity from a thresholds based on template peak-to-peak values. Use the "threshold" argument to specify the SNR threshold. """ - mask = np.zeros((we.unit_ids.size, we.channel_ids.size), dtype="bool") - templates_ptps = np.ptp(we.get_all_templates(), axis=1) - noise = get_noise_levels(we.recording, return_scaled=we.return_scaled) - for unit_ind, unit_id in enumerate(we.unit_ids): - chan_inds = np.nonzero(templates_ptps[unit_ind] / noise >= threshold) + assert ( + templates_or_sorting_analyzer.sparsity is None + ), "To compute sparsity you need a dense SortingAnalyzer or Templates" + + from .template_tools import get_template_amplitudes + from .sortinganalyzer import SortingAnalyzer + from .template import Templates + + unit_ids = templates_or_sorting_analyzer.unit_ids + channel_ids = templates_or_sorting_analyzer.channel_ids + + if isinstance(templates_or_sorting_analyzer, SortingAnalyzer): + ext = templates_or_sorting_analyzer.get_extension("noise_levels") + assert ext is not None, "To compute sparsity from snr you need to compute 'noise_levels' first" + assert ext.params[ + "return_scaled" + ], "To compute sparsity from snr you need return_scaled=True for extensions" + noise_levels = ext.data["noise_levels"] + elif isinstance(templates_or_sorting_analyzer, Templates): + assert noise_levels is not None + + from .template_tools import _get_dense_templates_array + + mask = np.zeros((unit_ids.size, channel_ids.size), dtype="bool") + + templates_array = _get_dense_templates_array(templates_or_sorting_analyzer, return_scaled=True) + templates_ptps = np.ptp(templates_array, axis=1) + + for unit_ind, unit_id in enumerate(unit_ids): + chan_inds = np.nonzero(templates_ptps[unit_ind] / noise_levels >= threshold) mask[unit_ind, chan_inds] = True - return cls(mask, we.unit_ids, we.channel_ids) + return cls(mask, unit_ids, channel_ids) @classmethod - def from_energy(cls, we, threshold): + def from_energy(cls, sorting_analyzer, threshold): """ Construct sparsity from a threshold based on per channel energy ratio. Use the "threshold" argument to specify the SNR threshold. """ - mask = np.zeros((we.unit_ids.size, we.channel_ids.size), dtype="bool") - noise = np.sqrt(we.nsamples) * get_noise_levels(we.recording, return_scaled=we.return_scaled) - for unit_ind, unit_id in enumerate(we.unit_ids): - wfs = we.get_waveforms(unit_id) + assert sorting_analyzer.sparsity is None, "To compute sparsity with energy you need a dense SortingAnalyzer" + + mask = np.zeros((sorting_analyzer.unit_ids.size, sorting_analyzer.channel_ids.size), dtype="bool") + + # noise_levels + ext = sorting_analyzer.get_extension("noise_levels") + assert ext is not None, "To compute sparsity from ptp you need to compute 'noise_levels' first" + assert ext.params["return_scaled"], "To compute sparsity from snr you need return_scaled=True for extensions" + noise_levels = ext.data["noise_levels"] + + # waveforms + ext_waveforms = sorting_analyzer.get_extension("waveforms") + assert ext_waveforms is not None, "To compute sparsity from energy you need to compute 'waveforms' first" + namples = ext_waveforms.nbefore + ext_waveforms.nafter + + noise = np.sqrt(namples) * noise_levels + + for unit_ind, unit_id in enumerate(sorting_analyzer.unit_ids): + wfs = ext_waveforms.get_waveforms_one_unit(unit_id, force_dense=True) energies = np.linalg.norm(wfs, axis=(0, 1)) chan_inds = np.nonzero(energies / (noise * np.sqrt(len(wfs))) >= threshold) mask[unit_ind, chan_inds] = True - return cls(mask, we.unit_ids, we.channel_ids) + return cls(mask, sorting_analyzer.unit_ids, sorting_analyzer.channel_ids) @classmethod - def from_property(cls, we, by_property): + def from_property(cls, sorting_analyzer, by_property): """ Construct sparsity witha property of the recording and sorting(e.g. "group"). Use the "by_property" argument to specify the property name. """ # check consistency - assert by_property in we.recording.get_property_keys(), f"Property {by_property} is not a recording property" - assert by_property in we.sorting.get_property_keys(), f"Property {by_property} is not a sorting property" + assert ( + by_property in sorting_analyzer.recording.get_property_keys() + ), f"Property {by_property} is not a recording property" + assert ( + by_property in sorting_analyzer.sorting.get_property_keys() + ), f"Property {by_property} is not a sorting property" - mask = np.zeros((we.unit_ids.size, we.channel_ids.size), dtype="bool") - rec_by = we.recording.split_by(by_property) - for unit_ind, unit_id in enumerate(we.unit_ids): - unit_property = we.sorting.get_property(by_property)[unit_ind] + mask = np.zeros((sorting_analyzer.unit_ids.size, sorting_analyzer.channel_ids.size), dtype="bool") + rec_by = sorting_analyzer.recording.split_by(by_property) + for unit_ind, unit_id in enumerate(sorting_analyzer.unit_ids): + unit_property = sorting_analyzer.sorting.get_property(by_property)[unit_ind] assert ( unit_property in rec_by.keys() ), f"Unit property {unit_property} cannot be found in the recording properties" - chan_inds = we.recording.ids_to_indices(rec_by[unit_property].get_channel_ids()) + chan_inds = sorting_analyzer.recording.ids_to_indices(rec_by[unit_property].get_channel_ids()) mask[unit_ind, chan_inds] = True - return cls(mask, we.unit_ids, we.channel_ids) + return cls(mask, sorting_analyzer.unit_ids, sorting_analyzer.channel_ids) @classmethod - def create_dense(cls, we): + def create_dense(cls, sorting_analyzer): """ Create a sparsity object with all selected channel for all units. """ - mask = np.ones((we.unit_ids.size, we.channel_ids.size), dtype="bool") - return cls(mask, we.unit_ids, we.channel_ids) + mask = np.ones((sorting_analyzer.unit_ids.size, sorting_analyzer.channel_ids.size), dtype="bool") + return cls(mask, sorting_analyzer.unit_ids, sorting_analyzer.channel_ids) def compute_sparsity( - templates_or_waveform_extractor, + templates_or_sorting_analyzer, + noise_levels=None, method="radius", peak_sign="neg", num_channels=5, @@ -392,10 +463,10 @@ def compute_sparsity( Parameters ---------- - templates_or_waveform_extractor: Templates | WaveformExtractor - A Templates or a WaveformExtractor object. - Some methods accept both objects (e.g. "best_channels", "radius", ) - Other methods need WaveformExtractor because internally the recording is needed. + templates_or_sorting_analyzer: Templates | SortingAnalyzer + A Templates or a SortingAnalyzer object. + Some methods accept both objects ("best_channels", "radius", ) + Other methods require only SortingAnalyzer because internally the recording is needed. {} @@ -407,37 +478,51 @@ def compute_sparsity( # Can't be done at module because this is a cyclic import, too bad from .template import Templates - from .waveform_extractor import WaveformExtractor + from .waveforms_extractor_backwards_compatibility import MockWaveformExtractor + from .sortinganalyzer import SortingAnalyzer + + if isinstance(templates_or_sorting_analyzer, MockWaveformExtractor): + # to keep backward compatibility + templates_or_sorting_analyzer = templates_or_sorting_analyzer.sorting_analyzer - if method in ("best_channels", "radius"): + if method in ("best_channels", "radius", "snr", "ptp"): assert isinstance( - templates_or_waveform_extractor, (Templates, WaveformExtractor) - ), f"compute_sparsity() requires either a Templates or WaveformExtractor, not a type: {type(templates_or_waveform_extractor)}" + templates_or_sorting_analyzer, (Templates, SortingAnalyzer) + ), f"compute_sparsity(method='{method}') need Templates or SortingAnalyzer" else: assert isinstance( - templates_or_waveform_extractor, WaveformExtractor - ), f"compute_sparsity(method='{method}') requires a WaveformExtractor" + templates_or_sorting_analyzer, SortingAnalyzer + ), f"compute_sparsity(method='{method}') need SortingAnalyzer" + + if method in ("snr", "ptp") and isinstance(templates_or_sorting_analyzer, Templates): + assert ( + noise_levels is not None + ), f"compute_sparsity(..., method='{method}') with Templates need noise_levels as input" if method == "best_channels": assert num_channels is not None, "For the 'best_channels' method, 'num_channels' needs to be given" - sparsity = ChannelSparsity.from_best_channels( - templates_or_waveform_extractor, num_channels, peak_sign=peak_sign - ) + sparsity = ChannelSparsity.from_best_channels(templates_or_sorting_analyzer, num_channels, peak_sign=peak_sign) elif method == "radius": assert radius_um is not None, "For the 'radius' method, 'radius_um' needs to be given" - sparsity = ChannelSparsity.from_radius(templates_or_waveform_extractor, radius_um, peak_sign=peak_sign) + sparsity = ChannelSparsity.from_radius(templates_or_sorting_analyzer, radius_um, peak_sign=peak_sign) elif method == "snr": assert threshold is not None, "For the 'snr' method, 'threshold' needs to be given" - sparsity = ChannelSparsity.from_snr(templates_or_waveform_extractor, threshold, peak_sign=peak_sign) - elif method == "energy": - assert threshold is not None, "For the 'energy' method, 'threshold' needs to be given" - sparsity = ChannelSparsity.from_energy(templates_or_waveform_extractor, threshold) + sparsity = ChannelSparsity.from_snr( + templates_or_sorting_analyzer, threshold, noise_levels=noise_levels, peak_sign=peak_sign + ) elif method == "ptp": assert threshold is not None, "For the 'ptp' method, 'threshold' needs to be given" - sparsity = ChannelSparsity.from_ptp(templates_or_waveform_extractor, threshold) + sparsity = ChannelSparsity.from_ptp( + templates_or_sorting_analyzer, + threshold, + noise_levels=noise_levels, + ) + elif method == "energy": + assert threshold is not None, "For the 'energy' method, 'threshold' needs to be given" + sparsity = ChannelSparsity.from_energy(templates_or_sorting_analyzer, threshold) elif method == "by_property": assert by_property is not None, "For the 'by_property' method, 'by_property' needs to be given" - sparsity = ChannelSparsity.from_property(templates_or_waveform_extractor, by_property) + sparsity = ChannelSparsity.from_property(templates_or_sorting_analyzer, by_property) else: raise ValueError(f"compute_sparsity() method={method} does not exists") @@ -460,7 +545,7 @@ def estimate_sparsity( **job_kwargs, ): """ - Estimate the sparsity without needing a WaveformExtractor. + Estimate the sparsity without needing a SortingAnalyzer or Templates object This is faster than `spikeinterface.waveforms_extractor.precompute_sparsity()` and it traverses the recording to compute the average templates for each unit. @@ -468,7 +553,7 @@ def estimate_sparsity( * all units are computed in one read of recording * it doesn't require a folder * it doesn't consume too much memory - * it uses internally the `estimate_templates()` which is fast and parallel + * it uses internally the `estimate_templates_average()` which is fast and parallel Parameters ---------- @@ -503,10 +588,15 @@ def estimate_sparsity( from .template import Templates assert method in ("radius", "best_channels"), "estimate_sparsity() handle only method='radius' or 'best_channel'" - if method == "radius": - assert ( - len(recording.get_probes()) == 1 - ), "The 'radius' method of `estimate_sparsity()` can handle only one probe" + + if recording.get_probes() == 1: + # standard case + probe = recording.get_probe() + else: + # if many probe or no probe then we use channel location and create a dummy probe with all channels + # note that get_channel_locations() is checking that channel are not spatialy overlapping so the radius method is OK. + chan_locs = recording.get_channel_locations() + probe = recording.create_dummy_probe_from_locations(chan_locs) nbefore = int(ms_before * recording.sampling_frequency / 1000.0) nafter = int(ms_after * recording.sampling_frequency / 1000.0) @@ -523,8 +613,15 @@ def estimate_sparsity( spikes = sorting.to_spike_vector() spikes = spikes[random_spikes_indices] - templates_array = estimate_templates( - recording, spikes, sorting.unit_ids, nbefore, nafter, return_scaled=False, **job_kwargs + templates_array = estimate_templates_average( + recording, + spikes, + sorting.unit_ids, + nbefore, + nafter, + return_scaled=False, + job_name="estimate_sparsity", + **job_kwargs, ) templates = Templates( templates_array=templates_array, @@ -533,7 +630,7 @@ def estimate_sparsity( sparsity_mask=None, channel_ids=recording.channel_ids, unit_ids=sorting.unit_ids, - probe=recording.get_probe(), + probe=probe, ) sparsity = compute_sparsity( diff --git a/src/spikeinterface/core/template.py b/src/spikeinterface/core/template.py index 99334022bb..d85faa7513 100644 --- a/src/spikeinterface/core/template.py +++ b/src/spikeinterface/core/template.py @@ -108,6 +108,26 @@ def __post_init__(self): if not self._are_passed_templates_sparse(): raise ValueError("Sparsity mask passed but the templates are not sparse") + def to_sparse(self, sparsity): + # Turn a dense representation of templates into a sparse one, given some sparsity. + # Note that nothing prevent Templates tobe empty after sparsification if the sparse mask have no channels for some units + assert isinstance(sparsity, ChannelSparsity), "sparsity should be of type ChannelSparsity" + assert self.sparsity_mask is None, "Templates should be dense" + + # if np.any(sparsity.mask.sum(axis=1) == 0): + # print('Warning: some templates are defined on 0 channels. Consider removing them') + + return Templates( + templates_array=sparsity.sparsify_templates(self.templates_array), + sampling_frequency=self.sampling_frequency, + nbefore=self.nbefore, + sparsity_mask=sparsity.mask, + channel_ids=self.channel_ids, + unit_ids=self.unit_ids, + probe=self.probe, + check_for_consistent_sparsity=self.check_for_consistent_sparsity, + ) + def get_one_template_dense(self, unit_index): if self.sparsity is None: template = self.templates_array[unit_index, :, :] diff --git a/src/spikeinterface/core/template_tools.py b/src/spikeinterface/core/template_tools.py index 735ce2cbdc..509c810d94 100644 --- a/src/spikeinterface/core/template_tools.py +++ b/src/spikeinterface/core/template_tools.py @@ -3,38 +3,71 @@ import warnings from .template import Templates -from .waveform_extractor import WaveformExtractor -from .sparsity import compute_sparsity, _sparsity_doc -from .recording_tools import get_channel_distances, get_noise_levels +from .sparsity import _sparsity_doc +from .sortinganalyzer import SortingAnalyzer + + +# TODO make this function a non private function +def _get_dense_templates_array(one_object, return_scaled=True): + if isinstance(one_object, Templates): + templates_array = one_object.get_dense_templates() + elif isinstance(one_object, SortingAnalyzer): + ext = one_object.get_extension("templates") + if ext is not None: + templates_array = ext.data["average"] + assert ( + return_scaled == ext.params["return_scaled"] + ), f"templates have been extracted with return_scaled={not return_scaled} you cannot get then with return_scaled={return_scaled}" + else: + ext = one_object.get_extension("fast_templates") + assert ( + return_scaled == ext.params["return_scaled"] + ), f"fast_templates have been extracted with return_scaled={not return_scaled} you cannot get then with return_scaled={return_scaled}" + if ext is not None: + templates_array = ext.data["average"] + else: + raise ValueError("SortingAnalyzer need extension 'templates' or 'fast_templates' to be computed") + else: + raise ValueError("Input should be Templates or SortingAnalyzer or SortingAnalyzer") + + return templates_array -def _get_dense_templates_array(templates_or_waveform_extractor): - if isinstance(templates_or_waveform_extractor, Templates): - templates_array = templates_or_waveform_extractor.get_dense_templates() - elif isinstance(templates_or_waveform_extractor, WaveformExtractor): - templates_array = templates_or_waveform_extractor.get_all_templates(mode="average") +def _get_nbefore(one_object): + if isinstance(one_object, Templates): + return one_object.nbefore + elif isinstance(one_object, SortingAnalyzer): + ext = one_object.get_extension("templates") + if ext is not None: + return ext.nbefore + ext = one_object.get_extension("fast_templates") + if ext is not None: + return ext.nbefore + raise ValueError("SortingAnalyzer need extension 'templates' or 'fast_templates' to be computed") else: - raise ValueError("templates_or_waveform_extractor should be Templates or WaveformExtractor") - return templates_array + raise ValueError("Input should be Templates or SortingAnalyzer or SortingAnalyzer") def get_template_amplitudes( - templates_or_waveform_extractor, + templates_or_sorting_analyzer, peak_sign: "neg" | "pos" | "both" = "neg", mode: "extremum" | "at_index" = "extremum", + return_scaled: bool = True, ): """ Get amplitude per channel for each unit. Parameters ---------- - templates_or_waveform_extractor: Templates | WaveformExtractor - A Templates or a WaveformExtractor object + templates_or_sorting_analyzer: Templates | SortingAnalyzer + A Templates or a SortingAnalyzer object peak_sign: "neg" | "pos" | "both", default: "neg" Sign of the template to compute best channels mode: "extremum" | "at_index", default: "extremum" "extremum": max or min "at_index": take value at spike index + return_scaled: bool, default True + The amplitude is scaled or not. Returns ------- @@ -44,12 +77,12 @@ def get_template_amplitudes( assert peak_sign in ("both", "neg", "pos"), "'peak_sign' must be 'both', 'neg', or 'pos'" assert mode in ("extremum", "at_index"), "'mode' must be 'extremum' or 'at_index'" - unit_ids = templates_or_waveform_extractor.unit_ids - before = templates_or_waveform_extractor.nbefore + unit_ids = templates_or_sorting_analyzer.unit_ids + before = _get_nbefore(templates_or_sorting_analyzer) peak_values = {} - templates_array = _get_dense_templates_array(templates_or_waveform_extractor) + templates_array = _get_dense_templates_array(templates_or_sorting_analyzer, return_scaled=return_scaled) for unit_ind, unit_id in enumerate(unit_ids): template = templates_array[unit_ind, :, :] @@ -75,7 +108,7 @@ def get_template_amplitudes( def get_template_extremum_channel( - templates_or_waveform_extractor, + templates_or_sorting_analyzer, peak_sign: "neg" | "pos" | "both" = "neg", mode: "extremum" | "at_index" = "extremum", outputs: "id" | "index" = "id", @@ -85,8 +118,8 @@ def get_template_extremum_channel( Parameters ---------- - templates_or_waveform_extractor: Templates | WaveformExtractor - A Templates or a WaveformExtractor object + templates_or_sorting_analyzer: Templates | SortingAnalyzer + A Templates or a SortingAnalyzer object peak_sign: "neg" | "pos" | "both", default: "neg" Sign of the template to compute best channels mode: "extremum" | "at_index", default: "extremum" @@ -106,10 +139,10 @@ def get_template_extremum_channel( assert mode in ("extremum", "at_index") assert outputs in ("id", "index") - unit_ids = templates_or_waveform_extractor.unit_ids - channel_ids = templates_or_waveform_extractor.channel_ids + unit_ids = templates_or_sorting_analyzer.unit_ids + channel_ids = templates_or_sorting_analyzer.channel_ids - peak_values = get_template_amplitudes(templates_or_waveform_extractor, peak_sign=peak_sign, mode=mode) + peak_values = get_template_amplitudes(templates_or_sorting_analyzer, peak_sign=peak_sign, mode=mode) extremum_channels_id = {} extremum_channels_index = {} for unit_id in unit_ids: @@ -123,68 +156,7 @@ def get_template_extremum_channel( return extremum_channels_index -def get_template_channel_sparsity( - templates_or_waveform_extractor, - method="radius", - peak_sign="neg", - num_channels=5, - radius_um=100.0, - threshold=5, - by_property=None, - outputs="id", -): - """ - Get channel sparsity (subset of channels) for each template with several methods. - - Parameters - ---------- - templates_or_waveform_extractor: Templates | WaveformExtractor - A Templates or a WaveformExtractor object - - {} - - outputs: str - * "id": channel id - * "index": channel index - - Returns - ------- - sparsity: dict - Dictionary with unit ids as keys and sparse channel ids or indices (id or index based on "outputs") - as values - """ - from spikeinterface.core.sparsity import compute_sparsity - - warnings.warn( - "The 'get_template_channel_sparsity()' function is deprecated. " "Use 'compute_sparsity()' instead", - DeprecationWarning, - stacklevel=2, - ) - - assert outputs in ("id", "index"), "'outputs' can either be 'id' or 'index'" - sparsity = compute_sparsity( - templates_or_waveform_extractor, - method=method, - peak_sign=peak_sign, - num_channels=num_channels, - radius_um=radius_um, - threshold=threshold, - by_property=by_property, - ) - - # handle output ids or indexes - if outputs == "id": - return sparsity.unit_id_to_channel_ids - elif outputs == "index": - return sparsity.unit_id_to_channel_indices - - -get_template_channel_sparsity.__doc__ = get_template_channel_sparsity.__doc__.format(_sparsity_doc) - - -def get_template_extremum_channel_peak_shift( - templates_or_waveform_extractor, peak_sign: "neg" | "pos" | "both" = "neg" -): +def get_template_extremum_channel_peak_shift(templates_or_sorting_analyzer, peak_sign: "neg" | "pos" | "both" = "neg"): """ In some situations spike sorters could return a spike index with a small shift related to the waveform peak. This function estimates and return these alignment shifts for the mean template. @@ -192,8 +164,8 @@ def get_template_extremum_channel_peak_shift( Parameters ---------- - templates_or_waveform_extractor: Templates | WaveformExtractor - A Templates or a WaveformExtractor object + templates_or_sorting_analyzer: Templates | SortingAnalyzer + A Templates or a SortingAnalyzer object peak_sign: "neg" | "pos" | "both", default: "neg" Sign of the template to compute best channels @@ -202,15 +174,15 @@ def get_template_extremum_channel_peak_shift( shifts: dict Dictionary with unit ids as keys and shifts as values """ - unit_ids = templates_or_waveform_extractor.unit_ids - channel_ids = templates_or_waveform_extractor.channel_ids - nbefore = templates_or_waveform_extractor.nbefore + unit_ids = templates_or_sorting_analyzer.unit_ids + channel_ids = templates_or_sorting_analyzer.channel_ids + nbefore = _get_nbefore(templates_or_sorting_analyzer) - extremum_channels_ids = get_template_extremum_channel(templates_or_waveform_extractor, peak_sign=peak_sign) + extremum_channels_ids = get_template_extremum_channel(templates_or_sorting_analyzer, peak_sign=peak_sign) shifts = {} - templates_array = _get_dense_templates_array(templates_or_waveform_extractor) + templates_array = _get_dense_templates_array(templates_or_sorting_analyzer) for unit_ind, unit_id in enumerate(unit_ids): template = templates_array[unit_ind, :, :] @@ -231,7 +203,7 @@ def get_template_extremum_channel_peak_shift( def get_template_extremum_amplitude( - templates_or_waveform_extractor, + templates_or_sorting_analyzer, peak_sign: "neg" | "pos" | "both" = "neg", mode: "extremum" | "at_index" = "at_index", ): @@ -240,8 +212,8 @@ def get_template_extremum_amplitude( Parameters ---------- - templates_or_waveform_extractor: Templates | WaveformExtractor - A Templates or a WaveformExtractor object + templates_or_sorting_analyzer: Templates | SortingAnalyzer + A Templates or a SortingAnalyzer object peak_sign: "neg" | "pos" | "both" Sign of the template to compute best channels mode: "extremum" | "at_index", default: "at_index" @@ -256,16 +228,12 @@ def get_template_extremum_amplitude( """ assert peak_sign in ("both", "neg", "pos"), "'peak_sign' must be 'neg' or 'pos' or 'both'" assert mode in ("extremum", "at_index"), "'mode' must be 'extremum' or 'at_index'" - unit_ids = templates_or_waveform_extractor.unit_ids - channel_ids = templates_or_waveform_extractor.channel_ids - - before = templates_or_waveform_extractor.nbefore + unit_ids = templates_or_sorting_analyzer.unit_ids + channel_ids = templates_or_sorting_analyzer.channel_ids - extremum_channels_ids = get_template_extremum_channel( - templates_or_waveform_extractor, peak_sign=peak_sign, mode=mode - ) + extremum_channels_ids = get_template_extremum_channel(templates_or_sorting_analyzer, peak_sign=peak_sign, mode=mode) - extremum_amplitudes = get_template_amplitudes(templates_or_waveform_extractor, peak_sign=peak_sign, mode=mode) + extremum_amplitudes = get_template_amplitudes(templates_or_sorting_analyzer, peak_sign=peak_sign, mode=mode) unit_amplitudes = {} for unit_id in unit_ids: diff --git a/src/spikeinterface/core/tests/test_analyzer_extension_core.py b/src/spikeinterface/core/tests/test_analyzer_extension_core.py new file mode 100644 index 0000000000..cb70b21d69 --- /dev/null +++ b/src/spikeinterface/core/tests/test_analyzer_extension_core.py @@ -0,0 +1,230 @@ +import pytest +from pathlib import Path + +import shutil + +from spikeinterface.core import generate_ground_truth_recording +from spikeinterface.core import create_sorting_analyzer + +import numpy as np + +if hasattr(pytest, "global_test_folder"): + cache_folder = pytest.global_test_folder / "core" +else: + cache_folder = Path("cache_folder") / "core" + + +def get_sorting_analyzer(format="memory", sparse=True): + recording, sorting = generate_ground_truth_recording( + durations=[30.0], + sampling_frequency=16000.0, + num_channels=20, + num_units=5, + generate_sorting_kwargs=dict(firing_rates=10.0, refractory_period_ms=4.0), + generate_unit_locations_kwargs=dict( + margin_um=5.0, + minimum_z=5.0, + maximum_z=20.0, + ), + generate_templates_kwargs=dict( + unit_params_range=dict( + alpha=(9_000.0, 12_000.0), + ) + ), + noise_kwargs=dict(noise_level=5.0, strategy="tile_pregenerated"), + seed=2406, + ) + if format == "memory": + folder = None + elif format == "binary_folder": + folder = cache_folder / f"test_ComputeWaveforms_{format}" + elif format == "zarr": + folder = cache_folder / f"test_ComputeWaveforms.zarr" + if folder and folder.exists(): + shutil.rmtree(folder) + + sorting_analyzer = create_sorting_analyzer( + sorting, recording, format=format, folder=folder, sparse=sparse, sparsity=None + ) + + return sorting_analyzer + + +def _check_result_extension(sorting_analyzer, extension_name): + # select unit_ids to several format + for format in ("memory", "binary_folder", "zarr"): + # for format in ("memory", ): + if format != "memory": + if format == "zarr": + folder = cache_folder / f"test_SortingAnalyzer_{extension_name}_select_units_with_{format}.zarr" + else: + folder = cache_folder / f"test_SortingAnalyzer_{extension_name}_select_units_with_{format}" + if folder.exists(): + shutil.rmtree(folder) + else: + folder = None + + # check unit slice + keep_unit_ids = sorting_analyzer.sorting.unit_ids[::2] + sorting_analyzer2 = sorting_analyzer.select_units(unit_ids=keep_unit_ids, format=format, folder=folder) + + data = sorting_analyzer2.get_extension(extension_name).data + # for k, arr in data.items(): + # print(k, arr.shape) + + +@pytest.mark.parametrize("format", ["memory", "binary_folder", "zarr"]) +@pytest.mark.parametrize( + "sparse", + [ + False, + ], +) +def test_SelectRandomSpikes(format, sparse): + sorting_analyzer = get_sorting_analyzer(format=format, sparse=sparse) + + ext = sorting_analyzer.compute("random_spikes", max_spikes_per_unit=10, seed=2205) + indices = ext.data["random_spikes_indices"] + assert indices.size == 10 * sorting_analyzer.sorting.unit_ids.size + # print(indices) + + _check_result_extension(sorting_analyzer, "random_spikes") + + +@pytest.mark.parametrize("format", ["memory", "binary_folder", "zarr"]) +@pytest.mark.parametrize("sparse", [True, False]) +def test_ComputeWaveforms(format, sparse): + sorting_analyzer = get_sorting_analyzer(format=format, sparse=sparse) + + job_kwargs = dict(n_jobs=2, chunk_duration="1s", progress_bar=True) + sorting_analyzer.compute("random_spikes", max_spikes_per_unit=50, seed=2205) + ext = sorting_analyzer.compute("waveforms", **job_kwargs) + wfs = ext.data["waveforms"] + _check_result_extension(sorting_analyzer, "waveforms") + + +@pytest.mark.parametrize("format", ["memory", "binary_folder", "zarr"]) +@pytest.mark.parametrize("sparse", [True, False]) +def test_ComputeTemplates(format, sparse): + sorting_analyzer = get_sorting_analyzer(format=format, sparse=sparse) + + sorting_analyzer.compute("random_spikes", max_spikes_per_unit=20, seed=2205) + + with pytest.raises(AssertionError): + # This require "waveforms first and should trig an error + sorting_analyzer.compute("templates") + + job_kwargs = dict(n_jobs=2, chunk_duration="1s", progress_bar=True) + sorting_analyzer.compute("waveforms", **job_kwargs) + + # compute some operators + sorting_analyzer.compute( + "templates", + operators=[ + "average", + "std", + ("percentile", 95.0), + ], + ) + + # ask for more operator later + ext = sorting_analyzer.get_extension("templates") + templated_median = ext.get_templates(operator="median") + templated_per_5 = ext.get_templates(operator="percentile", percentile=5.0) + + # they all should be in data + data = sorting_analyzer.get_extension("templates").data + for k in ["average", "std", "median", "pencentile_5.0", "pencentile_95.0"]: + assert k in data.keys() + assert data[k].shape[0] == sorting_analyzer.unit_ids.size + assert data[k].shape[2] == sorting_analyzer.channel_ids.size + assert np.any(data[k] > 0) + + # import matplotlib.pyplot as plt + # for unit_index, unit_id in enumerate(sorting_analyzer.unit_ids): + # fig, ax = plt.subplots() + # for k in data.keys(): + # wf0 = data[k][unit_index, :, :] + # ax.plot(wf0.T.flatten(), label=k) + # ax.legend() + # plt.show() + + _check_result_extension(sorting_analyzer, "templates") + + +@pytest.mark.parametrize("format", ["memory", "binary_folder", "zarr"]) +@pytest.mark.parametrize("sparse", [True, False]) +def test_ComputeFastTemplates(format, sparse): + sorting_analyzer = get_sorting_analyzer(format=format, sparse=sparse) + + # TODO check this because this is not passing with n_jobs=2 + job_kwargs = dict(n_jobs=1, chunk_duration="1s", progress_bar=True) + + ms_before = 1.0 + ms_after = 2.5 + + sorting_analyzer.compute("random_spikes", max_spikes_per_unit=20, seed=2205) + + sorting_analyzer.compute("fast_templates", ms_before=ms_before, ms_after=ms_after, return_scaled=True, **job_kwargs) + + _check_result_extension(sorting_analyzer, "fast_templates") + + # compare ComputeTemplates with dense and ComputeFastTemplates: should give the same on "average" + other_sorting_analyzer = get_sorting_analyzer(format=format, sparse=False) + other_sorting_analyzer.compute("random_spikes", max_spikes_per_unit=20, seed=2205) + other_sorting_analyzer.compute( + "waveforms", ms_before=ms_before, ms_after=ms_after, return_scaled=True, **job_kwargs + ) + other_sorting_analyzer.compute( + "templates", + operators=[ + "average", + ], + ) + + templates0 = sorting_analyzer.get_extension("fast_templates").data["average"] + templates1 = other_sorting_analyzer.get_extension("templates").data["average"] + np.testing.assert_almost_equal(templates0, templates1) + + # import matplotlib.pyplot as plt + # fig, ax = plt.subplots() + # for unit_index, unit_id in enumerate(sorting_analyzer.unit_ids): + # wf0 = templates0[unit_index, :, :] + # ax.plot(wf0.T.flatten(), label=f"{unit_id}") + # wf1 = templates1[unit_index, :, :] + # ax.plot(wf1.T.flatten(), ls='--', color='k') + # ax.legend() + # plt.show() + + +@pytest.mark.parametrize("format", ["memory", "binary_folder", "zarr"]) +@pytest.mark.parametrize("sparse", [True, False]) +def test_ComputeNoiseLevels(format, sparse): + sorting_analyzer = get_sorting_analyzer(format=format, sparse=sparse) + + sorting_analyzer.compute("noise_levels", return_scaled=True) + print(sorting_analyzer) + + noise_levels = sorting_analyzer.get_extension("noise_levels").data["noise_levels"] + assert noise_levels.shape[0] == sorting_analyzer.channel_ids.size + + +if __name__ == "__main__": + + test_SelectRandomSpikes(format="memory", sparse=True) + + test_ComputeWaveforms(format="memory", sparse=True) + test_ComputeWaveforms(format="memory", sparse=False) + test_ComputeWaveforms(format="binary_folder", sparse=True) + test_ComputeWaveforms(format="binary_folder", sparse=False) + test_ComputeWaveforms(format="zarr", sparse=True) + test_ComputeWaveforms(format="zarr", sparse=False) + + test_ComputeTemplates(format="memory", sparse=True) + test_ComputeTemplates(format="memory", sparse=False) + test_ComputeTemplates(format="binary_folder", sparse=True) + test_ComputeTemplates(format="zarr", sparse=True) + + test_ComputeFastTemplates(format="memory", sparse=True) + + test_ComputeNoiseLevels(format="memory", sparse=False) diff --git a/src/spikeinterface/core/tests/test_generate.py b/src/spikeinterface/core/tests/test_generate.py index 79d61a5ff2..fa92542596 100644 --- a/src/spikeinterface/core/tests/test_generate.py +++ b/src/spikeinterface/core/tests/test_generate.py @@ -3,7 +3,7 @@ import numpy as np -from spikeinterface.core import load_extractor, extract_waveforms +from spikeinterface.core import load_extractor from probeinterface import generate_multi_columns_probe from spikeinterface.core.generate import ( diff --git a/src/spikeinterface/core/tests/test_node_pipeline.py b/src/spikeinterface/core/tests/test_node_pipeline.py index ca30a5f8c9..a30f1d273c 100644 --- a/src/spikeinterface/core/tests/test_node_pipeline.py +++ b/src/spikeinterface/core/tests/test_node_pipeline.py @@ -3,7 +3,7 @@ from pathlib import Path import shutil -from spikeinterface import extract_waveforms, get_template_extremum_channel, generate_ground_truth_recording +from spikeinterface import create_sorting_analyzer, get_template_extremum_channel, generate_ground_truth_recording # from spikeinterface.sortingcomponents.peak_detection import detect_peaks @@ -14,6 +14,7 @@ PipelineNode, ExtractDenseWaveforms, sorting_to_peaks, + spike_peak_dtype, ) @@ -76,9 +77,12 @@ def test_run_node_pipeline(): spikes = sorting.to_spike_vector() # create peaks from spikes - we = extract_waveforms(recording, sorting, mode="memory", **job_kwargs) - extremum_channel_inds = get_template_extremum_channel(we, peak_sign="neg", outputs="index") - peaks = sorting_to_peaks(sorting, extremum_channel_inds) + sorting_analyzer = create_sorting_analyzer(sorting, recording, format="memory") + sorting_analyzer.compute("random_spikes") + sorting_analyzer.compute("fast_templates", **job_kwargs) + extremum_channel_inds = get_template_extremum_channel(sorting_analyzer, peak_sign="neg", outputs="index") + + peaks = sorting_to_peaks(sorting, extremum_channel_inds, spike_peak_dtype) peak_retriever = PeakRetriever(recording, peaks) # channel index is from template diff --git a/src/spikeinterface/core/tests/test_sorting_tools.py b/src/spikeinterface/core/tests/test_sorting_tools.py index 63e4e7d6b9..6100da07dd 100644 --- a/src/spikeinterface/core/tests/test_sorting_tools.py +++ b/src/spikeinterface/core/tests/test_sorting_tools.py @@ -5,7 +5,11 @@ from spikeinterface.core import NumpySorting from spikeinterface.core import generate_ground_truth_recording -from spikeinterface.core.sorting_tools import spike_vector_to_spike_trains, random_spikes_selection +from spikeinterface.core.sorting_tools import ( + spike_vector_to_spike_trains, + random_spikes_selection, + spike_vector_to_indices, +) @pytest.mark.skipif( @@ -21,6 +25,21 @@ def test_spike_vector_to_spike_trains(): assert np.array_equal(spike_trains[0][unit_id], sorting.get_unit_spike_train(unit_id=unit_id, segment_index=0)) +def test_spike_vector_to_indices(): + sorting = NumpySorting.from_unit_dict({1: np.array([0, 51, 108]), 5: np.array([23, 87])}, 30_000) + spike_vector = sorting.to_spike_vector(concatenated=False) + spike_indices = spike_vector_to_indices(spike_vector, sorting.unit_ids) + + segment_index = 0 + assert len(spike_indices[segment_index]) == sorting.get_num_units() + for unit_index, unit_id in enumerate(sorting.unit_ids): + inds = spike_indices[segment_index][unit_id] + assert np.array_equal( + spike_vector[segment_index][inds]["sample_index"], + sorting.get_unit_spike_train(unit_id=unit_id, segment_index=segment_index), + ) + + def test_random_spikes_selection(): recording, sorting = generate_ground_truth_recording( durations=[30.0], @@ -53,4 +72,5 @@ def test_random_spikes_selection(): if __name__ == "__main__": # test_spike_vector_to_spike_trains() - test_random_spikes_selection() + test_spike_vector_to_indices() + # test_random_spikes_selection() diff --git a/src/spikeinterface/core/tests/test_sortinganalyzer.py b/src/spikeinterface/core/tests/test_sortinganalyzer.py new file mode 100644 index 0000000000..e0b3cfc31b --- /dev/null +++ b/src/spikeinterface/core/tests/test_sortinganalyzer.py @@ -0,0 +1,203 @@ +import pytest +from pathlib import Path + +import shutil + +from spikeinterface.core import generate_ground_truth_recording +from spikeinterface.core import SortingAnalyzer, create_sorting_analyzer, load_sorting_analyzer +from spikeinterface.core.sortinganalyzer import register_result_extension, AnalyzerExtension + +import numpy as np + +if hasattr(pytest, "global_test_folder"): + cache_folder = pytest.global_test_folder / "core" +else: + cache_folder = Path("cache_folder") / "core" + + +def get_dataset(): + recording, sorting = generate_ground_truth_recording( + durations=[30.0], + sampling_frequency=16000.0, + num_channels=10, + num_units=5, + generate_sorting_kwargs=dict(firing_rates=10.0, refractory_period_ms=4.0), + noise_kwargs=dict(noise_level=5.0, strategy="tile_pregenerated"), + seed=2205, + ) + return recording, sorting + + +def test_SortingAnalyzer_memory(): + recording, sorting = get_dataset() + sorting_analyzer = create_sorting_analyzer(sorting, recording, format="memory", sparse=False, sparsity=None) + _check_sorting_analyzers(sorting_analyzer, sorting) + + sorting_analyzer = create_sorting_analyzer(sorting, recording, format="memory", sparse=True, sparsity=None) + _check_sorting_analyzers(sorting_analyzer, sorting) + + +def test_SortingAnalyzer_binary_folder(): + recording, sorting = get_dataset() + + folder = cache_folder / "test_SortingAnalyzer_binary_folder" + if folder.exists(): + shutil.rmtree(folder) + + sorting_analyzer = create_sorting_analyzer( + sorting, recording, format="binary_folder", folder=folder, sparse=False, sparsity=None + ) + sorting_analyzer = load_sorting_analyzer(folder, format="auto") + _check_sorting_analyzers(sorting_analyzer, sorting) + + +def test_SortingAnalyzer_zarr(): + recording, sorting = get_dataset() + + folder = cache_folder / "test_SortingAnalyzer_zarr.zarr" + if folder.exists(): + shutil.rmtree(folder) + + sorting_analyzer = create_sorting_analyzer( + sorting, recording, format="zarr", folder=folder, sparse=False, sparsity=None + ) + sorting_analyzer = load_sorting_analyzer(folder, format="auto") + _check_sorting_analyzers(sorting_analyzer, sorting) + + +def _check_sorting_analyzers(sorting_analyzer, original_sorting): + + print() + print(sorting_analyzer) + + register_result_extension(DummyAnalyzerExtension) + + assert "channel_ids" in sorting_analyzer.rec_attributes + assert "sampling_frequency" in sorting_analyzer.rec_attributes + assert "num_samples" in sorting_analyzer.rec_attributes + + probe = sorting_analyzer.get_probe() + sparsity = sorting_analyzer.sparsity + + # compute + sorting_analyzer.compute("dummy", param1=5.5) + # equivalent + compute_dummy(sorting_analyzer, param1=5.5) + ext = sorting_analyzer.get_extension("dummy") + assert ext is not None + assert ext.params["param1"] == 5.5 + print(sorting_analyzer) + # recompute + sorting_analyzer.compute("dummy", param1=5.5) + # and delete + sorting_analyzer.delete_extension("dummy") + ext = sorting_analyzer.get_extension("dummy") + assert ext is None + + assert sorting_analyzer.has_recording() + + # save to several format + for format in ("memory", "binary_folder", "zarr"): + if format != "memory": + if format == "zarr": + folder = cache_folder / f"test_SortingAnalyzer_save_as_{format}.zarr" + else: + folder = cache_folder / f"test_SortingAnalyzer_save_as_{format}" + if folder.exists(): + shutil.rmtree(folder) + else: + folder = None + + # compute one extension to check the save + sorting_analyzer.compute("dummy") + + sorting_analyzer2 = sorting_analyzer.save_as(format=format, folder=folder) + ext = sorting_analyzer2.get_extension("dummy") + assert ext is not None + + data = sorting_analyzer2.get_extension("dummy").data + assert "result_one" in data + assert data["result_two"].size == original_sorting.to_spike_vector().size + + # select unit_ids to several format + for format in ("memory", "binary_folder", "zarr"): + if format != "memory": + if format == "zarr": + folder = cache_folder / f"test_SortingAnalyzer_select_units_with_{format}.zarr" + else: + folder = cache_folder / f"test_SortingAnalyzer_select_units_with_{format}" + if folder.exists(): + shutil.rmtree(folder) + else: + folder = None + # compute one extension to check the slice + sorting_analyzer.compute("dummy") + keep_unit_ids = original_sorting.unit_ids[::2] + sorting_analyzer2 = sorting_analyzer.select_units(unit_ids=keep_unit_ids, format=format, folder=folder) + + # check propagation of result data and correct sligin + assert np.array_equal(keep_unit_ids, sorting_analyzer2.unit_ids) + data = sorting_analyzer2.get_extension("dummy").data + assert data["result_one"] == sorting_analyzer.get_extension("dummy").data["result_one"] + # unit 1, 3, ... should be removed + assert np.all(~np.isin(data["result_two"], [1, 3])) + + +class DummyAnalyzerExtension(AnalyzerExtension): + extension_name = "dummy" + depend_on = [] + need_recording = False + use_nodepipeline = False + + def _set_params(self, param0="yep", param1=1.2, param2=[1, 2, 3.0]): + params = dict(param0=param0, param1=param1, param2=param2) + params["more_option"] = "yep" + return params + + def _run(self, **kwargs): + # print("dummy run") + self.data["result_one"] = "abcd" + # the result two has the same size of the spike vector!! + # and represent nothing (the trick is to use unit_index for testing slice) + spikes = self.sorting_analyzer.sorting.to_spike_vector() + self.data["result_two"] = spikes["unit_index"].copy() + + def _select_extension_data(self, unit_ids): + keep_unit_indices = np.flatnonzero(np.isin(self.sorting_analyzer.unit_ids, unit_ids)) + + spikes = self.sorting_analyzer.sorting.to_spike_vector() + keep_spike_mask = np.isin(spikes["unit_index"], keep_unit_indices) + # here the first key do not depend on unit_id + # but the second need to be sliced!! + new_data = dict() + new_data["result_one"] = self.data["result_one"] + new_data["result_two"] = self.data["result_two"][keep_spike_mask] + + return new_data + + def _get_data(self): + return self.data["result_one"] + + +compute_dummy = DummyAnalyzerExtension.function_factory() + + +class DummyAnalyzerExtension2(AnalyzerExtension): + extension_name = "dummy" + + +def test_extension(): + register_result_extension(DummyAnalyzerExtension) + # can be register twice without error + register_result_extension(DummyAnalyzerExtension) + + # other extension with same name should trigger an error + with pytest.raises(AssertionError): + register_result_extension(DummyAnalyzerExtension2) + + +if __name__ == "__main__": + test_SortingAnalyzer_memory() + test_SortingAnalyzer_binary_folder() + test_SortingAnalyzer_zarr() + test_extension() diff --git a/src/spikeinterface/core/tests/test_sparsity.py b/src/spikeinterface/core/tests/test_sparsity.py index 65d850ae1c..ff92ccbddc 100644 --- a/src/spikeinterface/core/tests/test_sparsity.py +++ b/src/spikeinterface/core/tests/test_sparsity.py @@ -3,9 +3,10 @@ import numpy as np import json -from spikeinterface.core import ChannelSparsity, estimate_sparsity +from spikeinterface.core import ChannelSparsity, estimate_sparsity, compute_sparsity, Templates from spikeinterface.core.core_tools import check_json from spikeinterface.core import generate_ground_truth_recording +from spikeinterface.core import create_sorting_analyzer def test_ChannelSparsity(): @@ -144,8 +145,7 @@ def test_densify_waveforms(): assert np.array_equal(template_sparse, template_sparse2) -def test_estimate_sparsity(): - num_units = 5 +def get_dataset(): recording, sorting = generate_ground_truth_recording( durations=[30.0], sampling_frequency=16000.0, @@ -155,6 +155,14 @@ def test_estimate_sparsity(): noise_kwargs=dict(noise_level=1.0, strategy="tile_pregenerated"), seed=2205, ) + recording.set_property("group", ["a"] * 5 + ["b"] * 5) + sorting.set_property("group", ["a"] * 3 + ["b"] * 2) + return recording, sorting + + +def test_estimate_sparsity(): + recording, sorting = get_dataset() + num_units = sorting.unit_ids.size # small radius should give a very sparse = one channel per unit sparsity = estimate_sparsity( @@ -188,6 +196,34 @@ def test_estimate_sparsity(): assert np.array_equal(np.sum(sparsity.mask, axis=1), np.ones(num_units) * 3) +def test_compute_sparsity(): + recording, sorting = get_dataset() + + sorting_analyzer = create_sorting_analyzer(sorting=sorting, recording=recording, sparse=False) + sorting_analyzer.compute("random_spikes") + sorting_analyzer.compute("fast_templates", return_scaled=True) + sorting_analyzer.compute("noise_levels", return_scaled=True) + # this is needed for method="energy" + sorting_analyzer.compute("waveforms", return_scaled=True) + + # using object SortingAnalyzer + sparsity = compute_sparsity(sorting_analyzer, method="best_channels", num_channels=2, peak_sign="neg") + sparsity = compute_sparsity(sorting_analyzer, method="radius", radius_um=50.0, peak_sign="neg") + sparsity = compute_sparsity(sorting_analyzer, method="snr", threshold=5, peak_sign="neg") + sparsity = compute_sparsity(sorting_analyzer, method="ptp", threshold=5) + sparsity = compute_sparsity(sorting_analyzer, method="energy", threshold=5) + sparsity = compute_sparsity(sorting_analyzer, method="by_property", by_property="group") + + # using object Templates + templates = sorting_analyzer.get_extension("fast_templates").get_data(outputs="Templates") + noise_levels = sorting_analyzer.get_extension("noise_levels").get_data() + sparsity = compute_sparsity(templates, method="best_channels", num_channels=2, peak_sign="neg") + sparsity = compute_sparsity(templates, method="radius", radius_um=50.0, peak_sign="neg") + sparsity = compute_sparsity(templates, method="snr", noise_levels=noise_levels, threshold=5, peak_sign="neg") + sparsity = compute_sparsity(templates, method="ptp", noise_levels=noise_levels, threshold=5) + + if __name__ == "__main__": - test_ChannelSparsity() - test_estimate_sparsity() + # test_ChannelSparsity() + # test_estimate_sparsity() + test_compute_sparsity() diff --git a/src/spikeinterface/core/tests/test_template_tools.py b/src/spikeinterface/core/tests/test_template_tools.py index eaa7712fcb..0ef80d7b08 100644 --- a/src/spikeinterface/core/tests/test_template_tools.py +++ b/src/spikeinterface/core/tests/test_template_tools.py @@ -1,8 +1,8 @@ import pytest -import shutil -from pathlib import Path -from spikeinterface import load_extractor, extract_waveforms, load_waveforms, generate_recording, generate_sorting +from spikeinterface.core import generate_ground_truth_recording, create_sorting_analyzer + + from spikeinterface import Templates from spikeinterface.core import ( get_template_amplitudes, @@ -12,65 +12,65 @@ ) -if hasattr(pytest, "global_test_folder"): - cache_folder = pytest.global_test_folder / "core" -else: - cache_folder = Path("cache_folder") / "core" - - -def setup_module(): - for folder_name in ("toy_rec", "toy_sort", "toy_waveforms", "toy_waveforms_1"): - if (cache_folder / folder_name).is_dir(): - shutil.rmtree(cache_folder / folder_name) - - durations = [10.0, 5.0] - recording = generate_recording(durations=durations, num_channels=4) - sorting = generate_sorting(durations=durations, num_units=10) - +def get_sorting_analyzer(): + recording, sorting = generate_ground_truth_recording( + durations=[10.0, 5.0], + sampling_frequency=10_000.0, + num_channels=4, + num_units=10, + noise_kwargs=dict(noise_level=5.0, strategy="tile_pregenerated"), + seed=2205, + ) recording.annotate(is_filtered=True) recording.set_channel_groups([0, 0, 1, 1]) - recording = recording.save(folder=cache_folder / "toy_rec") sorting.set_property("group", [0, 0, 0, 0, 1, 1, 1, 1, 1, 1]) - sorting = sorting.save(folder=cache_folder / "toy_sort") - we = extract_waveforms(recording, sorting, cache_folder / "toy_waveforms") + sorting_analyzer = create_sorting_analyzer(sorting, recording, format="memory", sparse=False) + sorting_analyzer.compute("random_spikes") + sorting_analyzer.compute("fast_templates") + + return sorting_analyzer + +@pytest.fixture(scope="module") +def sorting_analyzer(): + return get_sorting_analyzer() -def _get_templates_object_from_waveform_extractor(we): + +def _get_templates_object_from_sorting_analyzer(sorting_analyzer): + ext = sorting_analyzer.get_extension("fast_templates") templates = Templates( - templates_array=we.get_all_templates(mode="average"), - sampling_frequency=we.sampling_frequency, - nbefore=we.nbefore, + templates_array=ext.data["average"], + sampling_frequency=sorting_analyzer.sampling_frequency, + nbefore=ext.nbefore, + # this is dense sparsity_mask=None, - channel_ids=we.channel_ids, - unit_ids=we.unit_ids, + channel_ids=sorting_analyzer.channel_ids, + unit_ids=sorting_analyzer.unit_ids, ) return templates -def test_get_template_amplitudes(): - we = load_waveforms(cache_folder / "toy_waveforms") - peak_values = get_template_amplitudes(we) +def test_get_template_amplitudes(sorting_analyzer): + peak_values = get_template_amplitudes(sorting_analyzer) print(peak_values) - templates = _get_templates_object_from_waveform_extractor(we) + templates = _get_templates_object_from_sorting_analyzer(sorting_analyzer) peak_values = get_template_amplitudes(templates) print(peak_values) -def test_get_template_extremum_channel(): - we = load_waveforms(cache_folder / "toy_waveforms") - extremum_channels_ids = get_template_extremum_channel(we, peak_sign="both") +def test_get_template_extremum_channel(sorting_analyzer): + extremum_channels_ids = get_template_extremum_channel(sorting_analyzer, peak_sign="both") print(extremum_channels_ids) - templates = _get_templates_object_from_waveform_extractor(we) + templates = _get_templates_object_from_sorting_analyzer(sorting_analyzer) extremum_channels_ids = get_template_extremum_channel(templates, peak_sign="both") print(extremum_channels_ids) -def test_get_template_extremum_channel_peak_shift(): - we = load_waveforms(cache_folder / "toy_waveforms") - shifts = get_template_extremum_channel_peak_shift(we, peak_sign="neg") +def test_get_template_extremum_channel_peak_shift(sorting_analyzer): + shifts = get_template_extremum_channel_peak_shift(sorting_analyzer, peak_sign="neg") print(shifts) - templates = _get_templates_object_from_waveform_extractor(we) + templates = _get_templates_object_from_sorting_analyzer(sorting_analyzer) shifts = get_template_extremum_channel_peak_shift(templates, peak_sign="neg") # DEBUG @@ -89,20 +89,22 @@ def test_get_template_extremum_channel_peak_shift(): # plt.show() -def test_get_template_extremum_amplitude(): - we = load_waveforms(cache_folder / "toy_waveforms") +def test_get_template_extremum_amplitude(sorting_analyzer): - extremum_channels_ids = get_template_extremum_amplitude(we, peak_sign="both") + extremum_channels_ids = get_template_extremum_amplitude(sorting_analyzer, peak_sign="both") print(extremum_channels_ids) - templates = _get_templates_object_from_waveform_extractor(we) + templates = _get_templates_object_from_sorting_analyzer(sorting_analyzer) extremum_channels_ids = get_template_extremum_amplitude(templates, peak_sign="both") if __name__ == "__main__": - setup_module() + # setup_module() + + sorting_analyzer = get_sorting_analyzer() + print(sorting_analyzer) - test_get_template_amplitudes() - test_get_template_extremum_channel() - test_get_template_extremum_channel_peak_shift() - test_get_template_extremum_amplitude() + test_get_template_amplitudes(sorting_analyzer) + test_get_template_extremum_channel(sorting_analyzer) + test_get_template_extremum_channel_peak_shift(sorting_analyzer) + test_get_template_extremum_amplitude(sorting_analyzer) diff --git a/src/spikeinterface/core/tests/test_waveform_extractor.py b/src/spikeinterface/core/tests/test_waveform_extractor.py deleted file mode 100644 index 787c94dee8..0000000000 --- a/src/spikeinterface/core/tests/test_waveform_extractor.py +++ /dev/null @@ -1,620 +0,0 @@ -import pytest -from pathlib import Path -import shutil -import numpy as np -import platform -import zarr - - -from spikeinterface.core import ( - generate_recording, - generate_sorting, - NumpySorting, - ChannelSparsity, - generate_ground_truth_recording, -) -from spikeinterface import WaveformExtractor, BaseRecording, extract_waveforms, load_waveforms -from spikeinterface.core.waveform_extractor import precompute_sparsity - - -if hasattr(pytest, "global_test_folder"): - cache_folder = pytest.global_test_folder / "core" -else: - cache_folder = Path("cache_folder") / "core" - - -def test_WaveformExtractor(): - durations = [30, 40] - sampling_frequency = 30000.0 - - # 2 segments - num_channels = 4 - recording = generate_recording( - num_channels=num_channels, durations=durations, sampling_frequency=sampling_frequency - ) - recording.annotate(is_filtered=True) - # folder_rec = cache_folder / "wf_rec1" - # recording = recording.save(folder=folder_rec) - num_units = 15 - sorting = generate_sorting(num_units=num_units, sampling_frequency=sampling_frequency, durations=durations) - - # test with dump !!!! - recording = recording.save() - sorting = sorting.save() - - mask = np.zeros((num_units, num_channels), dtype=bool) - mask[:, ::2] = True - num_sparse_channels = 2 - sparsity_ext = ChannelSparsity(mask, sorting.unit_ids, recording.channel_ids) - - for mode in ["folder", "memory"]: - for sparsity in [None, sparsity_ext]: - folder = cache_folder / "test_waveform_extractor" - if folder.is_dir(): - shutil.rmtree(folder) - - print(mode, sparsity) - - if mode == "memory": - wf_folder = None - else: - wf_folder = folder - - sparse = sparsity is not None - we = extract_waveforms( - recording, - sorting, - wf_folder, - mode=mode, - sparsity=sparsity, - sparse=sparse, - ms_before=1.0, - ms_after=1.6, - max_spikes_per_unit=500, - n_jobs=4, - chunk_size=30000, - progress_bar=True, - ) - num_samples = int(sampling_frequency * (1 + 1.6) / 1000.0) - wfs = we.get_waveforms(0) - print(wfs.shape, num_samples) - assert wfs.shape[0] <= 500 - if sparsity is None: - assert wfs.shape[1:] == (num_samples, num_channels) - else: - assert wfs.shape[1:] == (num_samples, num_sparse_channels) - - wfs, sampled_index = we.get_waveforms(0, with_index=True) - - if mode == "folder": - # load back - we = WaveformExtractor.load(folder) - - if sparsity is not None: - assert we.is_sparse() - - wfs = we.get_waveforms(0) - if mode == "folder": - assert isinstance(wfs, np.memmap) - wfs_array = we.get_waveforms(0, lazy=False) - assert isinstance(wfs_array, np.ndarray) - - ## Test force dense mode - wfs = we.get_waveforms(0, force_dense=True) - assert wfs.shape[2] == num_channels - - template = we.get_template(0) - if sparsity is None: - assert template.shape == (num_samples, num_channels) - else: - assert template.shape == (num_samples, num_sparse_channels) - templates = we.get_all_templates() - assert templates.shape == (num_units, num_samples, num_channels) - - template = we.get_template(0, force_dense=True) - assert template.shape == (num_samples, num_channels) - - if sparsity is not None: - assert np.all(templates[:, :, 1] == 0) - assert np.all(templates[:, :, 3] == 0) - - template_std = we.get_template(0, mode="std") - if sparsity is None: - assert template_std.shape == (num_samples, num_channels) - else: - assert template_std.shape == (num_samples, num_sparse_channels) - template_std = we.get_all_templates(mode="std") - assert template_std.shape == (num_units, num_samples, num_channels) - - if sparsity is not None: - assert np.all(template_std[:, :, 1] == 0) - assert np.all(template_std[:, :, 3] == 0) - - template_segment = we.get_template_segment(unit_id=0, segment_index=0) - if sparsity is None: - assert template_segment.shape == (num_samples, num_channels) - else: - assert template_segment.shape == (num_samples, num_sparse_channels) - - # test filter units - keep_units = sorting.get_unit_ids()[::2] - if (cache_folder / "we_filt").is_dir(): - shutil.rmtree(cache_folder / "we_filt") - wf_filt = we.select_units(keep_units, cache_folder / "we_filt") - for unit in wf_filt.sorting.get_unit_ids(): - assert unit in keep_units - filtered_templates = wf_filt.get_all_templates() - assert filtered_templates.shape == (len(keep_units), num_samples, num_channels) - if sparsity is not None: - wf_filt.is_sparse() - - # test save - if (cache_folder / f"we_saved_{mode}").is_dir(): - shutil.rmtree(cache_folder / f"we_saved_{mode}") - we_saved = we.save(cache_folder / f"we_saved_{mode}") - for unit_id in we_saved.unit_ids: - assert np.array_equal(we.get_waveforms(unit_id), we_saved.get_waveforms(unit_id)) - assert np.array_equal(we.get_sampled_indices(unit_id), we_saved.get_sampled_indices(unit_id)) - assert np.array_equal(we.get_all_templates(), we_saved.get_all_templates()) - wfs = we_saved.get_waveforms(0) - assert isinstance(wfs, np.memmap) - wfs_array = we_saved.get_waveforms(0, lazy=False) - assert isinstance(wfs_array, np.ndarray) - - if (cache_folder / f"we_saved_{mode}.zarr").is_dir(): - shutil.rmtree(cache_folder / f"we_saved_{mode}.zarr") - we_saved_zarr = we.save(cache_folder / f"we_saved_{mode}", format="zarr") - for unit_id in we_saved_zarr.unit_ids: - assert np.array_equal(we.get_waveforms(unit_id), we_saved_zarr.get_waveforms(unit_id)) - assert np.array_equal(we.get_sampled_indices(unit_id), we_saved_zarr.get_sampled_indices(unit_id)) - assert np.array_equal(we.get_all_templates(), we_saved_zarr.get_all_templates()) - wfs = we_saved_zarr.get_waveforms(0) - assert isinstance(wfs, zarr.Array) - wfs_array = we_saved_zarr.get_waveforms(0, lazy=False) - assert isinstance(wfs_array, np.ndarray) - - # test delete_waveforms - assert we.has_waveforms() - assert we_saved.has_waveforms() - assert we_saved_zarr.has_waveforms() - - we.delete_waveforms() - we_saved.delete_waveforms() - we_saved_zarr.delete_waveforms() - assert not we.has_waveforms() - assert not we_saved.has_waveforms() - assert not we_saved_zarr.has_waveforms() - - # after reloading, get_waveforms/sampled_indices should result in an AssertionError - we_loaded = load_waveforms(cache_folder / f"we_saved_{mode}") - we_loaded_zarr = load_waveforms(cache_folder / f"we_saved_{mode}.zarr") - assert not we_loaded.has_waveforms() - assert not we_loaded_zarr.has_waveforms() - with pytest.raises(AssertionError): - we_loaded.get_waveforms(we_loaded.unit_ids[0]) - with pytest.raises(AssertionError): - we_loaded_zarr.get_waveforms(we_loaded.unit_ids[0]) - with pytest.raises(AssertionError): - we_loaded.get_sampled_indices(we_loaded.unit_ids[0]) - with pytest.raises(AssertionError): - we_loaded_zarr.get_sampled_indices(we_loaded.unit_ids[0]) - - -def test_extract_waveforms(): - # 2 segments - - durations = [30, 40] - sampling_frequency = 30000.0 - - recording = generate_recording(num_channels=2, durations=durations, sampling_frequency=sampling_frequency) - recording.annotate(is_filtered=True) - folder_rec = cache_folder / "wf_rec2" - - sorting = generate_sorting(num_units=5, sampling_frequency=sampling_frequency, durations=durations) - folder_sort = cache_folder / "wf_sort2" - - if folder_rec.is_dir(): - shutil.rmtree(folder_rec) - if folder_sort.is_dir(): - shutil.rmtree(folder_sort) - recording = recording.save(folder=folder_rec) - # we force "npz_folder" because we want to force the to_multiprocessing to be a SharedMemorySorting - sorting = sorting.save(folder=folder_sort, format="npz_folder") - - # 1 job - folder1 = cache_folder / "test_extract_waveforms_1job" - if folder1.is_dir(): - shutil.rmtree(folder1) - we1 = extract_waveforms(recording, sorting, folder1, max_spikes_per_unit=None, return_scaled=False) - - # 2 job - folder2 = cache_folder / "test_extract_waveforms_2job" - if folder2.is_dir(): - shutil.rmtree(folder2) - we2 = extract_waveforms( - recording, sorting, folder2, n_jobs=2, total_memory="10M", max_spikes_per_unit=None, return_scaled=False - ) - wf1 = we1.get_waveforms(0) - wf2 = we2.get_waveforms(0) - assert np.array_equal(wf1, wf2) - - # return scaled with set scaling values to recording - folder3 = cache_folder / "test_extract_waveforms_returnscaled" - if folder3.is_dir(): - shutil.rmtree(folder3) - gain = 0.1 - recording.set_channel_gains(gain) - recording.set_channel_offsets(0) - we3 = extract_waveforms( - recording, sorting, folder3, n_jobs=2, total_memory="10M", max_spikes_per_unit=None, return_scaled=True - ) - wf3 = we3.get_waveforms(0) - assert np.array_equal((wf1).astype("float32") * gain, wf3) - - # test in memory - we_mem = extract_waveforms( - recording, - sorting, - folder=None, - mode="memory", - n_jobs=2, - total_memory="10M", - max_spikes_per_unit=None, - return_scaled=True, - ) - wf_mem = we_mem.get_waveforms(0) - assert np.array_equal(wf_mem, wf3) - - # Test unfiltered recording - recording.annotate(is_filtered=False) - folder_crash = cache_folder / "test_extract_waveforms_crash" - with pytest.raises(Exception): - we1 = extract_waveforms(recording, sorting, folder_crash, max_spikes_per_unit=None, return_scaled=False) - - folder_unfiltered = cache_folder / "test_extract_waveforms_unfiltered" - if folder_unfiltered.is_dir(): - shutil.rmtree(folder_unfiltered) - we1 = extract_waveforms( - recording, sorting, folder_unfiltered, allow_unfiltered=True, max_spikes_per_unit=None, return_scaled=False - ) - recording.annotate(is_filtered=True) - - # test with sparsity estimation - folder4 = cache_folder / "test_extract_waveforms_compute_sparsity" - if folder4.is_dir(): - shutil.rmtree(folder4) - we4 = extract_waveforms( - recording, - sorting, - folder4, - max_spikes_per_unit=100, - return_scaled=True, - sparse=True, - method="radius", - radius_um=50.0, - n_jobs=2, - chunk_duration="500ms", - ) - assert we4.sparsity is not None - - # test with sparsity estimation - folder5 = cache_folder / "test_extract_waveforms_compute_sparsity_tmp_folder" - sparsity_temp_folder = cache_folder / "tmp_sparsity" - if folder5.is_dir(): - shutil.rmtree(folder5) - - we5 = extract_waveforms( - recording, - sorting, - folder5, - max_spikes_per_unit=100, - return_scaled=True, - sparse=True, - sparsity_temp_folder=sparsity_temp_folder, - method="radius", - radius_um=50.0, - n_jobs=2, - chunk_duration="500ms", - ) - assert we5.sparsity is not None - # tmp folder is cleaned up - assert not sparsity_temp_folder.is_dir() - - # should raise an error if sparsity_temp_folder is not empty - with pytest.raises(AssertionError): - if folder5.is_dir(): - shutil.rmtree(folder5) - sparsity_temp_folder.mkdir() - we5 = extract_waveforms( - recording, - sorting, - folder5, - max_spikes_per_unit=100, - return_scaled=True, - sparse=True, - sparsity_temp_folder=sparsity_temp_folder, - method="radius", - radius_um=50.0, - n_jobs=2, - chunk_duration="500ms", - ) - - -def test_recordingless(): - durations = [30, 40] - sampling_frequency = 30000.0 - - # 2 segments - num_channels = 2 - recording = generate_recording( - num_channels=num_channels, durations=durations, sampling_frequency=sampling_frequency - ) - recording.annotate(is_filtered=True) - num_units = 15 - sorting = generate_sorting(num_units=num_units, sampling_frequency=sampling_frequency, durations=durations) - - # now save and delete saved file - recording = recording.save(folder=cache_folder / "recording1") - sorting = sorting.save(folder=cache_folder / "sorting1") - - # recording and sorting are not serializable - wf_folder = cache_folder / "wf_recordingless" - - # save with relative paths - we = extract_waveforms(recording, sorting, wf_folder, use_relative_path=True, return_scaled=False) - we_loaded = WaveformExtractor.load(wf_folder, with_recording=False) - - assert isinstance(we.recording, BaseRecording) - assert not we_loaded.has_recording() - with pytest.raises(ValueError): - # reccording cannot be accessible - rec = we_loaded.recording - assert we.sampling_frequency == we_loaded.sampling_frequency - assert np.array_equal(we.recording.channel_ids, np.array(we_loaded.channel_ids)) - assert np.array_equal(we.recording.get_channel_locations(), np.array(we_loaded.get_channel_locations())) - assert we.get_num_channels() == we_loaded.get_num_channels() - assert all( - we.recording.get_num_samples(seg) == we_loaded.get_num_samples(seg) - for seg in range(we_loaded.get_num_segments()) - ) - assert we.recording.get_total_duration() == we_loaded.get_total_duration() - - for key in we.recording.get_property_keys(): - if key != "contact_vector": # contact vector is saved as probe - np.testing.assert_array_equal(we.recording.get_property(key), we_loaded.get_recording_property(key)) - - probe = we_loaded.get_probe() - probegroup = we_loaded.get_probegroup() - - # delete original recording and rely on rec_attributes - if platform.system() != "Windows": - # this avoid reference on the folder - del we, recording - shutil.rmtree(cache_folder / "recording1") - we_loaded = WaveformExtractor.load(wf_folder, with_recording=False) - assert not we_loaded.has_recording() - - -def test_unfiltered_extraction(): - durations = [30, 40] - sampling_frequency = 30000.0 - - # 2 segments - num_channels = 2 - recording = generate_recording( - num_channels=num_channels, durations=durations, sampling_frequency=sampling_frequency - ) - recording.annotate(is_filtered=False) - folder_rec = cache_folder / "wf_unfiltered" - recording = recording.save(folder=folder_rec) - num_units = 15 - sorting = generate_sorting(num_units=num_units, sampling_frequency=sampling_frequency, durations=durations) - - # test with dump !!!! - recording = recording.save() - sorting = sorting.save() - - folder = cache_folder / "test_waveform_extractor_unfiltered" - if folder.is_dir(): - shutil.rmtree(folder) - - for mode in ["folder", "memory"]: - if mode == "memory": - wf_folder = None - else: - wf_folder = folder - - with pytest.raises(Exception): - we = WaveformExtractor.create(recording, sorting, wf_folder, mode=mode, allow_unfiltered=False) - if wf_folder is not None: - shutil.rmtree(wf_folder) - we = WaveformExtractor.create(recording, sorting, wf_folder, mode=mode, allow_unfiltered=True) - - ms_before = 2.0 - ms_after = 3.0 - max_spikes_per_unit = 500 - num_samples = int((ms_before + ms_after) * sampling_frequency / 1000.0) - we.set_params(ms_before=ms_before, ms_after=ms_after, max_spikes_per_unit=max_spikes_per_unit) - we.run_extract_waveforms(n_jobs=1, chunk_size=30000) - we.run_extract_waveforms(n_jobs=4, chunk_size=30000, progress_bar=True) - - wfs = we.get_waveforms(0) - assert wfs.shape[0] <= max_spikes_per_unit - assert wfs.shape[1:] == (num_samples, num_channels) - - wfs, sampled_index = we.get_waveforms(0, with_index=True) - - if mode == "folder": - # load back - we = WaveformExtractor.load_from_folder(folder) - - wfs = we.get_waveforms(0) - - template = we.get_template(0) - assert template.shape == (num_samples, 2) - templates = we.get_all_templates() - assert templates.shape == (num_units, num_samples, num_channels) - - wf_std = we.get_template(0, mode="std") - assert wf_std.shape == (num_samples, num_channels) - wfs_std = we.get_all_templates(mode="std") - assert wfs_std.shape == (num_units, num_samples, num_channels) - - wf_prct = we.get_template(0, mode="percentile", percentile=10) - assert wf_prct.shape == (num_samples, num_channels) - wfs_prct = we.get_all_templates(mode="percentile", percentile=10) - assert wfs_prct.shape == (num_units, num_samples, num_channels) - - # percentile mode should fail if percentile is None or not in [0, 100] - with pytest.raises(AssertionError): - wf_prct = we.get_template(0, mode="percentile") - with pytest.raises(AssertionError): - wfs_prct = we.get_all_templates(mode="percentile") - with pytest.raises(AssertionError): - wfs_prct = we.get_all_templates(mode="percentile", percentile=101) - - wf_segment = we.get_template_segment(unit_id=0, segment_index=0) - assert wf_segment.shape == (num_samples, num_channels) - assert wf_segment.shape == (num_samples, num_channels) - - -def test_portability(): - durations = [30, 40] - sampling_frequency = 30000.0 - - folder_to_move = cache_folder / "original_folder" - if folder_to_move.is_dir(): - shutil.rmtree(folder_to_move) - folder_to_move.mkdir() - folder_moved = cache_folder / "moved_folder" - if folder_moved.is_dir(): - shutil.rmtree(folder_moved) - # folder_moved.mkdir() - - # 2 segments - num_channels = 2 - recording = generate_recording( - num_channels=num_channels, durations=durations, sampling_frequency=sampling_frequency - ) - recording.annotate(is_filtered=True) - folder_rec = folder_to_move / "rec" - recording = recording.save(folder=folder_rec) - num_units = 15 - sorting = generate_sorting(num_units=num_units, sampling_frequency=sampling_frequency, durations=durations) - folder_sort = folder_to_move / "sort" - sorting = sorting.save(folder=folder_sort) - - wf_folder = folder_to_move / "waveform_extractor" - if wf_folder.is_dir(): - shutil.rmtree(wf_folder) - - # save with relative paths - we = extract_waveforms(recording, sorting, wf_folder, use_relative_path=True) - - # move all to a separate folder - shutil.copytree(folder_to_move, folder_moved) - wf_folder_moved = folder_moved / "waveform_extractor" - we_loaded = load_waveforms(folder=wf_folder_moved, with_recording=True, sorting=sorting) - - assert we_loaded.recording is not None - assert we_loaded.sorting is not None - - assert np.allclose(we.channel_ids, we_loaded.recording.channel_ids) - assert np.allclose(we.unit_ids, we_loaded.unit_ids) - - for unit in we.unit_ids: - wf = we.get_waveforms(unit_id=unit) - wf_loaded = we_loaded.get_waveforms(unit_id=unit) - - assert np.allclose(wf, wf_loaded) - - -def test_empty_sorting(): - sf = 30000 - num_channels = 2 - - recording = generate_recording(num_channels=num_channels, sampling_frequency=sf, durations=[15.32]) - sorting = NumpySorting.from_unit_dict({}, sf) - - folder = cache_folder / "empty_sorting" - wvf_extractor = extract_waveforms(recording, sorting, folder, allow_unfiltered=True) - - assert len(wvf_extractor.unit_ids) == 0 - assert wvf_extractor.get_all_templates().shape == (0, wvf_extractor.nsamples, num_channels) - - -def test_compute_sparsity(): - durations = [30, 40] - sampling_frequency = 30000.0 - - num_channels = 4 - recording = generate_recording( - num_channels=num_channels, durations=durations, sampling_frequency=sampling_frequency - ) - recording.annotate(is_filtered=True) - - num_units = 15 - sorting = generate_sorting(num_units=num_units, sampling_frequency=sampling_frequency, durations=durations) - - # test with dump - recording = recording.save() - sorting = sorting.save() - - job_kwargs = dict(n_jobs=4, chunk_size=30000, progress_bar=False) - - for kwargs in [dict(method="radius", radius_um=50.0), dict(method="best_channels", num_channels=2)]: - sparsity = precompute_sparsity( - recording, - sorting, - num_spikes_for_sparsity=100, - unit_batch_size=2, - ms_before=1.0, - ms_after=1.5, - **kwargs, - **job_kwargs, - ) - print(sparsity) - - -def test_non_json_object(): - recording, sorting = generate_ground_truth_recording( - durations=[30, 40], - sampling_frequency=30000.0, - num_channels=32, - num_units=5, - ) - - # recording is not save to keep it in memory - sorting = sorting.save() - - wf_folder = cache_folder / "test_waveform_extractor" - if wf_folder.is_dir(): - shutil.rmtree(wf_folder) - - we = extract_waveforms( - recording, - sorting, - wf_folder, - mode="folder", - sparsity=None, - sparse=False, - ms_before=1.0, - ms_after=1.6, - max_spikes_per_unit=50, - n_jobs=4, - chunk_size=30000, - progress_bar=True, - ) - - # This used to fail because of json - we = load_waveforms(wf_folder) - - -if __name__ == "__main__": - # test_WaveformExtractor() - # test_extract_waveforms() - # test_portability() - test_recordingless() - # test_compute_sparsity() - # test_non_json_object() - test_empty_sorting() diff --git a/src/spikeinterface/core/tests/test_waveform_tools.py b/src/spikeinterface/core/tests/test_waveform_tools.py index 71d30495d8..a5473ae89c 100644 --- a/src/spikeinterface/core/tests/test_waveform_tools.py +++ b/src/spikeinterface/core/tests/test_waveform_tools.py @@ -11,6 +11,7 @@ extract_waveforms_to_single_buffer, split_waveforms_by_units, estimate_templates, + estimate_templates_average, ) @@ -162,7 +163,7 @@ def test_waveform_tools(): _check_all_wf_equal(list_wfs_sparse) -def test_estimate_templates(): +def test_estimate_templates_average(): recording, sorting = get_dataset() ms_before = 1.0 @@ -177,7 +178,7 @@ def test_estimate_templates(): job_kwargs = dict(n_jobs=2, progress_bar=True, chunk_duration="1s") - templates = estimate_templates( + templates = estimate_templates_average( recording, spikes, sorting.unit_ids, nbefore, nafter, return_scaled=True, **job_kwargs ) print(templates.shape) @@ -194,6 +195,41 @@ def test_estimate_templates(): # plt.show() +def test_estimate_templates(): + recording, sorting = get_dataset() + + ms_before = 1.0 + ms_after = 1.5 + + nbefore = int(ms_before * recording.sampling_frequency / 1000.0) + nafter = int(ms_after * recording.sampling_frequency / 1000.0) + + spikes = sorting.to_spike_vector() + # take one spikes every 10 + spikes = spikes[::10] + + job_kwargs = dict(n_jobs=2, progress_bar=True, chunk_duration="1s") + + for operator in ("average", "median"): + templates = estimate_templates( + recording, spikes, sorting.unit_ids, nbefore, nafter, operator=operator, return_scaled=True, **job_kwargs + ) + # print(templates.shape) + assert templates.shape[0] == sorting.unit_ids.size + assert templates.shape[1] == nbefore + nafter + assert templates.shape[2] == recording.get_num_channels() + + assert np.any(templates != 0) + + # import matplotlib.pyplot as plt + # fig, ax = plt.subplots() + # for unit_index, unit_id in enumerate(sorting.unit_ids): + # ax.plot(templates[unit_index, :, :].T.flatten()) + + # plt.show() + + if __name__ == "__main__": - # test_waveform_tools() + test_waveform_tools() + test_estimate_templates_average() test_estimate_templates() diff --git a/src/spikeinterface/core/tests/test_waveforms_extractor_backwards_compatibility.py b/src/spikeinterface/core/tests/test_waveforms_extractor_backwards_compatibility.py new file mode 100644 index 0000000000..d122723d85 --- /dev/null +++ b/src/spikeinterface/core/tests/test_waveforms_extractor_backwards_compatibility.py @@ -0,0 +1,109 @@ +import pytest +from pathlib import Path + +import shutil + +import numpy as np + +from spikeinterface.core import generate_ground_truth_recording + +from spikeinterface.core.waveforms_extractor_backwards_compatibility import extract_waveforms as mock_extract_waveforms +from spikeinterface.core.waveforms_extractor_backwards_compatibility import load_waveforms as load_waveforms_backwards +from spikeinterface.core.waveforms_extractor_backwards_compatibility import _read_old_waveforms_extractor_binary + +import spikeinterface.full as si + +# remove this when WaveformsExtractor will be removed +from spikeinterface.core import extract_waveforms as old_extract_waveforms + + +if hasattr(pytest, "global_test_folder"): + cache_folder = pytest.global_test_folder / "core" +else: + cache_folder = Path("cache_folder") / "core" + + +def get_dataset(): + recording, sorting = generate_ground_truth_recording( + durations=[30.0, 20.0], + sampling_frequency=16000.0, + num_channels=4, + num_units=5, + generate_sorting_kwargs=dict(firing_rates=10.0, refractory_period_ms=4.0), + generate_unit_locations_kwargs=dict( + margin_um=5.0, + minimum_z=5.0, + maximum_z=20.0, + ), + generate_templates_kwargs=dict( + unit_params_range=dict( + alpha=(9_000.0, 12_000.0), + ) + ), + noise_kwargs=dict(noise_level=5.0, strategy="tile_pregenerated"), + seed=2406, + ) + return recording, sorting + + +def test_extract_waveforms(): + recording, sorting = get_dataset() + + folder = cache_folder / "old_waveforms_extractor" + if folder.exists(): + shutil.rmtree(folder) + + we_kwargs = dict(sparse=True, max_spikes_per_unit=30) + + we_old = old_extract_waveforms(recording, sorting, folder=folder, **we_kwargs) + print(we_old) + + folder = cache_folder / "mock_waveforms_extractor" + if folder.exists(): + shutil.rmtree(folder) + + we_mock = mock_extract_waveforms(recording, sorting, folder=folder, **we_kwargs) + print(we_mock) + + for we in (we_old, we_mock): + + selected_spikes = we.get_sampled_indices(unit_id=sorting.unit_ids[0]) + # print(selected_spikes.size, selected_spikes.dtype) + + wfs = we.get_waveforms(sorting.unit_ids[0]) + # print(wfs.shape) + + wfs = we.get_waveforms(sorting.unit_ids[0], force_dense=True) + # print(wfs.shape) + + templates = we.get_all_templates() + # print(templates.shape) + + # test reading old WaveformsExtractor folder + folder = cache_folder / "old_waveforms_extractor" + sorting_analyzer_from_we = load_waveforms_backwards(folder, output="SortingAnalyzer") + print(sorting_analyzer_from_we) + mock_loaded_we_old = load_waveforms_backwards(folder, output="MockWaveformExtractor") + print(mock_loaded_we_old) + + +@pytest.mark.skip() +def test_read_old_waveforms_extractor_binary(): + folder = "/data_local/DataSpikeSorting/waveform_extractor_backward_compatibility/waveforms_extractor_1" + sorting_analyzer = _read_old_waveforms_extractor_binary(folder) + + print(sorting_analyzer) + + for ext_name in sorting_analyzer.get_loaded_extension_names(): + print() + print(ext_name) + keys = sorting_analyzer.get_extension(ext_name).data.keys() + print(keys) + data = sorting_analyzer.get_extension(ext_name).get_data() + if isinstance(data, np.ndarray): + print(data.shape) + + +if __name__ == "__main__": + test_extract_waveforms() + # test_read_old_waveforms_extractor_binary() diff --git a/src/spikeinterface/core/tests/test_zarrextractors.py b/src/spikeinterface/core/tests/test_zarrextractors.py index 72247cb42a..2d6de6c8a0 100644 --- a/src/spikeinterface/core/tests/test_zarrextractors.py +++ b/src/spikeinterface/core/tests/test_zarrextractors.py @@ -30,7 +30,7 @@ def test_ZarrSortingExtractor(): sorting = ZarrSortingExtractor(folder) sorting = load_extractor(sorting.to_dict()) - # store the sorting in a sub group (for instance SortingResult) + # store the sorting in a sub group (for instance SortingAnalyzer) folder = cache_folder / "zarr_sorting_sub_group" if folder.is_dir(): shutil.rmtree(folder) diff --git a/src/spikeinterface/core/waveform_extractor.py b/src/spikeinterface/core/waveform_extractor.py deleted file mode 100644 index 8c3f53b64c..0000000000 --- a/src/spikeinterface/core/waveform_extractor.py +++ /dev/null @@ -1,2164 +0,0 @@ -from __future__ import annotations - -import math -import pickle -from pathlib import Path -import shutil -from typing import Literal, Optional -import json -import os -import weakref - -import numpy as np -from copy import deepcopy -from warnings import warn - -import probeinterface - -from .base import load_extractor -from .baserecording import BaseRecording -from .basesorting import BaseSorting -from .core_tools import check_json -from .job_tools import _shared_job_kwargs_doc, split_job_kwargs, fix_job_kwargs -from .numpyextractors import NumpySorting -from .recording_tools import check_probe_do_not_overlap, get_rec_attributes -from .sparsity import ChannelSparsity, compute_sparsity, _sparsity_doc -from .waveform_tools import extract_waveforms_to_buffers, has_exceeding_spikes - -_possible_template_modes = ("average", "std", "median", "percentile") - - -class WaveformExtractor: - """ - Class to extract waveform on paired Recording-Sorting objects. - Waveforms are persistent on disk and cached in memory. - - Parameters - ---------- - recording: Recording | None - The recording object - sorting: Sorting - The sorting object - folder: Path - The folder where waveforms are cached - rec_attributes: None or dict - When recording is None then a minimal dict with some attributes - is needed. - allow_unfiltered: bool, default: False - If true, will accept unfiltered recording. - Returns - ------- - we: WaveformExtractor - The WaveformExtractor object - - Examples - -------- - - >>> # Instantiate - >>> we = WaveformExtractor.create(recording, sorting, folder) - - >>> # Compute - >>> we = we.set_params(...) - >>> we = we.run_extract_waveforms(...) - - >>> # Retrieve - >>> waveforms = we.get_waveforms(unit_id) - >>> template = we.get_template(unit_id, mode="median") - - >>> # Load from folder (in another session) - >>> we = WaveformExtractor.load(folder) - - """ - - extensions = [] - - def __init__( - self, - recording: Optional[BaseRecording], - sorting: BaseSorting, - folder=None, - rec_attributes=None, - allow_unfiltered: bool = False, - sparsity=None, - ) -> None: - self.sorting = sorting - self._rec_attributes = None - self.set_recording(recording, rec_attributes, allow_unfiltered) - - # cache in memory - self._waveforms = {} - self._template_cache = {} - self._params = {} - self._loaded_extensions = dict() - self._is_read_only = False - self.sparsity = sparsity - - self.folder = folder - if self.folder is not None: - self.folder = Path(self.folder) - if self.folder.suffix == ".zarr": - import zarr - - self.format = "zarr" - self._waveforms_root = zarr.open(self.folder, mode="r") - self._params = self._waveforms_root.attrs["params"] - else: - self.format = "binary" - if (self.folder / "params.json").is_file(): - with open(str(self.folder / "params.json"), "r") as f: - self._params = json.load(f) - if not os.access(self.folder, os.W_OK): - self._is_read_only = True - else: - # this is in case of in-memory - self.format = "memory" - self._memory_objects = None - - def __repr__(self) -> str: - clsname = self.__class__.__name__ - nseg = self.get_num_segments() - nchan = self.get_num_channels() - nunits = self.sorting.get_num_units() - txt = f"{clsname}: {nchan} channels - {nunits} units - {nseg} segments" - if len(self._params) > 0: - max_spikes_per_unit = self._params["max_spikes_per_unit"] - txt = txt + f"\n before:{self.nbefore} after:{self.nafter} n_per_units:{max_spikes_per_unit}" - if self.is_sparse(): - txt += " - sparse" - return txt - - @classmethod - def load(cls, folder, with_recording: bool = True, sorting: Optional[BaseSorting] = None) -> "WaveformExtractor": - folder = Path(folder) - assert folder.is_dir(), "Waveform folder does not exists" - if folder.suffix == ".zarr": - return WaveformExtractor.load_from_zarr(folder, with_recording=with_recording, sorting=sorting) - else: - return WaveformExtractor.load_from_folder(folder, with_recording=with_recording, sorting=sorting) - - @classmethod - def load_from_folder( - cls, folder, with_recording: bool = True, sorting: Optional[BaseSorting] = None - ) -> "WaveformExtractor": - folder = Path(folder) - assert folder.is_dir(), f"This waveform folder does not exists {folder}" - - if not with_recording: - # load - recording = None - rec_attributes_file = folder / "recording_info" / "recording_attributes.json" - if not rec_attributes_file.exists(): - raise ValueError( - "This WaveformExtractor folder was created with an older version of spikeinterface" - "\nYou cannot use the mode with_recording=False" - ) - with open(rec_attributes_file, "r") as f: - rec_attributes = json.load(f) - # the probe is handle ouside the main json - probegroup_file = folder / "recording_info" / "probegroup.json" - if probegroup_file.is_file(): - rec_attributes["probegroup"] = probeinterface.read_probeinterface(probegroup_file) - else: - rec_attributes["probegroup"] = None - else: - recording = None - if (folder / "recording.json").exists(): - try: - recording = load_extractor(folder / "recording.json", base_folder=folder) - except: - pass - elif (folder / "recording.pickle").exists(): - try: - recording = load_extractor(folder / "recording.pickle", base_folder=folder) - except: - pass - if recording is None: - raise Exception("The recording could not be loaded. You can use the `with_recording=False` argument") - rec_attributes = None - - if sorting is None: - if (folder / "sorting.json").exists(): - sorting = load_extractor(folder / "sorting.json", base_folder=folder) - elif (folder / "sorting.pickle").exists(): - sorting = load_extractor(folder / "sorting.pickle", base_folder=folder) - else: - raise FileNotFoundError("load_waveforms() impossible to find the sorting object (json or pickle)") - - # the sparsity is the sparsity of the saved/cached waveforms arrays - sparsity_file = folder / "sparsity.json" - if sparsity_file.is_file(): - with open(sparsity_file, mode="r") as f: - sparsity = ChannelSparsity.from_dict(json.load(f)) - else: - sparsity = None - - we = cls( - recording, sorting, folder=folder, rec_attributes=rec_attributes, allow_unfiltered=True, sparsity=sparsity - ) - - for mode in _possible_template_modes: - # load cached templates - template_file = folder / f"templates_{mode}.npy" - if template_file.is_file(): - we._template_cache[mode] = np.load(template_file) - - return we - - @classmethod - def load_from_zarr( - cls, folder, with_recording: bool = True, sorting: Optional[BaseSorting] = None - ) -> "WaveformExtractor": - import zarr - - folder = Path(folder) - assert folder.is_dir(), f"This waveform folder does not exists {folder}" - assert folder.suffix == ".zarr" - - waveforms_root = zarr.open(folder, mode="r+") - - if not with_recording: - # load - recording = None - rec_attributes = waveforms_root.require_group("recording_info").attrs["recording_attributes"] - # the probe is handle ouside the main json - if "probegroup" in waveforms_root.require_group("recording_info").attrs: - probegroup_dict = waveforms_root.require_group("recording_info").attrs["probegroup"] - rec_attributes["probegroup"] = probeinterface.Probe.from_dict(probegroup_dict) - else: - rec_attributes["probegroup"] = None - else: - try: - recording_dict = waveforms_root.attrs["recording"] - recording = load_extractor(recording_dict, base_folder=folder) - rec_attributes = None - except: - raise Exception("The recording could not be loaded. You can use the `with_recording=False` argument") - - if sorting is None: - sorting_dict = waveforms_root.attrs["sorting"] - sorting = load_extractor(sorting_dict, base_folder=folder) - - if "sparsity" in waveforms_root.attrs: - sparsity = waveforms_root.attrs["sparsity"] - else: - sparsity = None - - we = cls( - recording, sorting, folder=folder, rec_attributes=rec_attributes, allow_unfiltered=True, sparsity=sparsity - ) - - for mode in _possible_template_modes: - # load cached templates - if f"templates_{mode}" in waveforms_root.keys(): - we._template_cache[mode] = waveforms_root[f"templates_{mode}"] - return we - - @classmethod - def create( - cls, - recording: BaseRecording, - sorting: BaseSorting, - folder, - mode: Literal["folder", "memory"] = "folder", - remove_if_exists: bool = False, - use_relative_path: bool = False, - allow_unfiltered: bool = False, - sparsity=None, - ) -> "WaveformExtractor": - assert mode in ("folder", "memory") - # create rec_attributes - if has_exceeding_spikes(recording, sorting): - raise ValueError( - "The sorting object has spikes exceeding the recording duration. You have to remove those spikes " - "with the `spikeinterface.curation.remove_excess_spikes()` function" - ) - rec_attributes = get_rec_attributes(recording) - if mode == "folder": - folder = Path(folder) - if folder.is_dir(): - if remove_if_exists: - shutil.rmtree(folder) - else: - raise FileExistsError(f"Folder {folder} already exists") - folder.mkdir(parents=True) - - if use_relative_path: - relative_to = folder - else: - relative_to = None - - if recording.check_serializability("json"): - recording.dump(folder / "recording.json", relative_to=relative_to) - elif recording.check_serializability("pickle"): - recording.dump(folder / "recording.pickle", relative_to=relative_to) - - if sorting.check_serializability("json"): - sorting.dump(folder / "sorting.json", relative_to=relative_to) - elif sorting.check_serializability("pickle"): - sorting.dump(folder / "sorting.pickle", relative_to=relative_to) - else: - warn( - "Sorting object is not serializable to file, which might result in downstream errors for " - "parallel processing. To make the sorting serializable, use the `sorting = sorting.save()` function." - ) - - # dump some attributes of the recording for the mode with_recording=False at next load - rec_attributes_file = folder / "recording_info" / "recording_attributes.json" - rec_attributes_file.parent.mkdir() - rec_attributes_file.write_text(json.dumps(check_json(rec_attributes), indent=4), encoding="utf8") - if recording.get_probegroup() is not None: - probegroup_file = folder / "recording_info" / "probegroup.json" - probeinterface.write_probeinterface(probegroup_file, recording.get_probegroup()) - - with open(rec_attributes_file, "r") as f: - rec_attributes = json.load(f) - - if sparsity is not None: - with open(folder / "sparsity.json", mode="w") as f: - json.dump(check_json(sparsity.to_dict()), f) - - return cls( - recording, - sorting, - folder, - allow_unfiltered=allow_unfiltered, - sparsity=sparsity, - rec_attributes=rec_attributes, - ) - - def is_sparse(self) -> bool: - return self.sparsity is not None - - def has_waveforms(self) -> bool: - if self.folder is not None: - if self.format == "binary": - return (self.folder / "waveforms").is_dir() - elif self.format == "zarr": - import zarr - - root = zarr.open(self.folder) - return "waveforms" in root.keys() - else: - return self._memory_objects is not None - - def delete_waveforms(self) -> None: - """ - Deletes waveforms folder. - """ - assert self.has_waveforms(), "WaveformExtractor object doesn't have waveforms already!" - if self.folder is not None: - if self.format == "binary": - shutil.rmtree(self.folder / "waveforms") - elif self.format == "zarr": - import zarr - - root = zarr.open(self.folder) - del root["waveforms"] - else: - self._memory_objects = None - - @classmethod - def register_extension(cls, extension_class) -> None: - """ - This maintains a list of possible extensions that are available. - It depends on the imported submodules (e.g. for postprocessing module). - - For instance: - import spikeinterface as si - si.WaveformExtractor.extensions == [] - - from spikeinterface.postprocessing import WaveformPrincipalComponent - si.WaveformExtractor.extensions == [WaveformPrincipalComponent, ...] - - """ - assert issubclass(extension_class, BaseWaveformExtractorExtension) - assert extension_class.extension_name is not None, "extension_name must not be None" - assert all( - extension_class.extension_name != ext.extension_name for ext in cls.extensions - ), "Extension name already exists" - cls.extensions.append(extension_class) - - # map some method from recording and sorting - @property - def recording(self) -> BaseRecording: - if not self.has_recording(): - raise ValueError( - 'WaveformExtractor is used in mode "with_recording=False" ' "this operation needs the recording" - ) - return self._recording - - @property - def channel_ids(self) -> np.ndarray: - if self.has_recording(): - return self.recording.channel_ids - else: - return np.array(self._rec_attributes["channel_ids"]) - - @property - def sampling_frequency(self) -> float: - return self.sorting.get_sampling_frequency() - - @property - def unit_ids(self) -> np.ndarray: - return self.sorting.unit_ids - - @property - def nbefore(self) -> int: - nbefore = int(self._params["ms_before"] * self.sampling_frequency / 1000.0) - return nbefore - - @property - def nafter(self) -> int: - nafter = int(self._params["ms_after"] * self.sampling_frequency / 1000.0) - return nafter - - @property - def nsamples(self) -> int: - return self.nbefore + self.nafter - - @property - def return_scaled(self) -> bool: - return self._params["return_scaled"] - - @property - def dtype(self): - return self._params["dtype"] - - def is_read_only(self) -> bool: - return self._is_read_only - - def has_recording(self) -> bool: - return self._recording is not None - - def get_num_samples(self, segment_index: Optional[int] = None) -> int: - if self.has_recording(): - return self.recording.get_num_samples(segment_index) - else: - assert "num_samples" in self._rec_attributes, "'num_samples' is not available" - # we use self.sorting to check segment_index - segment_index = self.sorting._check_segment_index(segment_index) - return self._rec_attributes["num_samples"][segment_index] - - def get_total_samples(self) -> int: - s = 0 - for segment_index in range(self.get_num_segments()): - s += self.get_num_samples(segment_index) - return s - - def get_total_duration(self) -> float: - duration = self.get_total_samples() / self.sampling_frequency - return duration - - def get_num_channels(self) -> int: - if self.has_recording(): - return self.recording.get_num_channels() - else: - return self._rec_attributes["num_channels"] - - def get_num_segments(self) -> int: - return self.sorting.get_num_segments() - - def get_probegroup(self): - if self.has_recording(): - return self.recording.get_probegroup() - else: - return self._rec_attributes["probegroup"] - - def is_filtered(self) -> bool: - if self.has_recording(): - return self.recording.is_filtered() - else: - return self._rec_attributes["is_filtered"] - - def get_probe(self): - probegroup = self.get_probegroup() - assert len(probegroup.probes) == 1, "There are several probes. Use `get_probegroup()`" - return probegroup.probes[0] - - def get_channel_locations(self) -> np.ndarray: - # important note : contrary to recording - # this give all channel locations, so no kwargs like channel_ids and axes - if self.has_recording(): - return self.recording.get_channel_locations() - else: - if self.get_probegroup() is not None: - all_probes = self.get_probegroup().probes - # check that multiple probes are non-overlapping - check_probe_do_not_overlap(all_probes) - all_positions = np.vstack([probe.contact_positions for probe in all_probes]) - return all_positions - else: - raise Exception("There are no channel locations") - - def channel_ids_to_indices(self, channel_ids) -> np.ndarray: - if self.has_recording(): - return self.recording.ids_to_indices(channel_ids) - else: - all_channel_ids = self._rec_attributes["channel_ids"] - indices = np.array([all_channel_ids.index(id) for id in channel_ids], dtype=int) - return indices - - def get_recording_property(self, key) -> np.ndarray: - if self.has_recording(): - return self.recording.get_property(key) - else: - assert "properties" in self._rec_attributes, "'properties' are not available" - values = np.array(self._rec_attributes["properties"].get(key, None)) - return values - - def get_sorting_property(self, key) -> np.ndarray: - return self.sorting.get_property(key) - - def get_extension_class(self, extension_name: str): - """ - Get extension class from name and check if registered. - - Parameters - ---------- - extension_name: str - The extension name. - - Returns - ------- - ext_class: - The class of the extension. - """ - extensions_dict = {ext.extension_name: ext for ext in self.extensions} - assert extension_name in extensions_dict, "Extension is not registered, please import related module before" - ext_class = extensions_dict[extension_name] - return ext_class - - def has_extension(self, extension_name: str) -> bool: - """ - Check if the extension exists in memory or in the folder. - - Parameters - ---------- - extension_name: str - The extension name. - - Returns - ------- - exists: bool - Whether the extension exists or not - """ - if self.folder is None: - return extension_name in self._loaded_extensions - - if extension_name in self._loaded_extensions: - # extension already loaded in memory - return True - else: - if self.format == "binary": - return (self.folder / extension_name).is_dir() and ( - self.folder / extension_name / "params.json" - ).is_file() - elif self.format == "zarr": - return ( - extension_name in self._waveforms_root.keys() - and "params" in self._waveforms_root[extension_name].attrs.keys() - ) - - def is_extension(self, extension_name) -> bool: - warn( - "WaveformExtractor.is_extension is deprecated and will be removed in version 0.102.0! Use `has_extension` instead.", - DeprecationWarning, - stacklevel=2, - ) - return self.has_extension(extension_name) - - def load_extension(self, extension_name: str): - """ - Load an extension from its name. - The module of the extension must be loaded and registered. - - Parameters - ---------- - extension_name: str - The extension name. - - Returns - ------- - ext_instanace: - The loaded instance of the extension - """ - if self.folder is not None and extension_name not in self._loaded_extensions: - if self.has_extension(extension_name): - ext_class = self.get_extension_class(extension_name) - ext = ext_class.load(self.folder, self) - if extension_name not in self._loaded_extensions: - raise Exception(f"Extension {extension_name} not available") - return self._loaded_extensions[extension_name] - - def delete_extension(self, extension_name) -> None: - """ - Deletes an existing extension. - - Parameters - ---------- - extension_name: str - The extension name. - """ - assert self.has_extension(extension_name), f"The extension {extension_name} is not available" - del self._loaded_extensions[extension_name] - if self.folder is not None and (self.folder / extension_name).is_dir(): - shutil.rmtree(self.folder / extension_name) - - def get_available_extension_names(self): - """ - Return a list of loaded or available extension names either in memory or - in persistent extension folders. - Then instances can be loaded with we.load_extension(extension_name) - - Importante note: extension modules need to be loaded (and so registered) - before this call, otherwise extensions will be ignored even if the folder - exists. - - Returns - ------- - extension_names_in_folder: list - A list of names of computed extension in this folder - """ - extension_names_in_folder = [] - for extension_class in self.extensions: - if self.has_extension(extension_class.extension_name): - extension_names_in_folder.append(extension_class.extension_name) - return extension_names_in_folder - - def _reset(self) -> None: - self._waveforms = {} - self._template_cache = {} - self._params = {} - - if self.folder is not None: - waveform_folder = self.folder / "waveforms" - if waveform_folder.is_dir(): - shutil.rmtree(waveform_folder) - for mode in _possible_template_modes: - template_file = self.folder / f"templates_{mode}.npy" - if template_file.is_file(): - template_file.unlink() - - waveform_folder.mkdir() - else: - # remove shared objects - self._memory_objects = None - - def set_recording( - self, recording: Optional[BaseRecording], rec_attributes: Optional[dict] = None, allow_unfiltered: bool = False - ) -> None: - """ - Sets the recording object and attributes for the WaveformExtractor. - - Parameters - ---------- - recording: Recording | None - The recording object - rec_attributes: None or dict - When recording is None then a minimal dict with some attributes - is needed. - allow_unfiltered: bool, default: False - If true, will accept unfiltered recording. - """ - - if recording is None: # Recordless mode. - if rec_attributes is None: - raise ValueError("WaveformExtractor: if recording is None, then rec_attributes must be provided.") - for k in ( - "channel_ids", - "sampling_frequency", - "num_channels", - ): # Some check on minimal attributes (probegroup is not mandatory) - if k not in rec_attributes: - raise ValueError(f"WaveformExtractor: Missing key '{k}' in rec_attributes") - for k in ("num_samples", "properties", "is_filtered"): - if k not in rec_attributes: - warn( - f"Missing optional key in rec_attributes {k}: " - f"some recordingless functions might not be available" - ) - else: - if rec_attributes is None: - rec_attributes = get_rec_attributes(recording) - - if recording.get_num_segments() != self.get_num_segments(): - raise ValueError( - f"Couldn't set the WaveformExtractor recording: num_segments do not match!\n{self.get_num_segments()} != {recording.get_num_segments()}" - ) - if not math.isclose(recording.sampling_frequency, self.sampling_frequency, abs_tol=1e-2, rel_tol=1e-5): - raise ValueError( - f"Couldn't set the WaveformExtractor recording: sampling frequency doesn't match!\n{self.sampling_frequency} != {recording.sampling_frequency}" - ) - if self._rec_attributes is not None: - reference_channel_ids = self._rec_attributes["channel_ids"] - else: - reference_channel_ids = rec_attributes["channel_ids"] - if not np.array_equal(reference_channel_ids, recording.channel_ids): - raise ValueError( - f"Couldn't set the WaveformExtractor recording: channel_ids do not match!\n{reference_channel_ids}" - ) - - if not recording.is_filtered() and not allow_unfiltered: - raise Exception( - "The recording is not filtered, you must filter it using `bandpass_filter()`." - "If the recording is already filtered, you can also do " - "`recording.annotate(is_filtered=True).\n" - "If you trully want to extract unfiltered waveforms, use `allow_unfiltered=True`." - ) - - self._recording = recording - self._rec_attributes = rec_attributes - - def set_params( - self, - ms_before: float = 1.0, - ms_after: float = 2.0, - max_spikes_per_unit: int = 500, - return_scaled: bool = False, - dtype=None, - ) -> None: - """ - Set parameters for waveform extraction - - Parameters - ---------- - ms_before: float - Cut out in ms before spike time - ms_after: float - Cut out in ms after spike time - max_spikes_per_unit: int - Maximum number of spikes to extract per unit - return_scaled: bool - If True and recording has gain_to_uV/offset_to_uV properties, waveforms are converted to uV. - dtype: np.dtype - The dtype of the computed waveforms - """ - self._reset() - - if dtype is None: - dtype = self.recording.get_dtype() - - if return_scaled: - # check if has scaled values: - if not self.recording.has_scaled(): - print("Setting 'return_scaled' to False") - return_scaled = False - - if np.issubdtype(dtype, np.integer) and return_scaled: - dtype = "float32" - - dtype = np.dtype(dtype) - - if max_spikes_per_unit is not None: - max_spikes_per_unit = int(max_spikes_per_unit) - - self._params = dict( - ms_before=float(ms_before), - ms_after=float(ms_after), - max_spikes_per_unit=max_spikes_per_unit, - return_scaled=return_scaled, - dtype=dtype.str, - ) - - if self.folder is not None: - (self.folder / "params.json").write_text(json.dumps(check_json(self._params), indent=4), encoding="utf8") - - def select_units(self, unit_ids, new_folder=None, use_relative_path: bool = False) -> "WaveformExtractor": - """ - Filters units by creating a new waveform extractor object in a new folder. - - Extensions are also updated to filter the selected unit ids. - - Parameters - ---------- - unit_ids : list or array - The unit ids to keep in the new WaveformExtractor object - new_folder : Path or None - The new folder where selected waveforms are copied - - Returns - ------- - we : WaveformExtractor - The newly create waveform extractor with the selected units - """ - sorting = self.sorting.select_units(unit_ids) - unit_indices = self.sorting.ids_to_indices(unit_ids) - - if self.folder is not None and new_folder is not None: - if self.format == "binary": - new_folder = Path(new_folder) - assert not new_folder.is_dir(), f"{new_folder} already exists!" - new_folder.mkdir(parents=True) - - # create new waveform extractor folder - shutil.copyfile(self.folder / "params.json", new_folder / "params.json") - - if use_relative_path: - relative_to = new_folder - else: - relative_to = None - - if self.has_recording(): - self.recording.dump(new_folder / "recording.json", relative_to=relative_to) - - shutil.copytree(self.folder / "recording_info", new_folder / "recording_info") - - sorting.dump(new_folder / "sorting.json", relative_to=relative_to) - - # create and populate waveforms folder - new_waveforms_folder = new_folder / "waveforms" - new_waveforms_folder.mkdir() - - waveforms_files = [f for f in (self.folder / "waveforms").iterdir() if f.suffix == ".npy"] - for unit in sorting.get_unit_ids(): - for wf_file in waveforms_files: - if f"waveforms_{unit}.npy" in wf_file.name or f"sampled_index_{unit}.npy" in wf_file.name: - shutil.copyfile(wf_file, new_waveforms_folder / wf_file.name) - - template_files = [f for f in self.folder.iterdir() if "template" in f.name and f.suffix == ".npy"] - for tmp_file in template_files: - templates_data_sliced = np.load(tmp_file)[unit_indices] - np.save(new_waveforms_folder / tmp_file.name, templates_data_sliced) - - # slice masks - if self.is_sparse(): - mask = self.sparsity.mask[unit_indices] - new_sparsity = ChannelSparsity(mask, unit_ids, self.channel_ids) - with (new_folder / "sparsity.json").open("w") as f: - json.dump(check_json(new_sparsity.to_dict()), f) - - we = WaveformExtractor.load(new_folder, with_recording=self.has_recording()) - - elif self.format == "zarr": - raise NotImplementedError( - "For zarr format, `select_units()` to a folder is not supported yet. " - "You can select units in two steps:\n" - "1. `we_new = select_units(unit_ids, new_folder=None)`\n" - "2. `we_new.save(folder='new_folder', format='zarr')`" - ) - else: - sorting = self.sorting.select_units(unit_ids) - if self.is_sparse(): - mask = self.sparsity.mask[unit_indices] - sparsity = ChannelSparsity(mask, unit_ids, self.channel_ids) - else: - sparsity = None - if self.has_recording(): - we = WaveformExtractor.create(self.recording, sorting, folder=None, mode="memory", sparsity=sparsity) - else: - we = WaveformExtractor( - recording=None, - sorting=sorting, - folder=None, - sparsity=sparsity, - rec_attributes=self._rec_attributes, - allow_unfiltered=True, - ) - we._params = self._params - # copy memory objects - if self.has_waveforms(): - we._memory_objects = {"wfs_arrays": {}, "sampled_indices": {}} - for unit_id in unit_ids: - if self.format == "memory": - we._memory_objects["wfs_arrays"][unit_id] = self._memory_objects["wfs_arrays"][unit_id] - we._memory_objects["sampled_indices"][unit_id] = self._memory_objects["sampled_indices"][ - unit_id - ] - else: - we._memory_objects["wfs_arrays"][unit_id] = self.get_waveforms(unit_id) - we._memory_objects["sampled_indices"][unit_id] = self.get_sampled_indices(unit_id) - - # finally select extensions data - for ext_name in self.get_available_extension_names(): - ext = self.load_extension(ext_name) - ext.select_units(unit_ids, new_waveform_extractor=we) - - return we - - def save( - self, folder, format="binary", use_relative_path: bool = False, overwrite: bool = False, sparsity=None, **kwargs - ) -> "WaveformExtractor": - """ - Save WaveformExtractor object to disk. - - Parameters - ---------- - folder : str or Path - The output waveform folder - format : "binary" | "zarr", default: "binary" - The backend to use for saving the waveforms - overwrite : bool - If True and folder exists, it is deleted, default: False - use_relative_path : bool, default: False - If True, the recording and sorting paths are relative to the waveforms folder. - This allows portability of the waveform folder provided that the relative paths are the same, - but forces all the data files to be in the same drive - sparsity : ChannelSparsity, default: None - If given and WaveformExtractor is not sparse, it makes the returned WaveformExtractor sparse - """ - folder = Path(folder) - if use_relative_path: - relative_to = folder - else: - relative_to = None - - probegroup = None - if self.has_recording(): - rec_attributes = dict( - channel_ids=self.recording.channel_ids, - sampling_frequency=self.recording.get_sampling_frequency(), - num_channels=self.recording.get_num_channels(), - ) - if self.recording.get_probegroup() is not None: - probegroup = self.recording.get_probegroup() - else: - rec_attributes = deepcopy(self._rec_attributes) - probegroup = rec_attributes["probegroup"] - - if self.is_sparse(): - assert sparsity is None, "WaveformExtractor is already sparse!" - - if format == "binary": - if folder.is_dir() and overwrite: - shutil.rmtree(folder) - assert not folder.is_dir(), "Folder already exists. Use 'overwrite=True'" - folder.mkdir(parents=True) - # write metadata - (folder / "params.json").write_text(json.dumps(check_json(self._params), indent=4), encoding="utf8") - - if self.has_recording(): - if self.recording.check_serializability("json"): - self.recording.dump(folder / "recording.json", relative_to=relative_to) - elif self.recording.check_serializability("pickle"): - self.recording.dump(folder / "recording.pickle", relative_to=relative_to) - - if self.sorting.check_serializability("json"): - self.sorting.dump(folder / "sorting.json", relative_to=relative_to) - elif self.sorting.check_serializability("pickle"): - self.sorting.dump(folder / "sorting.pickle", relative_to=relative_to) - else: - warn( - "Sorting object is not serializable to file, which might result in downstream errors for " - "parallel processing. To make the sorting serializable, use the `sorting = sorting.save()` function." - ) - - # dump some attributes of the recording for the mode with_recording=False at next load - rec_attributes_file = folder / "recording_info" / "recording_attributes.json" - rec_attributes_file.parent.mkdir() - rec_attributes_file.write_text(json.dumps(check_json(rec_attributes), indent=4), encoding="utf8") - if probegroup is not None: - probegroup_file = folder / "recording_info" / "probegroup.json" - probeinterface.write_probeinterface(probegroup_file, probegroup) - with open(rec_attributes_file, "r") as f: - rec_attributes = json.load(f) - for mode, templates in self._template_cache.items(): - templates_save = templates.copy() - if sparsity is not None: - expanded_mask = np.tile(sparsity.mask[:, np.newaxis, :], (1, templates_save.shape[1], 1)) - templates_save[~expanded_mask] = 0 - template_file = folder / f"templates_{mode}.npy" - np.save(template_file, templates_save) - if sparsity is not None: - with (folder / "sparsity.json").open("w") as f: - json.dump(check_json(sparsity.to_dict()), f) - # now waveforms and templates - if self.has_waveforms(): - waveform_folder = folder / "waveforms" - waveform_folder.mkdir() - for unit_ind, unit_id in enumerate(self.unit_ids): - waveforms, sampled_indices = self.get_waveforms(unit_id, with_index=True) - if sparsity is not None: - waveforms = waveforms[:, :, sparsity.mask[unit_ind]] - np.save(waveform_folder / f"waveforms_{unit_id}.npy", waveforms) - np.save(waveform_folder / f"sampled_index_{unit_id}.npy", sampled_indices) - elif format == "zarr": - import zarr - from .zarrextractors import get_default_zarr_compressor - - if folder.suffix != ".zarr": - folder = folder.parent / f"{folder.stem}.zarr" - if folder.is_dir() and overwrite: - shutil.rmtree(folder) - assert not folder.is_dir(), "Folder already exists. Use 'overwrite=True'" - zarr_root = zarr.open(str(folder), mode="w") - # write metadata - zarr_root.attrs["params"] = check_json(self._params) - if self.has_recording(): - if self.recording.check_serializability("json"): - rec_dict = self.recording.to_dict(relative_to=relative_to, recursive=True) - zarr_root.attrs["recording"] = check_json(rec_dict) - if self.sorting.check_serializability("json"): - sort_dict = self.sorting.to_dict(relative_to=relative_to, recursive=True) - zarr_root.attrs["sorting"] = check_json(sort_dict) - else: - warn( - "Sorting object is not json serializable, which might result in downstream errors for " - "parallel processing. To make the sorting serializable, use the `sorting = sorting.save()` function." - ) - recording_info = zarr_root.create_group("recording_info") - recording_info.attrs["recording_attributes"] = check_json(rec_attributes) - if probegroup is not None: - recording_info.attrs["probegroup"] = check_json(probegroup.to_dict()) - # save waveforms and templates - compressor = kwargs.get("compressor", None) - if compressor is None: - compressor = get_default_zarr_compressor() - print( - f"Using default zarr compressor: {compressor}. To use a different compressor, use the " - f"'compressor' argument" - ) - for mode, templates in self._template_cache.items(): - templates_save = templates.copy() - if sparsity is not None: - expanded_mask = np.tile(sparsity.mask[:, np.newaxis, :], (1, templates_save.shape[1], 1)) - templates_save[~expanded_mask] = 0 - zarr_root.create_dataset(name=f"templates_{mode}", data=templates_save, compressor=compressor) - if sparsity is not None: - zarr_root.attrs["sparsity"] = check_json(sparsity.to_dict()) - if self.has_waveforms(): - waveform_group = zarr_root.create_group("waveforms") - for unit_ind, unit_id in enumerate(self.unit_ids): - waveforms, sampled_indices = self.get_waveforms(unit_id, with_index=True) - if sparsity is not None: - waveforms = waveforms[:, :, sparsity.mask[unit_ind]] - waveform_group.create_dataset(name=f"waveforms_{unit_id}", data=waveforms, compressor=compressor) - waveform_group.create_dataset( - name=f"sampled_index_{unit_id}", data=sampled_indices, compressor=compressor - ) - - new_we = WaveformExtractor.load(folder) - - # save waveform extensions - for ext_name in self.get_available_extension_names(): - ext = self.load_extension(ext_name) - if sparsity is None: - ext.copy(new_we) - else: - if ext.handle_sparsity: - print( - f"WaveformExtractor.save() : {ext.extension_name} cannot be propagated with sparsity" - f"It is recommended to recompute {ext.extension_name} to properly handle sparsity" - ) - else: - ext.copy(new_we) - - return new_we - - def get_waveforms( - self, - unit_id, - with_index: bool = False, - cache: bool = False, - lazy: bool = True, - sparsity=None, - force_dense: bool = False, - ): - """ - Return waveforms for the specified unit id. - - Parameters - ---------- - unit_id: int or str - Unit id to retrieve waveforms for - with_index: bool, default: False - If True, spike indices of extracted waveforms are returned - cache: bool, default: False - If True, waveforms are cached to the self._waveforms dictionary - lazy: bool, default: True - If True, waveforms are loaded as memmap objects (when format="binary") or Zarr datasets - (when format="zarr"). - If False, waveforms are loaded as np.array objects - sparsity: ChannelSparsity, default: None - Sparsity to apply to the waveforms (if WaveformExtractor is not sparse) - force_dense: bool, default: False - Return dense waveforms even if the waveform extractor is sparse - - Returns - ------- - wfs: np.array - The returned waveform (num_spikes, num_samples, num_channels) - indices: np.array - If "with_index" is True, the spike indices corresponding to the waveforms extracted - """ - assert unit_id in self.sorting.unit_ids, "'unit_id' is invalid" - assert self.has_waveforms(), "Waveforms have been deleted!" - - wfs = self._waveforms.get(unit_id, None) - if wfs is None: - if self.folder is not None: - if self.format == "binary": - waveform_file = self.folder / "waveforms" / f"waveforms_{unit_id}.npy" - if not waveform_file.is_file(): - raise Exception( - "Waveforms not extracted yet: " "please do WaveformExtractor.run_extract_waveforms() first" - ) - if lazy: - wfs = np.load(str(waveform_file), mmap_mode="r") - else: - wfs = np.load(waveform_file) - elif self.format == "zarr": - waveforms_group = self._waveforms_root["waveforms"] - if f"waveforms_{unit_id}" not in waveforms_group.keys(): - raise Exception( - "Waveforms not extracted yet: " "please do WaveformExtractor.run_extract_waveforms() first" - ) - if lazy: - wfs = waveforms_group[f"waveforms_{unit_id}"] - else: - wfs = waveforms_group[f"waveforms_{unit_id}"][:] - if cache: - self._waveforms[unit_id] = wfs - else: - wfs = self._memory_objects["wfs_arrays"][unit_id] - - if sparsity is not None: - assert not self.is_sparse(), "Waveforms are alreayd sparse! Cannot apply an additional sparsity." - wfs = wfs[:, :, sparsity.mask[self.sorting.id_to_index(unit_id)]] - - if force_dense: - num_channels = self.get_num_channels() - dense_wfs = np.zeros((wfs.shape[0], wfs.shape[1], num_channels), dtype=np.float32) - unit_ind = self.sorting.id_to_index(unit_id) - if sparsity is not None: - unit_sparsity = sparsity.mask[unit_ind] - dense_wfs[:, :, unit_sparsity] = wfs - wfs = dense_wfs - elif self.is_sparse(): - unit_sparsity = self.sparsity.mask[unit_ind] - dense_wfs[:, :, unit_sparsity] = wfs - wfs = dense_wfs - - if with_index: - sampled_index = self.get_sampled_indices(unit_id) - return wfs, sampled_index - else: - return wfs - - def get_sampled_indices(self, unit_id): - """ - Return sampled spike indices of extracted waveforms - - Parameters - ---------- - unit_id: int or str - Unit id to retrieve indices for - - Returns - ------- - sampled_indices: np.array - The sampled indices - """ - assert self.has_waveforms(), "Sample indices and waveforms have been deleted!" - if self.folder is not None: - if self.format == "binary": - sampled_index_file = self.folder / "waveforms" / f"sampled_index_{unit_id}.npy" - sampled_index = np.load(sampled_index_file) - elif self.format == "zarr": - waveforms_group = self._waveforms_root["waveforms"] - if f"sampled_index_{unit_id}" not in waveforms_group.keys(): - raise Exception( - "Waveforms not extracted yet: " "please do WaveformExtractor.run_extract_waveforms() first" - ) - sampled_index = waveforms_group[f"sampled_index_{unit_id}"][:] - else: - sampled_index = self._memory_objects["sampled_indices"][unit_id] - return sampled_index - - def get_waveforms_segment(self, segment_index: int, unit_id, sparsity): - """ - Return waveforms from a specified segment and unit_id. - - Parameters - ---------- - segment_index: int - The segment index to retrieve waveforms from - unit_id: int or str - Unit id to retrieve waveforms for - sparsity: ChannelSparsity, default: None - Sparsity to apply to the waveforms (if WaveformExtractor is not sparse) - - Returns - ------- - wfs: np.array - The returned waveform (num_spikes, num_samples, num_channels) - """ - wfs, index_ar = self.get_waveforms(unit_id, with_index=True, sparsity=sparsity) - mask = index_ar["segment_index"] == segment_index - return wfs[mask, :, :] - - def precompute_templates(self, modes=("average", "std", "median", "percentile"), percentile=None) -> None: - """ - Precompute all templates for different "modes": - * average - * std - * median - * percentile - - Parameters - ---------- - modes: list - The modes to compute the templates - percentile: float, default: None - Percentile to use for mode="percentile" - - The results is cached in memory as a 3d ndarray (nunits, nsamples, nchans) - and also saved as an npy file in the folder to avoid recomputation each time. - """ - # TODO : run this in parallel - - unit_ids = self.unit_ids - num_chans = self.get_num_channels() - - mode_names = {} - for mode in modes: - mode_name = mode if mode != "percentile" else f"{mode}_{percentile}" - mode_names[mode] = mode_name - dtype = self._params["dtype"] if mode == "median" else np.float32 - templates = np.zeros((len(unit_ids), self.nsamples, num_chans), dtype=dtype) - self._template_cache[mode_names[mode]] = templates - - for unit_ind, unit_id in enumerate(unit_ids): - wfs = self.get_waveforms(unit_id, cache=False) - if self.sparsity is not None: - mask = self.sparsity.mask[unit_ind] - else: - mask = slice(None) - for mode in modes: - if len(wfs) == 0: - arr = np.zeros(wfs.shape[1:], dtype=wfs.dtype) - elif mode == "median": - arr = np.median(wfs, axis=0) - elif mode == "average": - arr = np.average(wfs, axis=0) - elif mode == "std": - arr = np.std(wfs, axis=0) - elif mode == "percentile": - assert percentile is not None, "percentile must be specified for mode='percentile'" - assert 0 <= percentile <= 100, "percentile must be between 0 and 100 inclusive" - arr = np.percentile(wfs, percentile, axis=0) - else: - raise ValueError(f"'mode' must be in {_possible_template_modes}") - self._template_cache[mode_names[mode]][unit_ind][:, mask] = arr - - for mode in modes: - templates = self._template_cache[mode_names[mode]] - if self.folder is not None and not self.is_read_only(): - template_file = self.folder / f"templates_{mode_names[mode]}.npy" - np.save(template_file, templates) - - def get_all_templates( - self, unit_ids: list | np.array | tuple | None = None, mode="average", percentile: float | None = None - ): - """ - Return templates (average waveforms) for multiple units. - - Parameters - ---------- - unit_ids: list or None - Unit ids to retrieve waveforms for - mode: "average" | "median" | "std" | "percentile", default: "average" - The mode to compute the templates - percentile: float, default: None - Percentile to use for mode="percentile" - - Returns - ------- - templates: np.array - The returned templates (num_units, num_samples, num_channels) - """ - if mode not in self._template_cache: - self.precompute_templates(modes=[mode], percentile=percentile) - mode_name = mode if mode != "percentile" else f"{mode}_{percentile}" - templates = self._template_cache[mode_name] - - if unit_ids is not None: - unit_indices = self.sorting.ids_to_indices(unit_ids) - templates = templates[unit_indices, :, :] - - return np.array(templates) - - def get_template( - self, unit_id, mode="average", sparsity=None, force_dense: bool = False, percentile: float | None = None - ): - """ - Return template (average waveform). - - Parameters - ---------- - unit_id: int or str - Unit id to retrieve waveforms for - mode: "average" | "median" | "std" | "percentile", default: "average" - The mode to compute the template - sparsity: ChannelSparsity, default: None - Sparsity to apply to the waveforms (if WaveformExtractor is not sparse) - force_dense: bool, default: False - Return a dense template even if the waveform extractor is sparse - percentile: float, default: None - Percentile to use for mode="percentile". - Values must be between 0 and 100 inclusive - - Returns - ------- - template: np.array - The returned template (num_samples, num_channels) - """ - assert mode in _possible_template_modes - assert unit_id in self.sorting.unit_ids - - if sparsity is not None: - assert not self.is_sparse(), "Waveforms are already sparse! Cannot apply an additional sparsity." - - unit_ind = self.sorting.id_to_index(unit_id) - - if mode in self._template_cache: - # already in the global cache - templates = self._template_cache[mode] - template = templates[unit_ind, :, :] - if sparsity is not None: - unit_sparsity = sparsity.mask[unit_ind] - elif self.sparsity is not None: - unit_sparsity = self.sparsity.mask[unit_ind] - else: - unit_sparsity = slice(None) - if not force_dense: - template = template[:, unit_sparsity] - return template - - # compute from waveforms - wfs = self.get_waveforms(unit_id, force_dense=force_dense) - if sparsity is not None and not force_dense: - wfs = wfs[:, :, sparsity.mask[unit_ind]] - - if mode == "median": - template = np.median(wfs, axis=0) - elif mode == "average": - template = np.average(wfs, axis=0) - elif mode == "std": - template = np.std(wfs, axis=0) - elif mode == "percentile": - assert percentile is not None, "percentile must be specified for mode='percentile'" - assert 0 <= percentile <= 100, "percentile must be between 0 and 100 inclusive" - template = np.percentile(wfs, percentile, axis=0) - - return np.array(template) - - def get_template_segment(self, unit_id, segment_index, mode="average", sparsity=None): - """ - Return template for the specified unit id computed from waveforms of a specific segment. - - Parameters - ---------- - unit_id: int or str - Unit id to retrieve waveforms for - segment_index: int - The segment index to retrieve template from - mode: "average" | "median" | "std", default: "average" - The mode to compute the template - sparsity: ChannelSparsity, default: None - Sparsity to apply to the waveforms (if WaveformExtractor is not sparse). - - Returns - ------- - template: np.array - The returned template (num_samples, num_channels) - - """ - assert mode in ( - "median", - "average", - "std", - ) - assert unit_id in self.sorting.unit_ids - waveforms_segment = self.get_waveforms_segment(segment_index, unit_id, sparsity=sparsity) - if mode == "median": - return np.median(waveforms_segment, axis=0) - elif mode == "average": - return np.mean(waveforms_segment, axis=0) - elif mode == "std": - return np.std(waveforms_segment, axis=0) - - def sample_spikes(self, seed=None): - nbefore = self.nbefore - nafter = self.nafter - - selected_spikes = select_random_spikes_uniformly( - self.recording, self.sorting, self._params["max_spikes_per_unit"], nbefore, nafter, seed - ) - - # store in a 2 columns (spike_index, segment_index) in a npy file - for unit_id in self.sorting.unit_ids: - n = np.sum([e.size for e in selected_spikes[unit_id]]) - sampled_index = np.zeros(n, dtype=[("spike_index", "int64"), ("segment_index", "int64")]) - pos = 0 - for segment_index in range(self.sorting.get_num_segments()): - inds = selected_spikes[unit_id][segment_index] - sampled_index[pos : pos + inds.size]["spike_index"] = inds - sampled_index[pos : pos + inds.size]["segment_index"] = segment_index - pos += inds.size - - if self.folder is not None: - sampled_index_file = self.folder / "waveforms" / f"sampled_index_{unit_id}.npy" - np.save(sampled_index_file, sampled_index) - else: - self._memory_objects["sampled_indices"][unit_id] = sampled_index - - return selected_spikes - - def run_extract_waveforms(self, seed=None, **job_kwargs): - job_kwargs = fix_job_kwargs(job_kwargs) - p = self._params - nbefore = self.nbefore - nafter = self.nafter - return_scaled = self.return_scaled - unit_ids = self.sorting.unit_ids - - if self.folder is None: - self._memory_objects = {"wfs_arrays": {}, "sampled_indices": {}} - - selected_spikes = self.sample_spikes(seed=seed) - - selected_spike_times = [] - for segment_index in range(self.sorting.get_num_segments()): - selected_spike_times.append({}) - - for unit_id in self.sorting.unit_ids: - spike_times = self.sorting.get_unit_spike_train(unit_id=unit_id, segment_index=segment_index) - sel = selected_spikes[unit_id][segment_index] - selected_spike_times[segment_index][unit_id] = spike_times[sel] - - spikes = NumpySorting.from_unit_dict(selected_spike_times, self.sampling_frequency).to_spike_vector() - - if self.folder is not None: - wf_folder = self.folder / "waveforms" - mode = "memmap" - copy = False - else: - wf_folder = None - mode = "shared_memory" - copy = True - - if self.sparsity is None: - sparsity_mask = None - else: - sparsity_mask = self.sparsity.mask - - wfs_arrays = extract_waveforms_to_buffers( - self.recording, - spikes, - unit_ids, - nbefore, - nafter, - mode=mode, - return_scaled=return_scaled, - folder=wf_folder, - dtype=p["dtype"], - sparsity_mask=sparsity_mask, - copy=copy, - **job_kwargs, - ) - if self.folder is None: - self._memory_objects["wfs_arrays"] = wfs_arrays - - -def select_random_spikes_uniformly(recording, sorting, max_spikes_per_unit, nbefore=None, nafter=None, seed=None): - """ - Uniform random selection of spike across segment per units. - - This function does not select spikes near border if nbefore/nafter are not None. - """ - unit_ids = sorting.unit_ids - num_seg = sorting.get_num_segments() - - if seed is not None: - np.random.seed(int(seed)) - - selected_spikes = {} - for unit_id in unit_ids: - # spike per segment - n_per_segment = [sorting.get_unit_spike_train(unit_id, segment_index=i).size for i in range(num_seg)] - cum_sum = [0] + np.cumsum(n_per_segment).tolist() - total = np.sum(n_per_segment) - if max_spikes_per_unit is not None: - if total > max_spikes_per_unit: - global_indices = np.random.choice(total, size=max_spikes_per_unit, replace=False) - global_indices = np.sort(global_indices) - else: - global_indices = np.arange(total) - else: - global_indices = np.arange(total) - sel_spikes = [] - for segment_index in range(num_seg): - in_segment = (global_indices >= cum_sum[segment_index]) & (global_indices < cum_sum[segment_index + 1]) - indices = global_indices[in_segment] - cum_sum[segment_index] - - if max_spikes_per_unit is not None: - # clean border when sub selection - assert nafter is not None - spike_times = sorting.get_unit_spike_train(unit_id=unit_id, segment_index=segment_index) - sampled_spike_times = spike_times[indices] - num_samples = recording.get_num_samples(segment_index=segment_index) - mask = (sampled_spike_times >= nbefore) & (sampled_spike_times < (num_samples - nafter)) - indices = indices[mask] - - sel_spikes.append(indices) - selected_spikes[unit_id] = sel_spikes - return selected_spikes - - -def extract_waveforms( - recording, - sorting, - folder=None, - mode="folder", - precompute_template=("average",), - ms_before=1.0, - ms_after=2.0, - max_spikes_per_unit=500, - overwrite=False, - return_scaled=True, - dtype=None, - sparse=True, - sparsity=None, - sparsity_temp_folder=None, - num_spikes_for_sparsity=100, - unit_batch_size=200, - allow_unfiltered=False, - use_relative_path=False, - seed=None, - load_if_exists=None, - **kwargs, -): - """ - Extracts waveform on paired Recording-Sorting objects. - Waveforms can be persistent on disk (`mode`="folder") or in-memory (`mode`="memory"). - By default, waveforms are extracted on a subset of the spikes (`max_spikes_per_unit`) and on all channels (dense). - If the `sparse` parameter is set to True, a sparsity is estimated using a small number of spikes - (`num_spikes_for_sparsity`) and waveforms are extracted and saved in sparse mode. - - - Parameters - ---------- - recording: Recording - The recording object - sorting: Sorting - The sorting object - folder: str or Path or None, default: None - The folder where waveforms are cached - mode: "folder" | "memory, default: "folder" - The mode to store waveforms. If "folder", waveforms are stored on disk in the specified folder. - The "folder" argument must be specified in case of mode "folder". - If "memory" is used, the waveforms are stored in RAM. Use this option carefully! - precompute_template: None or list, default: ["average"] - Precompute average/std/median for template. If None, no templates are precomputed - ms_before: float, default: 1.0 - Time in ms to cut before spike peak - ms_after: float, default: 2.0 - Time in ms to cut after spike peak - max_spikes_per_unit: int or None, default: 500 - Number of spikes per unit to extract waveforms from - Use None to extract waveforms for all spikes - overwrite: bool, default: False - If True and "folder" exists, the folder is removed and waveforms are recomputed - Otherwise an error is raised. - return_scaled: bool, default: True - If True and recording has gain_to_uV/offset_to_uV properties, waveforms are converted to uV - dtype: dtype or None, default: None - Dtype of the output waveforms. If None, the recording dtype is maintained - sparse: bool, default: True - If True, before extracting all waveforms the `precompute_sparsity()` function is run using - a few spikes to get an estimate of dense templates to create a ChannelSparsity object. - Then, the waveforms will be sparse at extraction time, which saves a lot of memory. - When True, you must some provide kwargs handle `precompute_sparsity()` to control the kind of - sparsity you want to apply (by radius, by best channels, ...). - sparsity: ChannelSparsity or None, default: None - The sparsity used to compute waveforms. If this is given, `sparse` is ignored. Default None. - sparsity_temp_folder: str or Path or None, default: None - If sparse is True, this is the temporary folder where the dense waveforms are temporarily saved. - If None, dense waveforms are extracted in memory in batches (which can be controlled by the `unit_batch_size` - parameter. With a large number of units (e.g., > 400), it is advisable to use a temporary folder. - num_spikes_for_sparsity: int, default: 100 - The number of spikes to use to estimate sparsity (if sparse=True). - unit_batch_size: int, default: 200 - The number of units to process at once when extracting dense waveforms (if sparse=True and sparsity_temp_folder - is None). - allow_unfiltered: bool - If true, will accept an allow_unfiltered recording. - use_relative_path: bool, default: False - If True, the recording and sorting paths are relative to the waveforms folder. - This allows portability of the waveform folder provided that the relative paths are the same, - but forces all the data files to be in the same drive. - seed: int or None, default: None - Random seed for spike selection - - sparsity kwargs: - {} - - - job kwargs: - {} - - - Returns - ------- - we: WaveformExtractor - The WaveformExtractor object - - Examples - -------- - >>> import spikeinterface as si - - >>> # Extract dense waveforms and save to disk - >>> we = si.extract_waveforms(recording, sorting, folder="waveforms") - - >>> # Extract dense waveforms with parallel processing and save to disk - >>> job_kwargs = dict(n_jobs=8, chunk_duration="1s", progress_bar=True) - >>> we = si.extract_waveforms(recording, sorting, folder="waveforms", **job_kwargs) - - >>> # Extract dense waveforms on all spikes - >>> we = si.extract_waveforms(recording, sorting, folder="waveforms-all", max_spikes_per_unit=None) - - >>> # Extract dense waveforms in memory - >>> we = si.extract_waveforms(recording, sorting, folder=None, mode="memory") - - >>> # Extract sparse waveforms (with radius-based sparsity of 50um) and save to disk - >>> we = si.extract_waveforms(recording, sorting, folder="waveforms-sparse", mode="folder", - >>> sparse=True, num_spikes_for_sparsity=100, method="radius", radius_um=50) - """ - if load_if_exists is None: - load_if_exists = False - else: - warn("load_if_exists=True/false is deprcated. Use load_waveforms() instead.", DeprecationWarning, stacklevel=2) - - estimate_kwargs, job_kwargs = split_job_kwargs(kwargs) - - assert ( - recording.has_channel_location() - ), "Recording must have a probe or channel location to extract waveforms. Use the `set_probe()` or `set_dummy_probe_from_locations()` methods." - - if mode == "folder": - assert folder is not None - folder = Path(folder) - assert not (overwrite and load_if_exists), "Use either 'overwrite=True' or 'load_if_exists=True'" - if overwrite and folder.is_dir(): - shutil.rmtree(folder) - if load_if_exists and folder.is_dir(): - we = WaveformExtractor.load_from_folder(folder) - return we - - if sparsity is not None: - assert isinstance(sparsity, ChannelSparsity), "'sparsity' must be a ChannelSparsity object" - unit_id_to_channel_ids = sparsity.unit_id_to_channel_ids - assert all(u in sorting.unit_ids for u in unit_id_to_channel_ids), "Invalid unit ids in sparsity" - for channels in unit_id_to_channel_ids.values(): - assert all(ch in recording.channel_ids for ch in channels), "Invalid channel ids in sparsity" - elif sparse: - sparsity = precompute_sparsity( - recording, - sorting, - ms_before=ms_before, - ms_after=ms_after, - num_spikes_for_sparsity=num_spikes_for_sparsity, - unit_batch_size=unit_batch_size, - temp_folder=sparsity_temp_folder, - allow_unfiltered=allow_unfiltered, - **estimate_kwargs, - **job_kwargs, - ) - else: - sparsity = None - - we = WaveformExtractor.create( - recording, - sorting, - folder, - mode=mode, - use_relative_path=use_relative_path, - allow_unfiltered=allow_unfiltered, - sparsity=sparsity, - ) - we.set_params( - ms_before=ms_before, - ms_after=ms_after, - max_spikes_per_unit=max_spikes_per_unit, - dtype=dtype, - return_scaled=return_scaled, - ) - we.run_extract_waveforms(seed=seed, **job_kwargs) - - if precompute_template is not None: - we.precompute_templates(modes=precompute_template) - - return we - - -extract_waveforms.__doc__ = extract_waveforms.__doc__.format(_sparsity_doc, _shared_job_kwargs_doc) - - -def load_waveforms(folder, with_recording: bool = True, sorting: Optional[BaseSorting] = None) -> WaveformExtractor: - """ - Load a waveform extractor object from disk. - - Parameters - ---------- - folder : str or Path - The folder / zarr folder where the waveform extractor is stored - with_recording : bool, default: True - If True, the recording is loaded. - If False, the WaveformExtractor object in recordingless mode. - sorting : BaseSorting, default: None - If passed, the sorting object associated to the waveform extractor - - Returns - ------- - we: WaveformExtractor - The loaded waveform extractor - """ - return WaveformExtractor.load(folder, with_recording, sorting) - - -def precompute_sparsity( - recording, - sorting, - num_spikes_for_sparsity=100, - unit_batch_size=200, - ms_before=2.0, - ms_after=3.0, - temp_folder=None, - allow_unfiltered=False, - **kwargs, -): - """ - Pre-estimate sparsity with few spikes and by unit batch. - This equivalent to compute a dense waveform extractor (with all units at once) and so - can be less memory agressive. - - Parameters - ---------- - recording: Recording - The recording object - sorting: Sorting - The sorting object - num_spikes_for_sparsity: int, default: 100 - How many spikes per unit - unit_batch_size: int or None, default: 200 - How many units are extracted at once to estimate sparsity. - If None then they are extracted all at one (but uses a lot of memory) - ms_before: float, default: 2.0 - Time in ms to cut before spike peak - ms_after: float, default: 3.0 - Time in ms to cut after spike peak - temp_folder: str or Path or None, default: None - If provided, dense waveforms are saved to this temporary folder - allow_unfiltered: bool, default: False - If true, will accept an allow_unfiltered recording. - - kwargs for sparsity strategy: - {} - - - job kwargs: - {} - - Returns - ------- - sparsity : ChannelSparsity - The estimated sparsity. - """ - - sparse_kwargs, job_kwargs = split_job_kwargs(kwargs) - - unit_ids = sorting.unit_ids - channel_ids = recording.channel_ids - - if unit_batch_size is None: - unit_batch_size = len(unit_ids) - - if temp_folder is None: - mask = np.zeros((len(unit_ids), len(channel_ids)), dtype="bool") - nloop = int(np.ceil((unit_ids.size / unit_batch_size))) - for i in range(nloop): - sl = slice(i * unit_batch_size, (i + 1) * unit_batch_size) - local_ids = unit_ids[sl] - local_sorting = sorting.select_units(local_ids) - local_we = extract_waveforms( - recording, - local_sorting, - folder=None, - mode="memory", - precompute_template=("average",), - ms_before=ms_before, - ms_after=ms_after, - max_spikes_per_unit=num_spikes_for_sparsity, - return_scaled=False, - allow_unfiltered=allow_unfiltered, - sparse=False, - **job_kwargs, - ) - local_sparsity = compute_sparsity(local_we, **sparse_kwargs) - mask[sl, :] = local_sparsity.mask - else: - temp_folder = Path(temp_folder) - assert ( - not temp_folder.is_dir() - ), "Temporary folder for pre-computing sparsity already exists. Provide a non-existing folder" - dense_we = extract_waveforms( - recording, - sorting, - folder=temp_folder, - precompute_template=("average",), - ms_before=ms_before, - ms_after=ms_after, - max_spikes_per_unit=num_spikes_for_sparsity, - return_scaled=False, - allow_unfiltered=allow_unfiltered, - sparse=False, - **job_kwargs, - ) - sparsity = compute_sparsity(dense_we, **sparse_kwargs) - mask = sparsity.mask - shutil.rmtree(temp_folder) - - sparsity = ChannelSparsity(mask, unit_ids, channel_ids) - return sparsity - - -precompute_sparsity.__doc__ = precompute_sparsity.__doc__.format(_sparsity_doc, _shared_job_kwargs_doc) - - -class BaseWaveformExtractorExtension: - """ - This the base class to extend the waveform extractor. - It handles persistency to disk any computations related - to a waveform extractor. - - For instance: - * principal components - * spike amplitudes - * quality metrics - - The design is done via a `WaveformExtractor.register_extension(my_extension_class)`, - so that only imported modules can be used as *extension*. - - It also enables any custum computation on top on waveform extractor to be implemented by the user. - - An extension needs to inherit from this class and implement some abstract methods: - * _reset - * _set_params - * _run - - The subclass must also save to the `self.extension_folder` any file that needs - to be reloaded when calling `_load_extension_data` - - The subclass must also set an `extension_name` attribute which is not None by default. - """ - - # must be set in inherited in subclass - extension_name = None - handle_sparsity = False - - def __init__(self, waveform_extractor): - self._waveform_extractor = weakref.ref(waveform_extractor) - - if self.waveform_extractor.folder is not None: - self.folder = self.waveform_extractor.folder - self.format = self.waveform_extractor.format - if self.format == "binary": - self.extension_folder = self.folder / self.extension_name - if not self.extension_folder.is_dir(): - if self.waveform_extractor.is_read_only(): - warn( - "WaveformExtractor: cannot save extension in read-only mode. " - "Extension will be saved in memory." - ) - self.format = "memory" - self.extension_folder = None - self.folder = None - else: - self.extension_folder.mkdir() - - else: - import zarr - - mode = "r+" if not self.waveform_extractor.is_read_only() else "r" - zarr_root = zarr.open(self.folder, mode=mode) - if self.extension_name not in zarr_root.keys(): - if self.waveform_extractor.is_read_only(): - warn( - "WaveformExtractor: cannot save extension in read-only mode. " - "Extension will be saved in memory." - ) - self.format = "memory" - self.extension_folder = None - self.folder = None - else: - self.extension_group = zarr_root.create_group(self.extension_name) - else: - self.extension_group = zarr_root[self.extension_name] - else: - self.format = "memory" - self.extension_folder = None - self.folder = None - self._extension_data = dict() - self._params = None - - # register - self.waveform_extractor._loaded_extensions[self.extension_name] = self - - @property - def waveform_extractor(self): - # Important : to avoid the WaveformExtractor referencing a BaseWaveformExtractorExtension - # and BaseWaveformExtractorExtension referencing a WaveformExtractor - # we need a weakref. Otherwise the garbage collector is not working properly - # and so the WaveformExtractor + its recording are still alive even after deleting explicitly - # the WaveformExtractor which makes it impossible to delete the folder! - we = self._waveform_extractor() - if we is None: - raise ValueError(f"The extension {self.extension_name} has lost its WaveformExtractor") - return we - - @classmethod - def load(cls, folder, waveform_extractor): - folder = Path(folder) - assert folder.is_dir(), "Waveform folder does not exists" - if folder.suffix == ".zarr": - params = cls.load_params_from_zarr(folder) - else: - params = cls.load_params_from_folder(folder) - - if "sparsity" in params and params["sparsity"] is not None: - params["sparsity"] = ChannelSparsity.from_dict(params["sparsity"]) - - # if waveform_extractor is None: - # waveform_extractor = WaveformExtractor.load(folder) - - # make instance with params - ext = cls(waveform_extractor) - ext._params = params - ext._load_extension_data() - - return ext - - @classmethod - def load_params_from_zarr(cls, folder): - """ - Load extension params from Zarr folder. - 'folder' is the waveform extractor zarr folder. - """ - import zarr - - zarr_root = zarr.open(folder, mode="r+") - assert cls.extension_name in zarr_root.keys(), ( - f"WaveformExtractor: extension {cls.extension_name} " f"is not in folder {folder}" - ) - extension_group = zarr_root[cls.extension_name] - assert "params" in extension_group.attrs, f"No params file in extension {cls.extension_name} folder" - params = extension_group.attrs["params"] - - return params - - @classmethod - def load_params_from_folder(cls, folder): - """ - Load extension params from folder. - 'folder' is the waveform extractor folder. - """ - ext_folder = Path(folder) / cls.extension_name - assert ext_folder.is_dir(), f"WaveformExtractor: extension {cls.extension_name} is not in folder {folder}" - - params_file = ext_folder / "params.json" - assert params_file.is_file(), f"No params file in extension {cls.extension_name} folder" - - with open(str(params_file), "r") as f: - params = json.load(f) - - return params - - # use load instead - def _load_extension_data(self): - if self.format == "binary": - for ext_data_file in self.extension_folder.iterdir(): - if ext_data_file.name == "params.json": - continue - ext_data_name = ext_data_file.stem - if ext_data_file.suffix == ".json": - ext_data = json.load(ext_data_file.open("r")) - elif ext_data_file.suffix == ".npy": - # The lazy loading of an extension is complicated because if we compute again - # and have a link to the old buffer on windows then it fails - # ext_data = np.load(ext_data_file, mmap_mode="r") - # so we go back to full loading - ext_data = np.load(ext_data_file) - elif ext_data_file.suffix == ".csv": - import pandas as pd - - ext_data = pd.read_csv(ext_data_file, index_col=0) - elif ext_data_file.suffix == ".pkl": - ext_data = pickle.load(ext_data_file.open("rb")) - else: - continue - self._extension_data[ext_data_name] = ext_data - elif self.format == "zarr": - for ext_data_name in self.extension_group.keys(): - ext_data_ = self.extension_group[ext_data_name] - if "dict" in ext_data_.attrs: - ext_data = ext_data_[0] - elif "dataframe" in ext_data_.attrs: - import xarray - - ext_data = xarray.open_zarr( - ext_data_.store, group=f"{self.extension_group.name}/{ext_data_name}" - ).to_pandas() - ext_data.index.rename("", inplace=True) - else: - ext_data = ext_data_ - self._extension_data[ext_data_name] = ext_data - - def run(self, **kwargs): - self._run(**kwargs) - self._save(**kwargs) - - def _run(self, **kwargs): - # must be implemented in subclass - # must populate the self._extension_data dictionary - raise NotImplementedError - - def save(self, **kwargs): - self._save(**kwargs) - - def _save(self, **kwargs): - # Only save if not read only - if self.waveform_extractor.is_read_only(): - return - - # delete already saved - self._reset_folder() - self._save_params() - - if self.format == "binary": - import pandas as pd - - for ext_data_name, ext_data in self._extension_data.items(): - if isinstance(ext_data, dict): - with (self.extension_folder / f"{ext_data_name}.json").open("w") as f: - json.dump(ext_data, f) - elif isinstance(ext_data, np.ndarray): - np.save(self.extension_folder / f"{ext_data_name}.npy", ext_data) - elif isinstance(ext_data, pd.DataFrame): - ext_data.to_csv(self.extension_folder / f"{ext_data_name}.csv", index=True) - else: - try: - with (self.extension_folder / f"{ext_data_name}.pkl").open("wb") as f: - pickle.dump(ext_data, f) - except: - raise Exception(f"Could not save {ext_data_name} as extension data") - elif self.format == "zarr": - from .zarrextractors import get_default_zarr_compressor - import pandas as pd - import numcodecs - - compressor = kwargs.get("compressor", None) - if compressor is None: - compressor = get_default_zarr_compressor() - for ext_data_name, ext_data in self._extension_data.items(): - if ext_data_name in self.extension_group: - del self.extension_group[ext_data_name] - if isinstance(ext_data, dict): - self.extension_group.create_dataset( - name=ext_data_name, data=[ext_data], object_codec=numcodecs.JSON() - ) - self.extension_group[ext_data_name].attrs["dict"] = True - elif isinstance(ext_data, np.ndarray): - self.extension_group.create_dataset(name=ext_data_name, data=ext_data, compressor=compressor) - elif isinstance(ext_data, pd.DataFrame): - ext_data.to_xarray().to_zarr( - store=self.extension_group.store, - group=f"{self.extension_group.name}/{ext_data_name}", - mode="a", - ) - self.extension_group[ext_data_name].attrs["dataframe"] = True - else: - try: - self.extension_group.create_dataset( - name=ext_data_name, data=ext_data, object_codec=numcodecs.Pickle() - ) - except: - raise Exception(f"Could not save {ext_data_name} as extension data") - - def _reset_folder(self): - """ - Delete the extension in folder (binary or zarr) and create an empty one. - """ - if self.format == "binary" and self.extension_folder is not None: - if self.extension_folder.is_dir(): - shutil.rmtree(self.extension_folder) - self.extension_folder.mkdir() - elif self.format == "zarr": - import zarr - - zarr_root = zarr.open(self.folder, mode="r+") - self.extension_group = zarr_root.create_group(self.extension_name, overwrite=True) - - def reset(self): - """ - Reset the waveform extension. - Delete the sub folder and create a new empty one. - """ - self._reset_folder() - - self._params = None - self._extension_data = dict() - - def select_units(self, unit_ids, new_waveform_extractor): - new_extension = self.__class__(new_waveform_extractor) - new_extension.set_params(**self._params) - new_extension_data = self._select_extension_data(unit_ids=unit_ids) - new_extension._extension_data = new_extension_data - new_extension._save() - - def copy(self, new_waveform_extractor): - new_extension = self.__class__(new_waveform_extractor) - new_extension.set_params(**self._params) - new_extension._extension_data = self._extension_data - new_extension._save() - - def _select_extension_data(self, unit_ids): - # must be implemented in subclass - raise NotImplementedError - - def set_params(self, **params): - """ - Set parameters for the extension and - make it persistent in json. - """ - params = self._set_params(**params) - self._params = params - - if self.waveform_extractor.is_read_only(): - return - - self._save_params() - - def _save_params(self): - params_to_save = self._params.copy() - if "sparsity" in params_to_save and params_to_save["sparsity"] is not None: - assert isinstance( - params_to_save["sparsity"], ChannelSparsity - ), "'sparsity' parameter must be a ChannelSparsity object!" - params_to_save["sparsity"] = params_to_save["sparsity"].to_dict() - if self.format == "binary": - if self.extension_folder is not None: - param_file = self.extension_folder / "params.json" - param_file.write_text(json.dumps(check_json(params_to_save), indent=4), encoding="utf8") - elif self.format == "zarr": - self.extension_group.attrs["params"] = check_json(params_to_save) - - def _set_params(self, **params): - # must be implemented in subclass - # must return a cleaned version of params dict - raise NotImplementedError - - @staticmethod - def get_extension_function(): - # must be implemented in subclass - # must return extension function - raise NotImplementedError diff --git a/src/spikeinterface/core/waveform_tools.py b/src/spikeinterface/core/waveform_tools.py index 58243ceea2..be68473ea1 100644 --- a/src/spikeinterface/core/waveform_tools.py +++ b/src/spikeinterface/core/waveform_tools.py @@ -1,7 +1,7 @@ """ This module contains low-level functions to extract snippets of traces (aka "spike waveforms"). -This is internally used by WaveformExtractor, but can also be used as a sorting component. +This is internally used by SortingAnalyzer, but can also be used as a sorting component. It is a 2-step approach: 1. allocate buffers (shared file or memory) @@ -408,7 +408,7 @@ def extract_waveforms_to_single_buffer( file_path=None, dtype=None, sparsity_mask=None, - copy=False, + copy=True, job_name=None, **job_kwargs, ): @@ -705,7 +705,81 @@ def estimate_templates( unit_ids: list | np.ndarray, nbefore: int, nafter: int, + operator: str = "average", return_scaled: bool = True, + job_name=None, + **job_kwargs, +): + """ + Estimate dense templates with "average" or "median". + If "average" internaly estimate_templates_average() is used to saved memory/ + + Parameters + ---------- + + recording: BaseRecording + The recording object + spikes: 1d numpy array with several fields + Spikes handled as a unique vector. + This vector can be obtained with: `spikes = sorting.to_spike_vector()` + unit_ids: list ot numpy + List of unit_ids + nbefore: int + Number of samples to cut out before a spike + nafter: int + Number of samples to cut out after a spike + return_scaled: bool, default: True + If True, the traces are scaled before averaging + + Returns + ------- + templates_array: np.array + The average templates with shape (num_units, nbefore + nafter, num_channels) + + """ + + if job_name is None: + job_name = "estimate_templates" + + if operator == "average": + templates_array = estimate_templates_average( + recording, spikes, unit_ids, nbefore, nafter, return_scaled=return_scaled, job_name=job_name, **job_kwargs + ) + elif operator == "median": + all_waveforms, wf_array_info = extract_waveforms_to_single_buffer( + recording, + spikes, + unit_ids, + nbefore, + nafter, + mode="shared_memory", + return_scaled=return_scaled, + copy=False, + **job_kwargs, + ) + templates_array = np.zeros( + (len(unit_ids), all_waveforms.shape[1], all_waveforms.shape[2]), dtype=all_waveforms.dtype + ) + for unit_index, unit_id in enumerate(unit_ids): + wfs = all_waveforms[spikes["unit_index"] == unit_index] + templates_array[unit_index, :, :] = np.median(wfs, axis=0) + # release shared memory after the median + wf_array_info["shm"].unlink() + + else: + raise ValueError(f"estimate_templates(..., operator={operator}) wrong operator must be average or median") + + return templates_array + + +def estimate_templates_average( + recording: BaseRecording, + spikes: np.ndarray, + unit_ids: list | np.ndarray, + nbefore: int, + nafter: int, + return_scaled: bool = True, + job_name=None, **job_kwargs, ): """ @@ -771,9 +845,9 @@ def estimate_templates( array_pid, ) - processor = ChunkRecordingExecutor( - recording, func, init_func, init_args, job_name="estimate_templates", **job_kwargs - ) + if job_name is None: + job_name = "estimate_templates_average" + processor = ChunkRecordingExecutor(recording, func, init_func, init_args, job_name=job_name, **job_kwargs) processor.run() # average diff --git a/src/spikeinterface/core/waveforms_extractor_backwards_compatibility.py b/src/spikeinterface/core/waveforms_extractor_backwards_compatibility.py new file mode 100644 index 0000000000..aff620c4c5 --- /dev/null +++ b/src/spikeinterface/core/waveforms_extractor_backwards_compatibility.py @@ -0,0 +1,530 @@ +""" +This backwards compatibility module aims to: + * load old WaveformsExtractor saved with folder or zarr (version <=0.100) into the SortingAnalyzer (version>0.100) + * mock the function extract_waveforms() and the class SortingAnalyzer() but based SortingAnalyzer +""" + +from __future__ import annotations + +from typing import Literal, Optional + +from pathlib import Path + +import json + +import numpy as np + +import probeinterface + +from .baserecording import BaseRecording +from .basesorting import BaseSorting +from .sortinganalyzer import create_sorting_analyzer, get_extension_class +from .job_tools import split_job_kwargs +from .sparsity import ChannelSparsity +from .sortinganalyzer import SortingAnalyzer, load_sorting_analyzer +from .base import load_extractor +from .analyzer_extension_core import SelectRandomSpikes, ComputeWaveforms, ComputeTemplates + +_backwards_compatibility_msg = """#### +# extract_waveforms() and WaveformExtractor() have been replace by SortingAnalyzer since version 0.101 +# You should use create_sorting_analyzer() instead. +# extract_waveforms() is now mocking the old behavior for backwards compatibility only and will be removed after 0.103 +####""" + + +def extract_waveforms( + recording, + sorting, + folder=None, + mode="folder", + precompute_template=("average",), + ms_before=1.0, + ms_after=2.0, + max_spikes_per_unit=500, + overwrite=None, + return_scaled=True, + dtype=None, + sparse=True, + sparsity=None, + sparsity_temp_folder=None, + num_spikes_for_sparsity=100, + unit_batch_size=None, + allow_unfiltered=None, + use_relative_path=None, + seed=None, + load_if_exists=None, + **kwargs, +): + """ + This mock the extract_waveforms() in version <= 0.100 to not break old codes but using + the SortingAnalyzer (version >0.100) internally. + + This return a MockWaveformExtractor object that mock the old WaveformExtractor + """ + print(_backwards_compatibility_msg) + + assert load_if_exists is None, "load_if_exists=True/False is not supported anymore. use load_if_exists=None" + assert overwrite is None, "overwrite=True/False is not supported anymore. use overwrite=None" + + other_kwargs, job_kwargs = split_job_kwargs(kwargs) + + if mode == "folder": + assert folder is not None + folder = Path(folder) + format = "binary_folder" + else: + folder = None + format = "memory" + + assert sparsity_temp_folder is None, "sparsity_temp_folder must be None" + assert unit_batch_size is None, "unit_batch_size must be None" + + if use_relative_path is not None: + print("use_relative_path is ignored") + + if allow_unfiltered is not None: + print("allow_unfiltered is ignored") + + sparsity_kwargs = dict( + num_spikes_for_sparsity=num_spikes_for_sparsity, + ms_before=ms_before, + ms_after=ms_after, + **other_kwargs, + **job_kwargs, + ) + sorting_analyzer = create_sorting_analyzer( + sorting, recording, format=format, folder=folder, sparse=sparse, sparsity=sparsity, **sparsity_kwargs + ) + + sorting_analyzer.compute("random_spikes", max_spikes_per_unit=max_spikes_per_unit, seed=seed) + + waveforms_params = dict(ms_before=ms_before, ms_after=ms_after, return_scaled=return_scaled, dtype=dtype) + sorting_analyzer.compute("waveforms", **waveforms_params, **job_kwargs) + + templates_params = dict(operators=list(precompute_template)) + sorting_analyzer.compute("templates", **templates_params) + + # this also done because some metrics need it + sorting_analyzer.compute("noise_levels") + + we = MockWaveformExtractor(sorting_analyzer) + + return we + + +class MockWaveformExtractor: + def __init__(self, sorting_analyzer): + self.sorting_analyzer = sorting_analyzer + + def __repr__(self): + txt = "MockWaveformExtractor: mock the old WaveformExtractor with " + txt += self.sorting_analyzer.__repr__() + return txt + + def is_sparse(self) -> bool: + return self.sorting_analyzer.is_sparse() + + def has_waveforms(self) -> bool: + return self.sorting_analyzer.get_extension("waveforms") is not None + + def delete_waveforms(self) -> None: + self.sorting_analyzer.delete_extension("waveforms") + + @property + def recording(self) -> BaseRecording: + return self.sorting_analyzer.recording + + @property + def sorting(self) -> BaseSorting: + return self.sorting_analyzer.sorting + + @property + def channel_ids(self) -> np.ndarray: + return self.sorting_analyzer.channel_ids + + @property + def sampling_frequency(self) -> float: + return self.sorting_analyzer.sampling_frequency + + @property + def unit_ids(self) -> np.ndarray: + return self.sorting_analyzer.unit_ids + + @property + def nbefore(self) -> int: + ms_before = self.sorting_analyzer.get_extension("waveforms").params["ms_before"] + return int(ms_before * self.sampling_frequency / 1000.0) + + @property + def nafter(self) -> int: + ms_after = self.sorting_analyzer.get_extension("waveforms").params["ms_after"] + return int(ms_after * self.sampling_frequency / 1000.0) + + @property + def nsamples(self) -> int: + return self.nbefore + self.nafter + + @property + def return_scaled(self) -> bool: + return self.sorting_analyzer.get_extension("waveforms").params["return_scaled"] + + @property + def dtype(self): + return self.sorting_analyzer.get_extension("waveforms").params["dtype"] + + def is_read_only(self) -> bool: + return self.sorting_analyzer.is_read_only() + + def has_recording(self) -> bool: + return self.sorting_analyzer._recording is not None + + def get_num_samples(self, segment_index: Optional[int] = None) -> int: + return self.sorting_analyzer.get_num_samples(segment_index) + + def get_total_samples(self) -> int: + return self.sorting_analyzer.get_total_samples() + + def get_total_duration(self) -> float: + return self.sorting_analyzer.get_total_duration() + + def get_num_channels(self) -> int: + return self.sorting_analyzer.get_num_channels() + + def get_num_segments(self) -> int: + return self.sorting_analyzer.get_num_segments() + + def get_probegroup(self): + return self.sorting_analyzer.get_probegroup() + + def get_probe(self): + return self.sorting_analyzer.get_probe() + + def is_filtered(self) -> bool: + return self.sorting_analyzer.rec_attributes["is_filtered"] + + def get_channel_locations(self) -> np.ndarray: + return self.sorting_analyzer.get_channel_locations() + + def channel_ids_to_indices(self, channel_ids) -> np.ndarray: + return self.sorting_analyzer.channel_ids_to_indices(channel_ids) + + def get_recording_property(self, key) -> np.ndarray: + return self.sorting_analyzer.get_recording_property(key) + + def get_sorting_property(self, key) -> np.ndarray: + return self.sorting_analyzer.get_sorting_property(key) + + @property + def sparsity(self): + return self.sorting_analyzer.sparsity + + @property + def folder(self): + if self.sorting_analyzer.format != "memory": + return self.sorting_analyzer.folder + + def has_extension(self, extension_name: str) -> bool: + return self.sorting_analyzer.has_extension(extension_name) + + def get_sampled_indices(self, unit_id): + # In Waveforms extractor "selected_spikes" was a dict (key: unit_id) with a complex dtype as follow + selected_spikes = [] + for segment_index in range(self.get_num_segments()): + # inds = self.sorting_analyzer.get_selected_indices_in_spike_train(unit_id, segment_index) + inds = self.sorting_analyzer.get_extension("random_spikes").get_selected_indices_in_spike_train( + unit_id, segment_index + ) + sampled_index = np.zeros(inds.size, dtype=[("spike_index", "int64"), ("segment_index", "int64")]) + sampled_index["spike_index"] = inds + sampled_index["segment_index"][:] = segment_index + selected_spikes.append(sampled_index) + return np.concatenate(selected_spikes) + + def get_waveforms( + self, + unit_id, + with_index: bool = False, + cache: bool = False, + lazy: bool = True, + sparsity=None, + force_dense: bool = False, + ): + # lazy and cache are ingnored + ext = self.sorting_analyzer.get_extension("waveforms") + unit_index = self.sorting.id_to_index(unit_id) + some_spikes = self.sorting_analyzer.get_extension("random_spikes").some_spikes() + spike_mask = some_spikes["unit_index"] == unit_index + wfs = ext.data["waveforms"][spike_mask, :, :] + + if sparsity is not None: + assert ( + self.sorting_analyzer.sparsity is None + ), "Waveforms are alreayd sparse! Cannot apply an additional sparsity." + wfs = wfs[:, :, sparsity.mask[self.sorting.id_to_index(unit_id)]] + + if force_dense: + assert sparsity is None + if self.sorting_analyzer.sparsity is None: + # nothing to do + pass + else: + num_channels = self.get_num_channels() + dense_wfs = np.zeros((wfs.shape[0], wfs.shape[1], num_channels), dtype=np.float32) + unit_sparsity = self.sorting_analyzer.sparsity.mask[unit_index] + dense_wfs[:, :, unit_sparsity] = wfs + wfs = dense_wfs + + if with_index: + sampled_index = self.get_sampled_indices(unit_id) + return wfs, sampled_index + else: + return wfs + + def get_all_templates( + self, unit_ids: list | np.array | tuple | None = None, mode="average", percentile: float | None = None + ): + ext = self.sorting_analyzer.get_extension("templates") + + if mode == "percentile": + key = f"pencentile_{percentile}" + else: + key = mode + + templates = ext.data.get(key) + if templates is None: + raise ValueError(f"{mode} is not computed") + + if unit_ids is not None: + unit_indices = self.sorting.ids_to_indices(unit_ids) + templates = templates[unit_indices, :, :] + + return templates + + def get_template( + self, unit_id, mode="average", sparsity=None, force_dense: bool = False, percentile: float | None = None + ): + # force_dense and sparsity are ignored + templates = self.get_all_templates(unit_ids=[unit_id], mode=mode, percentile=percentile) + return templates[0] + + +def load_waveforms( + folder, + with_recording: bool = True, + sorting: Optional[BaseSorting] = None, + output="MockWaveformExtractor", +): + """ + This read an old WaveformsExtactor folder (folder or zarr) and convert it into a SortingAnalyzer or MockWaveformExtractor. + + It also mimic the old load_waveforms by opening a Sortingresult folder and return a MockWaveformExtractor. + This later behavior is usefull to no break old code like this in versio >=0.101 + + >>> # In this example we is a MockWaveformExtractor that behave the same as before + >>> we = extract_waveforms(..., folder="/my_we") + >>> we = load_waveforms("/my_we") + >>> templates = we.get_all_templates() + + + """ + + folder = Path(folder) + assert folder.is_dir(), "Waveform folder does not exists" + + if (folder / "spikeinterface_info.json").exists(): + with open(folder / "spikeinterface_info.json", mode="r") as f: + info = json.load(f) + if info.get("object", None) == "SortingAnalyzer": + # in this case the folder is already a sorting result from version >= 0.101.0 but create with the MockWaveformExtractor + sorting_analyzer = load_sorting_analyzer(folder) + sorting_analyzer.load_all_saved_extension() + we = MockWaveformExtractor(sorting_analyzer) + return we + + if folder.suffix == ".zarr": + raise NotImplementedError + # Alessio this is for you + else: + sorting_analyzer = _read_old_waveforms_extractor_binary(folder) + + if output == "SortingAnalyzer": + return sorting_analyzer + elif output in ("WaveformExtractor", "MockWaveformExtractor"): + return MockWaveformExtractor(sorting_analyzer) + + +def _read_old_waveforms_extractor_binary(folder): + folder = Path(folder) + params_file = folder / "params.json" + if not params_file.exists(): + raise ValueError(f"This folder is not a WaveformsExtractor folder {folder}") + with open(params_file, "r") as f: + params = json.load(f) + + sparsity_file = folder / "sparsity.json" + if sparsity_file.exists(): + with open(sparsity_file, "r") as f: + sparsity_dict = json.load(f) + sparsity = ChannelSparsity.from_dict(sparsity_dict) + else: + sparsity = None + + # recording attributes + rec_attributes_file = folder / "recording_info" / "recording_attributes.json" + with open(rec_attributes_file, "r") as f: + rec_attributes = json.load(f) + probegroup_file = folder / "recording_info" / "probegroup.json" + if probegroup_file.is_file(): + rec_attributes["probegroup"] = probeinterface.read_probeinterface(probegroup_file) + else: + rec_attributes["probegroup"] = None + + # recording + recording = None + if (folder / "recording.json").exists(): + try: + recording = load_extractor(folder / "recording.json", base_folder=folder) + except: + pass + elif (folder / "recording.pickle").exists(): + try: + recording = load_extractor(folder / "recording.pickle", base_folder=folder) + except: + pass + + # sorting + if (folder / "sorting.json").exists(): + sorting = load_extractor(folder / "sorting.json", base_folder=folder) + elif (folder / "sorting.pickle").exists(): + sorting = load_extractor(folder / "sorting.pickle", base_folder=folder) + + sorting_analyzer = SortingAnalyzer.create_memory(sorting, recording, sparsity, rec_attributes=rec_attributes) + + # waveforms + # need to concatenate all waveforms in one unique buffer + # need to concatenate sampled_index and order it + waveform_folder = folder / "waveforms" + if waveform_folder.exists(): + + spikes = sorting.to_spike_vector() + random_spike_mask = np.zeros(spikes.size, dtype="bool") + + all_sampled_indices = [] + # first readd all sampled_index to get the correct ordering + for unit_index, unit_id in enumerate(sorting.unit_ids): + # unit_indices has dtype=[("spike_index", "int64"), ("segment_index", "int64")] + unit_indices = np.load(waveform_folder / f"sampled_index_{unit_id}.npy") + for segment_index in range(sorting.get_num_segments()): + in_seg_selected = unit_indices[unit_indices["segment_index"] == segment_index]["spike_index"] + spikes_indices = np.flatnonzero( + (spikes["unit_index"] == unit_index) & (spikes["segment_index"] == segment_index) + ) + random_spike_mask[spikes_indices[in_seg_selected]] = True + random_spikes_indices = np.flatnonzero(random_spike_mask) + + num_spikes = random_spikes_indices.size + if sparsity is None: + max_num_channel = len(rec_attributes["channel_ids"]) + else: + max_num_channel = np.max(np.sum(sparsity.mask, axis=1)) + + nbefore = int(params["ms_before"] * sorting.sampling_frequency / 1000.0) + nafter = int(params["ms_after"] * sorting.sampling_frequency / 1000.0) + + waveforms = np.zeros((num_spikes, nbefore + nafter, max_num_channel), dtype=params["dtype"]) + # then read waveforms per units + some_spikes = spikes[random_spikes_indices] + for unit_index, unit_id in enumerate(sorting.unit_ids): + wfs = np.load(waveform_folder / f"waveforms_{unit_id}.npy") + mask = some_spikes["unit_index"] == unit_index + waveforms[:, :, : wfs.shape[2]][mask, :, :] = wfs + + ext = SelectRandomSpikes(sorting_analyzer) + ext.params = dict() + ext.data = dict(random_spikes_indices=random_spikes_indices) + + ext = ComputeWaveforms(sorting_analyzer) + ext.params = dict( + ms_before=params["ms_before"], + ms_after=params["ms_after"], + return_scaled=params["return_scaled"], + dtype=params["dtype"], + ) + ext.data["waveforms"] = waveforms + sorting_analyzer.extensions["waveforms"] = ext + + # templates saved dense + # load cached templates + templates = {} + for mode in ("average", "std", "median", "percentile"): + template_file = folder / f"templates_{mode}.npy" + if template_file.is_file(): + templates[mode] = np.load(template_file) + if len(templates) > 0: + ext = ComputeTemplates(sorting_analyzer) + ext.params = dict( + nbefore=nbefore, nafter=nafter, return_scaled=params["return_scaled"], operators=list(templates.keys()) + ) + for mode, arr in templates.items(): + ext.data[mode] = arr + sorting_analyzer.extensions["templates"] = ext + + # old extensions with same names and equvalent data except similarity>template_similarity + old_extension_to_new_class = { + "spike_amplitudes": "spike_amplitudes", + "spike_locations": "spike_locations", + "amplitude_scalings": "amplitude_scalings", + "template_metrics": "template_metrics", + "similarity": "template_similarity", + "unit_locations": "unit_locations", + "correlograms": "correlograms", + "isi_histograms": "isi_histograms", + "noise_levels": "noise_levels", + "quality_metrics": "quality_metrics", + # "principal_components" : "principal_components", + } + for old_name, new_name in old_extension_to_new_class.items(): + ext_folder = folder / old_name + if not ext_folder.is_dir(): + continue + new_class = get_extension_class(new_name) + ext = new_class(sorting_analyzer) + with open(ext_folder / "params.json", "r") as f: + params = json.load(f) + ext.params = params + if new_name == "spike_amplitudes": + amplitudes = [] + for segment_index in range(sorting.get_num_segments()): + amplitudes.append(np.load(ext_folder / f"amplitude_segment_{segment_index}.npy")) + amplitudes = np.concatenate(amplitudes) + ext.data["amplitudes"] = amplitudes + elif new_name == "spike_locations": + ext.data["spike_locations"] = np.load(ext_folder / "spike_locations.npy") + elif new_name == "amplitude_scalings": + ext.data["amplitude_scalings"] = np.load(ext_folder / "amplitude_scalings.npy") + elif new_name == "template_metrics": + import pandas as pd + + ext.data["metrics"] = pd.read_csv(ext_folder / "metrics.csv", index_col=0) + elif new_name == "template_similarity": + ext.data["similarity"] = np.load(ext_folder / "similarity.npy") + elif new_name == "unit_locations": + ext.data["unit_locations"] = np.load(ext_folder / "unit_locations.npy") + elif new_name == "correlograms": + ext.data["ccgs"] = np.load(ext_folder / "ccgs.npy") + ext.data["bins"] = np.load(ext_folder / "bins.npy") + elif new_name == "isi_histograms": + ext.data["isi_histograms"] = np.load(ext_folder / "isi_histograms.npy") + ext.data["bins"] = np.load(ext_folder / "bins.npy") + elif new_name == "noise_levels": + ext.data["noise_levels"] = np.load(ext_folder / "noise_levels.npy") + elif new_name == "quality_metrics": + import pandas as pd + + ext.data["metrics"] = pd.read_csv(ext_folder / "metrics.csv", index_col=0) + # elif new_name == "principal_components": + # # TODO: alessio this is for you + # pass + sorting_analyzer.extensions[new_name] = ext + + return sorting_analyzer diff --git a/src/spikeinterface/core/zarrextractors.py b/src/spikeinterface/core/zarrextractors.py index 106f8ccc1e..3f7962f214 100644 --- a/src/spikeinterface/core/zarrextractors.py +++ b/src/spikeinterface/core/zarrextractors.py @@ -255,7 +255,7 @@ def read_zarr( The loaded extractor """ # TODO @alessio : we should have something more explicit in our zarr format to tell which object it is. - # for the futur SortingResult we will have this 2 fields!!! + # for the futur SortingAnalyzer we will have this 2 fields!!! root = zarr.open(str(folder_path), mode="r", storage_options=storage_options) if "channel_ids" in root.keys(): return read_zarr_recording(folder_path, storage_options=storage_options) diff --git a/src/spikeinterface/curation/auto_merge.py b/src/spikeinterface/curation/auto_merge.py index 099a8337ea..f509ecd6bf 100644 --- a/src/spikeinterface/curation/auto_merge.py +++ b/src/spikeinterface/curation/auto_merge.py @@ -2,6 +2,7 @@ import numpy as np +from ..core import create_sorting_analyzer from ..core.template_tools import get_template_extremum_channel from ..postprocessing import compute_correlograms from ..qualitymetrics import compute_refrac_period_violations, compute_firing_rates @@ -10,7 +11,7 @@ def get_potential_auto_merge( - waveform_extractor, + sorting_analyzer, minimum_spikes=1000, maximum_distance_um=150.0, peak_sign="neg", @@ -56,8 +57,8 @@ def get_potential_auto_merge( Parameters ---------- - waveform_extractor: WaveformExtractor - The waveform extractor + sorting_analyzer: SortingAnalyzer + The SortingAnalyzer minimum_spikes: int, default: 1000 Minimum number of spikes for each unit to consider a potential merge. Enough spikes are needed to estimate the correlogram @@ -112,8 +113,7 @@ def get_potential_auto_merge( """ import scipy - we = waveform_extractor - sorting = we.sorting + sorting = sorting_analyzer.sorting unit_ids = sorting.unit_ids # to get fast computation we will not analyse pairs when: @@ -144,7 +144,7 @@ def get_potential_auto_merge( # STEP 2 : remove contaminated auto corr if "remove_contaminated" in steps: contaminations, nb_violations = compute_refrac_period_violations( - we, refractory_period_ms=refractory_period_ms, censored_period_ms=censored_period_ms + sorting_analyzer, refractory_period_ms=refractory_period_ms, censored_period_ms=censored_period_ms ) nb_violations = np.array(list(nb_violations.values())) contaminations = np.array(list(contaminations.values())) @@ -154,8 +154,10 @@ def get_potential_auto_merge( # STEP 3 : unit positions are estimated roughly with channel if "unit_positions" in steps: - chan_loc = we.get_channel_locations() - unit_max_chan = get_template_extremum_channel(we, peak_sign=peak_sign, mode="extremum", outputs="index") + chan_loc = sorting_analyzer.get_channel_locations() + unit_max_chan = get_template_extremum_channel( + sorting_analyzer, peak_sign=peak_sign, mode="extremum", outputs="index" + ) unit_max_chan = list(unit_max_chan.values()) unit_locations = chan_loc[unit_max_chan, :] unit_distances = scipy.spatial.distance.cdist(unit_locations, unit_locations, metric="euclidean") @@ -187,7 +189,7 @@ def get_potential_auto_merge( # STEP 5 : check if potential merge with CC also have template similarity if "template_similarity" in steps: - templates = we.get_all_templates(mode="average") + templates = sorting_analyzer.get_extension("templates").get_templates(operator="average") templates_diff = compute_templates_diff( sorting, templates, num_channels=num_channels, num_shift=num_shift, pair_mask=pair_mask ) @@ -196,7 +198,12 @@ def get_potential_auto_merge( # STEP 6 : validate the potential merges with CC increase the contamination quality metrics if "check_increase_score" in steps: pair_mask, pairs_decreased_score = check_improve_contaminations_score( - we, pair_mask, contaminations, firing_contamination_balance, refractory_period_ms, censored_period_ms + sorting_analyzer, + pair_mask, + contaminations, + firing_contamination_balance, + refractory_period_ms, + censored_period_ms, ) # FINAL STEP : create the final list from pair_mask boolean matrix @@ -421,25 +428,8 @@ def compute_templates_diff(sorting, templates, num_channels=5, num_shift=5, pair return templates_diff -class MockWaveformExtractor: - """ - Mock WaveformExtractor to be able to run compute_refrac_period_violations() - needed for the auto_merge() function. - """ - - def __init__(self, recording, sorting): - self.recording = recording - self.sorting = sorting - - def get_total_samples(self): - return self.recording.get_total_samples() - - def get_total_duration(self): - return self.recording.get_total_duration() - - def check_improve_contaminations_score( - we, pair_mask, contaminations, firing_contamination_balance, refractory_period_ms, censored_period_ms + sorting_analyzer, pair_mask, contaminations, firing_contamination_balance, refractory_period_ms, censored_period_ms ): """ Check that the score is improve afeter a potential merge @@ -451,12 +441,12 @@ def check_improve_contaminations_score( Check that the contamination score is improved (decrease) after a potential merge """ - recording = we.recording - sorting = we.sorting + recording = sorting_analyzer.recording + sorting = sorting_analyzer.sorting pair_mask = pair_mask.copy() pairs_removed = [] - firing_rates = list(compute_firing_rates(we).values()) + firing_rates = list(compute_firing_rates(sorting_analyzer).values()) inds1, inds2 = np.nonzero(pair_mask) for i in range(inds1.size): @@ -473,14 +463,14 @@ def check_improve_contaminations_score( sorting_merged = MergeUnitsSorting( sorting, [[unit_id1, unit_id2]], new_unit_ids=[unit_id1], delta_time_ms=censored_period_ms ).select_units([unit_id1]) - # make a lazy fake WaveformExtractor to compute contamination and firing rate - we_new = MockWaveformExtractor(recording, sorting_merged) + + sorting_analyzer_new = create_sorting_analyzer(sorting_merged, recording, format="memory", sparse=False) new_contaminations, _ = compute_refrac_period_violations( - we_new, refractory_period_ms=refractory_period_ms, censored_period_ms=censored_period_ms + sorting_analyzer_new, refractory_period_ms=refractory_period_ms, censored_period_ms=censored_period_ms ) c_new = new_contaminations[unit_id1] - f_new = compute_firing_rates(we_new)[unit_id1] + f_new = compute_firing_rates(sorting_analyzer_new)[unit_id1] # old and new scores k = 1 + firing_contamination_balance diff --git a/src/spikeinterface/curation/remove_redundant.py b/src/spikeinterface/curation/remove_redundant.py index 21162b0bda..1d6fdd3ac1 100644 --- a/src/spikeinterface/curation/remove_redundant.py +++ b/src/spikeinterface/curation/remove_redundant.py @@ -1,7 +1,7 @@ from __future__ import annotations import numpy as np -from spikeinterface import WaveformExtractor +from spikeinterface import SortingAnalyzer from ..core.template_tools import get_template_extremum_channel_peak_shift, get_template_amplitudes from ..postprocessing import align_sorting @@ -11,7 +11,7 @@ def remove_redundant_units( - sorting_or_waveform_extractor, + sorting_or_sorting_analyzer, align=True, unit_peak_shifts=None, delta_time=0.4, @@ -33,12 +33,12 @@ def remove_redundant_units( Parameters ---------- - sorting_or_waveform_extractor : BaseSorting or WaveformExtractor - If WaveformExtractor, the spike trains can be optionally realigned using the peak shift in the + sorting_or_sorting_analyzer : BaseSorting or SortingAnalyzer + If SortingAnalyzer, the spike trains can be optionally realigned using the peak shift in the template to improve the matching procedure. If BaseSorting, the spike trains are not aligned. align : bool, default: False - If True, spike trains are aligned (if a WaveformExtractor is used) + If True, spike trains are aligned (if a SortingAnalyzer is used) delta_time : float, default: 0.4 The time in ms to consider matching spikes agreement_threshold : float, default: 0.2 @@ -65,17 +65,17 @@ def remove_redundant_units( Sorting object without redundant units """ - if isinstance(sorting_or_waveform_extractor, WaveformExtractor): - sorting = sorting_or_waveform_extractor.sorting - we = sorting_or_waveform_extractor + if isinstance(sorting_or_sorting_analyzer, SortingAnalyzer): + sorting = sorting_or_sorting_analyzer.sorting + sorting_analyzer = sorting_or_sorting_analyzer else: - assert not align, "The 'align' option is only available when a WaveformExtractor is used as input" - sorting = sorting_or_waveform_extractor - we = None + assert not align, "The 'align' option is only available when a SortingAnalyzer is used as input" + sorting = sorting_or_sorting_analyzer + sorting_analyzer = None if align and unit_peak_shifts is None: - assert we is not None, "For align=True must give a WaveformExtractor or explicit unit_peak_shifts" - unit_peak_shifts = get_template_extremum_channel_peak_shift(we) + assert sorting_analyzer is not None, "For align=True must give a SortingAnalyzer or explicit unit_peak_shifts" + unit_peak_shifts = get_template_extremum_channel_peak_shift(sorting_analyzer) if align: sorting_aligned = align_sorting(sorting, unit_peak_shifts) @@ -93,7 +93,7 @@ def remove_redundant_units( if remove_strategy in ("minimum_shift", "highest_amplitude"): # this is the values at spike index ! - peak_values = get_template_amplitudes(we, peak_sign=peak_sign, mode="at_index") + peak_values = get_template_amplitudes(sorting_analyzer, peak_sign=peak_sign, mode="at_index") peak_values = {unit_id: np.max(np.abs(values)) for unit_id, values in peak_values.items()} if remove_strategy == "minimum_shift": @@ -125,7 +125,7 @@ def remove_redundant_units( elif remove_strategy == "with_metrics": # TODO # @aurelien @alessio - # here we can implement the choice of the best one given an external metrics table + # here sorting_analyzer can implement the choice of the best one given an external metrics table # this will be implemented in a futur PR by the first who need it! raise NotImplementedError() else: diff --git a/src/spikeinterface/curation/tests/common.py b/src/spikeinterface/curation/tests/common.py new file mode 100644 index 0000000000..0d561227a4 --- /dev/null +++ b/src/spikeinterface/curation/tests/common.py @@ -0,0 +1,48 @@ +from __future__ import annotations + +import pytest +from pathlib import Path + +from spikeinterface.core import generate_ground_truth_recording, create_sorting_analyzer +from spikeinterface.qualitymetrics import compute_quality_metrics + +if hasattr(pytest, "global_test_folder"): + cache_folder = pytest.global_test_folder / "curation" +else: + cache_folder = Path("cache_folder") / "curation" + + +job_kwargs = dict(n_jobs=-1) + + +def make_sorting_analyzer(sparse=True): + recording, sorting = generate_ground_truth_recording( + durations=[300.0], + sampling_frequency=30000.0, + num_channels=4, + num_units=5, + generate_sorting_kwargs=dict(firing_rates=20.0, refractory_period_ms=4.0), + noise_kwargs=dict(noise_level=5.0, strategy="on_the_fly"), + seed=2205, + ) + + sorting_analyzer = create_sorting_analyzer(sorting=sorting, recording=recording, format="memory", sparse=sparse) + sorting_analyzer.compute("random_spikes") + sorting_analyzer.compute("waveforms", **job_kwargs) + sorting_analyzer.compute("templates") + sorting_analyzer.compute("noise_levels") + # sorting_analyzer.compute("principal_components") + # sorting_analyzer.compute("template_similarity") + # sorting_analyzer.compute("quality_metrics", metric_names=["snr"]) + + return sorting_analyzer + + +@pytest.fixture(scope="module") +def sorting_analyzer_for_curation(): + return make_sorting_analyzer(sparse=True) + + +if __name__ == "__main__": + sorting_analyzer = make_sorting_analyzer(sparse=False) + print(sorting_analyzer) diff --git a/src/spikeinterface/curation/tests/test_auto_merge.py b/src/spikeinterface/curation/tests/test_auto_merge.py index 068d3e824b..f8dea5b270 100644 --- a/src/spikeinterface/curation/tests/test_auto_merge.py +++ b/src/spikeinterface/curation/tests/test_auto_merge.py @@ -3,13 +3,13 @@ from pathlib import Path import numpy as np -from spikeinterface import WaveformExtractor, load_extractor, extract_waveforms, NumpySorting, set_global_tmp_folder -from spikeinterface.extractors import toy_example - +from spikeinterface.core import create_sorting_analyzer from spikeinterface.core.generate import inject_some_split_units from spikeinterface.curation import get_potential_auto_merge -from spikeinterface.curation.auto_merge import normalize_correlogram + + +from spikeinterface.curation.tests.common import make_sorting_analyzer, sorting_analyzer_for_curation if hasattr(pytest, "global_test_folder"): @@ -17,12 +17,11 @@ else: cache_folder = Path("cache_folder") / "curation" -set_global_tmp_folder(cache_folder) - -def test_get_auto_merge_list(): - rec, sorting = toy_example(num_segments=1, num_units=5, duration=[300.0], firing_rate=20.0, seed=42) +def test_get_auto_merge_list(sorting_analyzer_for_curation): + sorting = sorting_analyzer_for_curation.sorting + recording = sorting_analyzer_for_curation.recording num_unit_splited = 1 num_split = 2 @@ -30,22 +29,19 @@ def test_get_auto_merge_list(): sorting, split_ids=sorting.unit_ids[:num_unit_splited], num_split=num_split, output_ids=True, seed=42 ) - print(sorting_with_split) - print(sorting_with_split.unit_ids) - print(other_ids) + # print(sorting_with_split) + # print(sorting_with_split.unit_ids) + # print(other_ids) - # rec = rec.save() - # sorting_with_split = sorting_with_split.save() - # wf_folder = cache_folder / "wf_auto_merge" - # if wf_folder.exists(): - # shutil.rmtree(wf_folder) - # we = extract_waveforms(rec, sorting_with_split, mode="folder", folder=wf_folder, n_jobs=1) + job_kwargs = dict(n_jobs=-1) - we = extract_waveforms(rec, sorting_with_split, mode="memory", folder=None, n_jobs=1) - # print(we) + sorting_analyzer = create_sorting_analyzer(sorting_with_split, recording, format="memory") + sorting_analyzer.compute("random_spikes") + sorting_analyzer.compute("waveforms", **job_kwargs) + sorting_analyzer.compute("templates") potential_merges, outs = get_potential_auto_merge( - we, + sorting_analyzer, minimum_spikes=1000, maximum_distance_um=150.0, peak_sign="neg", @@ -72,6 +68,7 @@ def test_get_auto_merge_list(): assert true_pair in potential_merges # import matplotlib.pyplot as plt + # from spikeinterface.curation.auto_merge import normalize_correlogram # templates_diff = outs['templates_diff'] # correlogram_diff = outs['correlogram_diff'] # bins = outs['bins'] @@ -122,4 +119,5 @@ def test_get_auto_merge_list(): if __name__ == "__main__": - test_get_auto_merge_list() + sorting_analyzer = make_sorting_analyzer(sparse=True) + test_get_auto_merge_list(sorting_analyzer) diff --git a/src/spikeinterface/curation/tests/test_remove_redundant.py b/src/spikeinterface/curation/tests/test_remove_redundant.py index 9e27374de1..9172979bfa 100644 --- a/src/spikeinterface/curation/tests/test_remove_redundant.py +++ b/src/spikeinterface/curation/tests/test_remove_redundant.py @@ -6,46 +6,37 @@ import numpy as np -from spikeinterface import WaveformExtractor, load_extractor, extract_waveforms, NumpySorting, set_global_tmp_folder +from spikeinterface import create_sorting_analyzer from spikeinterface.core.generate import inject_some_duplicate_units -from spikeinterface.extractors import toy_example - -from spikeinterface.curation import remove_redundant_units +from spikeinterface.curation.tests.common import make_sorting_analyzer, sorting_analyzer_for_curation -if hasattr(pytest, "global_test_folder"): - cache_folder = pytest.global_test_folder / "curation" -else: - cache_folder = Path("cache_folder") / "curation" +from spikeinterface.curation import remove_redundant_units -set_global_tmp_folder(cache_folder) +def test_remove_redundant_units(sorting_analyzer_for_curation): -def test_remove_redundant_units(): - rec, sorting = toy_example(num_segments=1, duration=[100.0], seed=2205) + sorting = sorting_analyzer_for_curation.sorting + recording = sorting_analyzer_for_curation.recording sorting_with_dup = inject_some_duplicate_units(sorting, ratio=0.8, num=4, seed=2205) - print(sorting.unit_ids) - print(sorting_with_dup.unit_ids) - - # rec = rec.save() - # sorting_with_dup = sorting_with_dup.save() - # wf_folder = cache_folder / "wf_dup" - # if wf_folder.exists(): - # shutil.rmtree(wf_folder) - # we = extract_waveforms(rec, sorting_with_dup, folder=wf_folder) - - we = extract_waveforms(rec, sorting_with_dup, mode="memory", folder=None, n_jobs=1) + # print(sorting.unit_ids) + # print(sorting_with_dup.unit_ids) - # print(we) + job_kwargs = dict(n_jobs=-1) + sorting_analyzer = create_sorting_analyzer(sorting_with_dup, recording, format="memory") + sorting_analyzer.compute("random_spikes") + sorting_analyzer.compute("waveforms", **job_kwargs) + sorting_analyzer.compute("templates") for remove_strategy in ("max_spikes", "minimum_shift", "highest_amplitude"): - sorting_clean = remove_redundant_units(we, remove_strategy=remove_strategy) + sorting_clean = remove_redundant_units(sorting_analyzer, remove_strategy=remove_strategy) # print(sorting_clean) # print(sorting_clean.unit_ids) assert np.array_equal(sorting_clean.unit_ids, sorting.unit_ids) if __name__ == "__main__": - test_remove_redundant_units() + sorting_analyzer = make_sorting_analyzer(sparse=True) + test_remove_redundant_units(sorting_analyzer) diff --git a/src/spikeinterface/curation/tests/test_sortingview_curation.py b/src/spikeinterface/curation/tests/test_sortingview_curation.py index ce6c7dd5a6..5ac82aab86 100644 --- a/src/spikeinterface/curation/tests/test_sortingview_curation.py +++ b/src/spikeinterface/curation/tests/test_sortingview_curation.py @@ -29,25 +29,28 @@ set_global_tmp_folder(cache_folder) -# this needs to be run only once -def generate_sortingview_curation_dataset(): - import spikeinterface.widgets as sw - - local_path = si.download_dataset(remote_path="mearec/mearec_test_10s.h5") - recording, sorting = read_mearec(local_path) - - we = si.extract_waveforms(recording, sorting, folder=None, mode="memory") - - _ = compute_spike_amplitudes(we) - _ = compute_correlograms(we) - _ = compute_template_similarity(we) - _ = compute_unit_locations(we) - - # plot_sorting_summary with curation - w = sw.plot_sorting_summary(we, curation=True, backend="sortingview") - - # curation_link: - # https://figurl.org/f?v=gs://figurl/spikesortingview-10&d=sha1://bd53f6b707f8121cadc901562a89b67aec81cc81&label=SpikeInterface%20-%20Sorting%20Summary +# this needs to be run only once: if we want to regenerate we need to start with sorting result +# TODO : regenerate the +# def generate_sortingview_curation_dataset(): +# import spikeinterface.widgets as sw + +# local_path = si.download_dataset(remote_path="mearec/mearec_test_10s.h5") +# recording, sorting = read_mearec(local_path) + +# sorting_analyzer = si.create_sorting_analyzer(sorting, recording, format="memory") +# sorting_analyzer.compute("random_spikes") +# sorting_analyzer.compute("waveforms") +# sorting_analyzer.compute("templates") +# sorting_analyzer.compute("noise_levels") +# sorting_analyzer.compute("spike_amplitudes") +# sorting_analyzer.compute("template_similarity") +# sorting_analyzer.compute("unit_locations") + +# # plot_sorting_summary with curation +# w = sw.plot_sorting_summary(sorting_analyzer, curation=True, backend="sortingview") + +# # curation_link: +# # https://figurl.org/f?v=gs://figurl/spikesortingview-10&d=sha1://bd53f6b707f8121cadc901562a89b67aec81cc81&label=SpikeInterface%20-%20Sorting%20Summary @pytest.mark.skipif(ON_GITHUB and not KACHERY_CLOUD_SET, reason="Kachery cloud secrets not available") diff --git a/src/spikeinterface/exporters/report.py b/src/spikeinterface/exporters/report.py index c937f9cb4c..c29c8aaf2b 100644 --- a/src/spikeinterface/exporters/report.py +++ b/src/spikeinterface/exporters/report.py @@ -11,7 +11,7 @@ def export_report( - waveform_extractor, + sorting_analyzer, output_folder, remove_if_exists=False, format="png", @@ -28,8 +28,8 @@ def export_report( Parameters ---------- - waveform_extractor: a WaveformExtractor or None - If WaveformExtractor is provide then the compute is faster otherwise + sorting_analyzer: SortingAnalyzer + A SortingAnalyzer object output_folder: str The output folder where the report files are saved remove_if_exists: bool, default: False @@ -48,15 +48,15 @@ def export_report( import matplotlib.pyplot as plt job_kwargs = fix_job_kwargs(job_kwargs) - we = waveform_extractor - sorting = we.sorting - unit_ids = sorting.unit_ids + sorting = sorting_analyzer.sorting + unit_ids = sorting_analyzer.unit_ids # load or compute spike_amplitudes - if we.has_extension("spike_amplitudes"): - spike_amplitudes = we.load_extension("spike_amplitudes").get_data(outputs="by_unit") + if sorting_analyzer.has_extension("spike_amplitudes"): + spike_amplitudes = sorting_analyzer.get_extension("spike_amplitudes").get_data(outputs="by_unit") elif force_computation: - spike_amplitudes = compute_spike_amplitudes(we, peak_sign=peak_sign, outputs="by_unit", **job_kwargs) + sorting_analyzer.compute("spike_amplitudes", **job_kwargs) + spike_amplitudes = sorting_analyzer.get_extension("spike_amplitudes").get_data(outputs="by_unit") else: spike_amplitudes = None print( @@ -64,10 +64,11 @@ def export_report( ) # load or compute quality_metrics - if we.has_extension("quality_metrics"): - metrics = we.load_extension("quality_metrics").get_data() + if sorting_analyzer.has_extension("quality_metrics"): + metrics = sorting_analyzer.get_extension("quality_metrics").get_data() elif force_computation: - metrics = compute_quality_metrics(we) + sorting_analyzer.compute("quality_metrics") + metrics = sorting_analyzer.get_extension("quality_metrics").get_data() else: metrics = None print( @@ -75,10 +76,10 @@ def export_report( ) # load or compute correlograms - if we.has_extension("correlograms"): - correlograms, bins = we.load_extension("correlograms").get_data() + if sorting_analyzer.has_extension("correlograms"): + correlograms, bins = sorting_analyzer.get_extension("correlograms").get_data() elif force_computation: - correlograms, bins = compute_correlograms(we, window_ms=100.0, bin_ms=1.0) + correlograms, bins = compute_correlograms(sorting_analyzer, window_ms=100.0, bin_ms=1.0) else: correlograms = None print( @@ -86,8 +87,8 @@ def export_report( ) # pre-compute unit locations if not done - if not we.has_extension("unit_locations"): - unit_locations = compute_unit_locations(we) + if not sorting_analyzer.has_extension("unit_locations"): + sorting_analyzer.compute("unit_locations") output_folder = Path(output_folder).absolute() if output_folder.is_dir(): @@ -100,28 +101,30 @@ def export_report( # unit list units = pd.DataFrame(index=unit_ids) #  , columns=['max_on_channel_id', 'amplitude']) units.index.name = "unit_id" - units["max_on_channel_id"] = pd.Series(get_template_extremum_channel(we, peak_sign="neg", outputs="id")) - units["amplitude"] = pd.Series(get_template_extremum_amplitude(we, peak_sign="neg")) + units["max_on_channel_id"] = pd.Series( + get_template_extremum_channel(sorting_analyzer, peak_sign="neg", outputs="id") + ) + units["amplitude"] = pd.Series(get_template_extremum_amplitude(sorting_analyzer, peak_sign="neg")) units.to_csv(output_folder / "unit list.csv", sep="\t") unit_colors = sw.get_unit_colors(sorting) # global figures fig = plt.figure(figsize=(20, 10)) - w = sw.plot_unit_locations(we, figure=fig, unit_colors=unit_colors) + w = sw.plot_unit_locations(sorting_analyzer, figure=fig, unit_colors=unit_colors) fig.savefig(output_folder / f"unit_localization.{format}") if not show_figures: plt.close(fig) fig, ax = plt.subplots(figsize=(20, 10)) - sw.plot_unit_depths(we, ax=ax, unit_colors=unit_colors) + sw.plot_unit_depths(sorting_analyzer, ax=ax, unit_colors=unit_colors) fig.savefig(output_folder / f"unit_depths.{format}") if not show_figures: plt.close(fig) if spike_amplitudes and len(unit_ids) < 100: fig = plt.figure(figsize=(20, 10)) - sw.plot_all_amplitudes_distributions(we, figure=fig, unit_colors=unit_colors) + sw.plot_all_amplitudes_distributions(sorting_analyzer, figure=fig, unit_colors=unit_colors) fig.savefig(output_folder / f"amplitudes_distribution.{format}") if not show_figures: plt.close(fig) @@ -138,7 +141,7 @@ def export_report( constrained_layout=False, figsize=(15, 7), ) - sw.plot_unit_summary(we, unit_id, figure=fig) + sw.plot_unit_summary(sorting_analyzer, unit_id, figure=fig) fig.suptitle(f"unit {unit_id}") fig.savefig(units_folder / f"{unit_id}.{format}") if not show_figures: diff --git a/src/spikeinterface/exporters/tests/common.py b/src/spikeinterface/exporters/tests/common.py index f2a7e6c034..800947d033 100644 --- a/src/spikeinterface/exporters/tests/common.py +++ b/src/spikeinterface/exporters/tests/common.py @@ -3,13 +3,7 @@ import pytest from pathlib import Path -from spikeinterface.core import generate_ground_truth_recording, extract_waveforms -from spikeinterface.postprocessing import ( - compute_spike_amplitudes, - compute_template_similarity, - compute_principal_components, -) -from spikeinterface.qualitymetrics import compute_quality_metrics +from spikeinterface.core import generate_ground_truth_recording, create_sorting_analyzer, compute_sparsity if hasattr(pytest, "global_test_folder"): cache_folder = pytest.global_test_folder / "exporters" @@ -17,7 +11,7 @@ cache_folder = Path("cache_folder") / "exporters" -def make_waveforms_extractor(sparse=True, with_group=False): +def make_sorting_analyzer(sparse=True, with_group=False): recording, sorting = generate_ground_truth_recording( durations=[30.0], sampling_frequency=28000.0, @@ -39,30 +33,43 @@ def make_waveforms_extractor(sparse=True, with_group=False): recording.set_channel_groups([0, 0, 0, 0, 1, 1, 1, 1]) sorting.set_property("group", [0, 0, 1, 1]) - we = extract_waveforms(recording=recording, sorting=sorting, folder=None, mode="memory", sparse=sparse) - compute_principal_components(we) - compute_spike_amplitudes(we) - compute_template_similarity(we) - compute_quality_metrics(we, metric_names=["snr"]) + sorting_analyzer_unused = create_sorting_analyzer( + sorting=sorting, recording=recording, format="memory", sparse=False, sparsity=None + ) + sparsity_group = compute_sparsity(sorting_analyzer_unused, method="by_property", by_property="group") - return we + sorting_analyzer = create_sorting_analyzer( + sorting=sorting, recording=recording, format="memory", sparse=False, sparsity=sparsity_group + ) + else: + sorting_analyzer = create_sorting_analyzer(sorting=sorting, recording=recording, format="memory", sparse=sparse) + sorting_analyzer.compute("random_spikes") + sorting_analyzer.compute("waveforms") + sorting_analyzer.compute("templates") + sorting_analyzer.compute("noise_levels") + sorting_analyzer.compute("principal_components") + sorting_analyzer.compute("template_similarity") + sorting_analyzer.compute("quality_metrics", metric_names=["snr"]) -@pytest.fixture(scope="module") -def waveforms_extractor_dense_for_export(): - return make_waveforms_extractor(sparse=False) + return sorting_analyzer -@pytest.fixture(scope="module") -def waveforms_extractor_with_group_for_export(): - return make_waveforms_extractor(sparse=False, with_group=True) +@pytest.fixture(scope="session") +def sorting_analyzer_dense_for_export(): + return make_sorting_analyzer(sparse=False) -@pytest.fixture(scope="module") -def waveforms_extractor_sparse_for_export(): - return make_waveforms_extractor(sparse=True) +@pytest.fixture(scope="session") +def sorting_analyzer_with_group_for_export(): + return make_sorting_analyzer(sparse=False, with_group=True) + + +@pytest.fixture(scope="session") +def sorting_analyzer_sparse_for_export(): + return make_sorting_analyzer(sparse=True) if __name__ == "__main__": - we = make_waveforms_extractor(sparse=False) - print(we) + sorting_analyzer = make_sorting_analyzer(sparse=False) + print(sorting_analyzer) diff --git a/src/spikeinterface/exporters/tests/test_export_to_phy.py b/src/spikeinterface/exporters/tests/test_export_to_phy.py index 52dd383913..18ba15b975 100644 --- a/src/spikeinterface/exporters/tests/test_export_to_phy.py +++ b/src/spikeinterface/exporters/tests/test_export_to_phy.py @@ -12,24 +12,43 @@ from spikeinterface.exporters.tests.common import ( cache_folder, - make_waveforms_extractor, - waveforms_extractor_sparse_for_export, - waveforms_extractor_dense_for_export, - waveforms_extractor_with_group_for_export, + make_sorting_analyzer, + sorting_analyzer_sparse_for_export, + sorting_analyzer_with_group_for_export, + sorting_analyzer_dense_for_export, ) -def test_export_to_phy(waveforms_extractor_sparse_for_export): +def test_export_to_phy_dense(sorting_analyzer_dense_for_export): + output_folder1 = cache_folder / "phy_output_dense" + for f in (output_folder1,): + if f.is_dir(): + shutil.rmtree(f) + + sorting_analyzer = sorting_analyzer_dense_for_export + + export_to_phy( + sorting_analyzer, + output_folder1, + compute_pc_features=True, + compute_amplitudes=True, + n_jobs=1, + chunk_size=10000, + progress_bar=True, + ) + + +def test_export_to_phy_sparse(sorting_analyzer_sparse_for_export): output_folder1 = cache_folder / "phy_output_1" output_folder2 = cache_folder / "phy_output_2" for f in (output_folder1, output_folder2): if f.is_dir(): shutil.rmtree(f) - waveform_extractor = waveforms_extractor_sparse_for_export + sorting_analyzer = sorting_analyzer_sparse_for_export export_to_phy( - waveform_extractor, + sorting_analyzer, output_folder1, compute_pc_features=True, compute_amplitudes=True, @@ -40,7 +59,7 @@ def test_export_to_phy(waveforms_extractor_sparse_for_export): # Test for previous crash when copy_binary=False. export_to_phy( - waveform_extractor, + sorting_analyzer, output_folder2, compute_pc_features=False, compute_amplitudes=False, @@ -51,107 +70,35 @@ def test_export_to_phy(waveforms_extractor_sparse_for_export): ) -def test_export_to_phy_by_property(waveforms_extractor_with_group_for_export): - output_folder = cache_folder / "phy_output" - output_folder_rm = cache_folder / "phy_output_rm" +def test_export_to_phy_by_property(sorting_analyzer_with_group_for_export): + output_folder = cache_folder / "phy_output_property" - for f in (output_folder, output_folder_rm): + for f in (output_folder,): if f.is_dir(): shutil.rmtree(f) - waveform_extractor = waveforms_extractor_with_group_for_export + sorting_analyzer = sorting_analyzer_with_group_for_export + print(sorting_analyzer.sparsity) - sparsity_group = compute_sparsity(waveform_extractor, method="by_property", by_property="group") export_to_phy( - waveform_extractor, + sorting_analyzer, output_folder, compute_pc_features=True, compute_amplitudes=True, - sparsity=sparsity_group, n_jobs=1, chunk_size=10000, progress_bar=True, ) template_inds = np.load(output_folder / "template_ind.npy") - assert template_inds.shape == (waveform_extractor.unit_ids.size, 4) - - # Remove one channel - # recording_rm = recording.channel_slice([0, 2, 3, 4, 5, 6, 7]) - # waveform_extractor_rm = extract_waveforms(recording_rm, sorting, waveform_folder_rm, sparse=False) - # sparsity_group = compute_sparsity(waveform_extractor_rm, method="by_property", by_property="group") - - # export_to_phy( - # waveform_extractor_rm, - # output_folder_rm, - # compute_pc_features=True, - # compute_amplitudes=True, - # sparsity=sparsity_group, - # n_jobs=1, - # chunk_size=10000, - # progress_bar=True, - # ) - - # template_inds = np.load(output_folder_rm / "template_ind.npy") - # assert template_inds.shape == (num_units, 4) - # assert len(np.where(template_inds == -1)[0]) > 0 - - -def test_export_to_phy_by_sparsity(waveforms_extractor_dense_for_export): - output_folder_radius = cache_folder / "phy_output_radius" - output_folder_multi_sparse = cache_folder / "phy_output_multi_sparse" - for f in (output_folder_radius, output_folder_multi_sparse): - if f.is_dir(): - shutil.rmtree(f) - - waveform_extractor = waveforms_extractor_dense_for_export - - sparsity_radius = compute_sparsity(waveform_extractor, method="radius", radius_um=50.0) - export_to_phy( - waveform_extractor, - output_folder_radius, - compute_pc_features=True, - compute_amplitudes=True, - sparsity=sparsity_radius, - n_jobs=1, - chunk_size=10000, - progress_bar=True, - ) - - template_ind = np.load(output_folder_radius / "template_ind.npy") - pc_ind = np.load(output_folder_radius / "pc_feature_ind.npy") - # templates have different shapes! - assert -1 in template_ind - assert -1 in pc_ind - - # pre-compute PC with another sparsity - sparsity_radius_small = compute_sparsity(waveform_extractor, method="radius", radius_um=30.0) - pc = compute_principal_components(waveform_extractor, sparsity=sparsity_radius_small) - export_to_phy( - waveform_extractor, - output_folder_multi_sparse, - compute_pc_features=True, - compute_amplitudes=True, - sparsity=sparsity_radius, - n_jobs=1, - chunk_size=10000, - progress_bar=True, - ) - - template_ind = np.load(output_folder_multi_sparse / "template_ind.npy") - pc_ind = np.load(output_folder_multi_sparse / "pc_feature_ind.npy") - # templates have different shapes! - assert -1 in template_ind - assert -1 in pc_ind - # PC sparsity is more stringent than teplate sparsity - assert pc_ind.shape[1] < template_ind.shape[1] + assert template_inds.shape == (sorting_analyzer.unit_ids.size, 4) if __name__ == "__main__": - we_sparse = make_waveforms_extractor(sparse=True) - we_group = make_waveforms_extractor(sparse=False, with_group=True) - we_dense = make_waveforms_extractor(sparse=False) + sorting_analyzer_sparse = make_sorting_analyzer(sparse=True) + sorting_analyzer_group = make_sorting_analyzer(sparse=False, with_group=True) + sorting_analyzer_dense = make_sorting_analyzer(sparse=False) - test_export_to_phy(we_sparse) - test_export_to_phy_by_property(we_group) - test_export_to_phy_by_sparsity(we_dense) + test_export_to_phy_dense(sorting_analyzer_dense) + test_export_to_phy_sparse(sorting_analyzer_sparse) + test_export_to_phy_by_property(sorting_analyzer_group) diff --git a/src/spikeinterface/exporters/tests/test_report.py b/src/spikeinterface/exporters/tests/test_report.py index ee1a9b6b31..cd000bc077 100644 --- a/src/spikeinterface/exporters/tests/test_report.py +++ b/src/spikeinterface/exporters/tests/test_report.py @@ -7,22 +7,22 @@ from spikeinterface.exporters.tests.common import ( cache_folder, - make_waveforms_extractor, - waveforms_extractor_sparse_for_export, + make_sorting_analyzer, + sorting_analyzer_sparse_for_export, ) -def test_export_report(waveforms_extractor_sparse_for_export): +def test_export_report(sorting_analyzer_sparse_for_export): report_folder = cache_folder / "report" if report_folder.exists(): shutil.rmtree(report_folder) - we = waveforms_extractor_sparse_for_export + sorting_analyzer = sorting_analyzer_sparse_for_export job_kwargs = dict(n_jobs=1, chunk_size=30000, progress_bar=True) - export_report(we, report_folder, force_computation=True, **job_kwargs) + export_report(sorting_analyzer, report_folder, force_computation=True, **job_kwargs) if __name__ == "__main__": - we = make_waveforms_extractor(sparse=True) - test_export_report(we) + sorting_analyzer = make_sorting_analyzer(sparse=True) + test_export_report(sorting_analyzer) diff --git a/src/spikeinterface/exporters/to_phy.py b/src/spikeinterface/exporters/to_phy.py index 607aa3e846..30f74e584b 100644 --- a/src/spikeinterface/exporters/to_phy.py +++ b/src/spikeinterface/exporters/to_phy.py @@ -11,9 +11,9 @@ from spikeinterface.core import ( write_binary_recording, BinaryRecordingExtractor, - WaveformExtractor, BinaryFolderRecording, ChannelSparsity, + SortingAnalyzer, ) from spikeinterface.core.job_tools import _shared_job_kwargs_doc, fix_job_kwargs from spikeinterface.postprocessing import ( @@ -24,7 +24,7 @@ def export_to_phy( - waveform_extractor: WaveformExtractor, + sorting_analyzer: SortingAnalyzer, output_folder: str | Path, compute_pc_features: bool = True, compute_amplitudes: bool = True, @@ -43,8 +43,8 @@ def export_to_phy( Parameters ---------- - waveform_extractor: a WaveformExtractor or None - If WaveformExtractor is provide then the compute is faster otherwise + sorting_analyzer: SortingAnalyzer + A SortingAnalyzer object output_folder: str | Path The output folder where the phy template-gui files are saved compute_pc_features: bool, default: True @@ -60,7 +60,7 @@ def export_to_phy( peak_sign: "neg" | "pos" | "both", default: "neg" Used by compute_spike_amplitudes template_mode: str, default: "median" - Parameter "mode" to be given to WaveformExtractor.get_template() + Parameter "mode" to be given to SortingAnalyzer.get_template() dtype: dtype or None, default: None Dtype to save binary data verbose: bool, default: True @@ -73,36 +73,34 @@ def export_to_phy( """ import pandas as pd - assert isinstance( - waveform_extractor, spikeinterface.core.waveform_extractor.WaveformExtractor - ), "waveform_extractor must be a WaveformExtractor object" - sorting = waveform_extractor.sorting + assert isinstance(sorting_analyzer, SortingAnalyzer), "sorting_analyzer must be a SortingAnalyzer object" + sorting = sorting_analyzer.sorting assert ( - waveform_extractor.get_num_segments() == 1 - ), f"Export to phy only works with one segment, your extractor has {waveform_extractor.get_num_segments()} segments" - num_chans = waveform_extractor.get_num_channels() - fs = waveform_extractor.sampling_frequency + sorting_analyzer.get_num_segments() == 1 + ), f"Export to phy only works with one segment, your extractor has {sorting_analyzer.get_num_segments()} segments" + num_chans = sorting_analyzer.get_num_channels() + fs = sorting_analyzer.sampling_frequency job_kwargs = fix_job_kwargs(job_kwargs) # check sparsity - if (num_chans > 64) and (sparsity is None and not waveform_extractor.is_sparse()): + if (num_chans > 64) and (sparsity is None and not sorting_analyzer.is_sparse()): warnings.warn( "Exporting to Phy with many channels and without sparsity might result in a heavy and less " - "informative visualization. You can use use a sparse WaveformExtractor or you can use the 'sparsity' " + "informative visualization. You can use use a sparse SortingAnalyzer or you can use the 'sparsity' " "argument to enforce sparsity (see compute_sparsity())" ) save_sparse = True - if waveform_extractor.is_sparse(): - used_sparsity = waveform_extractor.sparsity + if sorting_analyzer.is_sparse(): + used_sparsity = sorting_analyzer.sparsity if sparsity is not None: - warnings.warn("If the waveform_extractor is sparse the 'sparsity' argument is ignored") + warnings.warn("If the sorting_analyzer is sparse the 'sparsity' argument is ignored") elif sparsity is not None: used_sparsity = sparsity else: - used_sparsity = ChannelSparsity.create_dense(waveform_extractor) + used_sparsity = ChannelSparsity.create_dense(sorting_analyzer) save_sparse = False # convenient sparsity dict for the 3 cases to retrieve channl_inds sparse_dict = used_sparsity.unit_id_to_channel_indices @@ -121,7 +119,7 @@ def export_to_phy( if len(unit_ids) == 0: raise Exception("No non-empty units in the sorting result, can't save to Phy.") - output_folder = Path(output_folder).absolute() + output_folder = Path(output_folder).resolve() if output_folder.is_dir(): if remove_if_exists: shutil.rmtree(output_folder) @@ -132,22 +130,19 @@ def export_to_phy( # save dat file if dtype is None: - if waveform_extractor.has_recording(): - dtype = waveform_extractor.recording.get_dtype() - else: - dtype = waveform_extractor.dtype + dtype = sorting_analyzer.get_dtype() - if waveform_extractor.has_recording(): + if sorting_analyzer.has_recording(): if copy_binary: rec_path = output_folder / "recording.dat" - write_binary_recording(waveform_extractor.recording, file_paths=rec_path, dtype=dtype, **job_kwargs) - elif isinstance(waveform_extractor.recording, BinaryRecordingExtractor): - if isinstance(waveform_extractor.recording, BinaryFolderRecording): - bin_kwargs = waveform_extractor.recording._bin_kwargs + write_binary_recording(sorting_analyzer.recording, file_paths=rec_path, dtype=dtype, **job_kwargs) + elif isinstance(sorting_analyzer.recording, BinaryRecordingExtractor): + if isinstance(sorting_analyzer.recording, BinaryFolderRecording): + bin_kwargs = sorting_analyzer.recording._bin_kwargs else: - bin_kwargs = waveform_extractor.recording._kwargs + bin_kwargs = sorting_analyzer.recording._kwargs rec_path = bin_kwargs["file_paths"][0] - dtype = waveform_extractor.recording.get_dtype() + dtype = sorting_analyzer.recording.get_dtype() else: rec_path = "None" else: # don't save recording.dat @@ -172,7 +167,7 @@ def export_to_phy( f.write(f"dtype = '{dtype_str}'\n") f.write(f"offset = 0\n") f.write(f"sample_rate = {fs}\n") - f.write(f"hp_filtered = {waveform_extractor.is_filtered()}") + f.write(f"hp_filtered = {sorting_analyzer.recording.is_filtered()}") # export spike_times/spike_templates/spike_clusters # here spike_labels is a remapping to unit_index @@ -185,22 +180,23 @@ def export_to_phy( # export templates/templates_ind/similar_templates # shape (num_units, num_samples, max_num_channels) + templates_ext = sorting_analyzer.get_extension("templates") + templates_ext is not None, "export_to_phy need SortingAnalyzer with extension 'templates'" max_num_channels = max(len(chan_inds) for chan_inds in sparse_dict.values()) - num_samples = waveform_extractor.nbefore + waveform_extractor.nafter + dense_templates = templates_ext.get_templates(unit_ids=unit_ids, operator=template_mode) + num_samples = dense_templates.shape[1] templates = np.zeros((len(unit_ids), num_samples, max_num_channels), dtype="float64") # here we pad template inds with -1 if len of sparse channels is unequal templates_ind = -np.ones((len(unit_ids), max_num_channels), dtype="int64") for unit_ind, unit_id in enumerate(unit_ids): chan_inds = sparse_dict[unit_id] - template = waveform_extractor.get_template(unit_id, mode=template_mode, sparsity=sparsity) + template = dense_templates[unit_ind][:, chan_inds] templates[unit_ind, :, :][:, : len(chan_inds)] = template templates_ind[unit_ind, : len(chan_inds)] = chan_inds - if waveform_extractor.has_extension("similarity"): - tmc = waveform_extractor.load_extension("similarity") - template_similarity = tmc.get_data() - else: - template_similarity = compute_template_similarity(waveform_extractor, method="cosine_similarity") + if not sorting_analyzer.has_extension("template_similarity"): + sorting_analyzer.compute("template_similarity") + template_similarity = sorting_analyzer.get_extension("template_similarity").get_data() np.save(str(output_folder / "templates.npy"), templates) if save_sparse: @@ -208,9 +204,9 @@ def export_to_phy( np.save(str(output_folder / "similar_templates.npy"), template_similarity) channel_maps = np.arange(num_chans, dtype="int32") - channel_map_si = waveform_extractor.channel_ids - channel_positions = waveform_extractor.get_channel_locations().astype("float32") - channel_groups = waveform_extractor.get_recording_property("group") + channel_map_si = sorting_analyzer.channel_ids + channel_positions = sorting_analyzer.get_channel_locations().astype("float32") + channel_groups = sorting_analyzer.get_recording_property("group") if channel_groups is None: channel_groups = np.zeros(num_chans, dtype="int32") np.save(str(output_folder / "channel_map.npy"), channel_maps) @@ -219,34 +215,24 @@ def export_to_phy( np.save(str(output_folder / "channel_groups.npy"), channel_groups) if compute_amplitudes: - if waveform_extractor.has_extension("spike_amplitudes"): - sac = waveform_extractor.load_extension("spike_amplitudes") - amplitudes = sac.get_data(outputs="concatenated") - else: - amplitudes = compute_spike_amplitudes( - waveform_extractor, peak_sign=peak_sign, outputs="concatenated", **job_kwargs - ) - # one segment only - amplitudes = amplitudes[0][:, np.newaxis] + if not sorting_analyzer.has_extension("spike_amplitudes"): + sorting_analyzer.compute("spike_amplitudes", **job_kwargs) + amplitudes = sorting_analyzer.get_extension("spike_amplitudes").get_data() + amplitudes = amplitudes[:, np.newaxis] np.save(str(output_folder / "amplitudes.npy"), amplitudes) if compute_pc_features: - if waveform_extractor.has_extension("principal_components"): - pc = waveform_extractor.load_extension("principal_components") - else: - pc = compute_principal_components( - waveform_extractor, n_components=5, mode="by_channel_local", sparsity=sparsity - ) - pc_sparsity = pc.get_sparsity() - if pc_sparsity is None: - pc_sparsity = used_sparsity - max_num_channels_pc = max(len(chan_inds) for chan_inds in pc_sparsity.unit_id_to_channel_indices.values()) + if not sorting_analyzer.has_extension("principal_components"): + sorting_analyzer.compute("principal_components", n_components=5, mode="by_channel_local", **job_kwargs) + + pca_extension = sorting_analyzer.get_extension("principal_components") - pc.run_for_all_spikes(output_folder / "pc_features.npy", **job_kwargs) + pca_extension.run_for_all_spikes(output_folder / "pc_features.npy", **job_kwargs) + max_num_channels_pc = max(len(chan_inds) for chan_inds in used_sparsity.unit_id_to_channel_indices.values()) pc_feature_ind = -np.ones((len(unit_ids), max_num_channels_pc), dtype="int64") for unit_ind, unit_id in enumerate(unit_ids): - chan_inds = pc_sparsity.unit_id_to_channel_indices[unit_id] + chan_inds = used_sparsity.unit_id_to_channel_indices[unit_id] pc_feature_ind[unit_ind, : len(chan_inds)] = chan_inds np.save(str(output_folder / "pc_feature_ind.npy"), pc_feature_ind) @@ -264,9 +250,8 @@ def export_to_phy( channel_group = pd.DataFrame({"cluster_id": [i for i in range(len(unit_ids))], "channel_group": unit_groups}) channel_group.to_csv(output_folder / "cluster_channel_group.tsv", sep="\t", index=False) - if waveform_extractor.has_extension("quality_metrics"): - qm = waveform_extractor.load_extension("quality_metrics") - qm_data = qm.get_data() + if sorting_analyzer.has_extension("quality_metrics"): + qm_data = sorting_analyzer.get_extension("quality_metrics").get_data() for column_name in qm_data.columns: # already computed by phy if column_name not in ["num_spikes", "firing_rate"]: diff --git a/src/spikeinterface/postprocessing/__init__.py b/src/spikeinterface/postprocessing/__init__.py index 3aebd13797..528f2d3761 100644 --- a/src/spikeinterface/postprocessing/__init__.py +++ b/src/spikeinterface/postprocessing/__init__.py @@ -1,49 +1,50 @@ from .template_metrics import ( - TemplateMetricsCalculator, + ComputeTemplateMetrics, compute_template_metrics, get_template_metric_names, ) from .template_similarity import ( - TemplateSimilarityCalculator, + ComputeTemplateSimilarity, compute_template_similarity, + compute_template_similarity_by_pair, check_equal_template_with_distribution_overlap, ) from .principal_component import ( - WaveformPrincipalComponent, + ComputePrincipalComponents, compute_principal_components, ) -from .spike_amplitudes import compute_spike_amplitudes, SpikeAmplitudesCalculator +from .spike_amplitudes import compute_spike_amplitudes, ComputeSpikeAmplitudes from .correlograms import ( - CorrelogramsCalculator, + ComputeCorrelograms, + compute_correlograms, compute_autocorrelogram_from_spiketrain, compute_crosscorrelogram_from_spiketrain, - compute_correlograms, correlogram_for_one_segment, compute_correlograms_numba, compute_correlograms_numpy, ) from .isi import ( - ISIHistogramsCalculator, + ComputeISIHistograms, compute_isi_histograms, compute_isi_histograms_numpy, compute_isi_histograms_numba, ) -from .spike_locations import compute_spike_locations, SpikeLocationsCalculator +from .spike_locations import compute_spike_locations, ComputeSpikeLocations from .unit_localization import ( compute_unit_locations, - UnitLocationsCalculator, + ComputeUnitLocations, compute_center_of_mass, ) -from .amplitude_scalings import compute_amplitude_scalings, AmplitudeScalingsCalculator +from .amplitude_scalings import compute_amplitude_scalings, ComputeAmplitudeScalings from .alignsorting import align_sorting, AlignSortingExtractor -from .noise_level import compute_noise_levels, NoiseLevelsCalculator +from .noise_level import compute_noise_levels, ComputeNoiseLevels diff --git a/src/spikeinterface/postprocessing/amplitude_scalings.py b/src/spikeinterface/postprocessing/amplitude_scalings.py index b207c324a0..9d4e766f4b 100644 --- a/src/spikeinterface/postprocessing/amplitude_scalings.py +++ b/src/spikeinterface/postprocessing/amplitude_scalings.py @@ -5,38 +5,82 @@ from spikeinterface.core import ChannelSparsity, get_chunk_with_margin from spikeinterface.core.job_tools import ChunkRecordingExecutor, _shared_job_kwargs_doc, ensure_n_jobs, fix_job_kwargs -from spikeinterface.core.template_tools import get_template_extremum_channel, get_template_extremum_channel_peak_shift -from spikeinterface.core.waveform_extractor import WaveformExtractor, BaseWaveformExtractorExtension +from spikeinterface.core.template_tools import get_template_extremum_channel +from spikeinterface.core.sortinganalyzer import register_result_extension, AnalyzerExtension + +from spikeinterface.core.node_pipeline import SpikeRetriever, PipelineNode, run_node_pipeline, find_parent_of_type + +from ..core.template_tools import _get_dense_templates_array, _get_nbefore # DEBUG = True -class AmplitudeScalingsCalculator(BaseWaveformExtractorExtension): +# TODO extra sparsity and job_kwargs handling + + +class ComputeAmplitudeScalings(AnalyzerExtension): """ - Computes amplitude scalings from WaveformExtractor. + Computes the amplitude scalings from a SortingAnalyzer. + + Parameters + ---------- + sorting_analyzer: SortingAnalyzer + A SortingAnalyzer object + sparsity: ChannelSparsity or None, default: None + If waveforms are not sparse, sparsity is required if the number of channels is greater than + `max_dense_channels`. If the waveform extractor is sparse, its sparsity is automatically used. + max_dense_channels: int, default: 16 + Maximum number of channels to allow running without sparsity. To compute amplitude scaling using + dense waveforms, set this to None, sparsity to None, and pass dense waveforms as input. + ms_before : float or None, default: None + The cut out to apply before the spike peak to extract local waveforms. + If None, the SortingAnalyzer ms_before is used. + ms_after : float or None, default: None + The cut out to apply after the spike peak to extract local waveforms. + If None, the SortingAnalyzer ms_after is used. + handle_collisions: bool, default: True + Whether to handle collisions between spikes. If True, the amplitude scaling of colliding spikes + (defined as spikes within `delta_collision_ms` ms and with overlapping sparsity) is computed by fitting a + multi-linear regression model (with `sklearn.LinearRegression`). If False, each spike is fitted independently. + delta_collision_ms: float, default: 2 + The maximum time difference in ms before and after a spike to gather colliding spikes. + load_if_exists : bool, default: False + Whether to load precomputed spike amplitudes, if they already exist. + outputs: "concatenated" | "by_unit", default: "concatenated" + How the output should be returned + {} + + Returns + ------- + amplitude_scalings: np.array or list of dict + The amplitude scalings. + - If "concatenated" all amplitudes for all spikes and all units are concatenated + - If "by_unit", amplitudes are returned as a list (for segments) of dictionaries (for units) """ extension_name = "amplitude_scalings" - handle_sparsity = True + depend_on = [ + "fast_templates|templates", + ] + need_recording = True + use_nodepipeline = True + nodepipeline_variables = ["amplitude_scalings", "collision_mask"] + need_job_kwargs = True - def __init__(self, waveform_extractor): - BaseWaveformExtractorExtension.__init__(self, waveform_extractor) + def __init__(self, sorting_analyzer): + AnalyzerExtension.__init__(self, sorting_analyzer) - extremum_channel_inds = get_template_extremum_channel(self.waveform_extractor, outputs="index") - self.spikes = self.waveform_extractor.sorting.to_spike_vector( - extremum_channel_inds=extremum_channel_inds, use_cache=False - ) self.collisions = None def _set_params( self, - sparsity, - max_dense_channels, - ms_before, - ms_after, - handle_collisions, - delta_collision_ms, + sparsity=None, + max_dense_channels=16, + ms_before=None, + ms_after=None, + handle_collisions=True, + delta_collision_ms=2, ): params = dict( sparsity=sparsity, @@ -49,329 +93,241 @@ def _set_params( return params def _select_extension_data(self, unit_ids): - old_unit_ids = self.waveform_extractor.sorting.unit_ids - unit_inds = np.flatnonzero(np.isin(old_unit_ids, unit_ids)) + keep_unit_indices = np.flatnonzero(np.isin(self.sorting_analyzer.unit_ids, unit_ids)) - spike_mask = np.isin(self.spikes["unit_index"], unit_inds) - new_amplitude_scalings = self._extension_data["amplitude_scalings"][spike_mask] - return dict(amplitude_scalings=new_amplitude_scalings) + spikes = self.sorting_analyzer.sorting.to_spike_vector() + keep_spike_mask = np.isin(spikes["unit_index"], keep_unit_indices) - def _run(self, **job_kwargs): - job_kwargs = fix_job_kwargs(job_kwargs) - we = self.waveform_extractor - recording = we.recording - nbefore = we.nbefore - nafter = we.nafter - ms_before = self._params["ms_before"] - ms_after = self._params["ms_after"] + new_data = dict() + new_data["amplitude_scalings"] = self.data["amplitude_scalings"][keep_spike_mask] + if self.params["handle_collisions"]: + new_data["collision_mask"] = self.data["collision_mask"][keep_spike_mask] + return new_data - # collisions - handle_collisions = self._params["handle_collisions"] - delta_collision_ms = self._params["delta_collision_ms"] - delta_collision_samples = int(delta_collision_ms / 1000 * we.sampling_frequency) + def _get_pipeline_nodes(self): + + recording = self.sorting_analyzer.recording + sorting = self.sorting_analyzer.sorting - return_scaled = we._params["return_scaled"] + # TODO return_scaled is not any more a property of SortingAnalyzer this is hard coded for now + return_scaled = True - if ms_before is not None: + all_templates = _get_dense_templates_array(self.sorting_analyzer, return_scaled=return_scaled) + nbefore = _get_nbefore(self.sorting_analyzer) + nafter = all_templates.shape[1] - nbefore + + # if ms_before / ms_after are set in params then the original templates are shorten + if self.params["ms_before"] is not None: + cut_out_before = int(self.params["ms_before"] * self.sorting_analyzer.sampling_frequency / 1000.0) assert ( - ms_before <= we._params["ms_before"] - ), f"`ms_before` must be smaller than `ms_before` used in WaveformExractor: {we._params['ms_before']}" - if ms_after is not None: + cut_out_before <= nbefore + ), f"`ms_before` must be smaller than `ms_before` used in ComputeTemplates: {nbefore}" + else: + cut_out_before = nbefore + + if self.params["ms_after"] is not None: + cut_out_after = int(self.params["ms_after"] * self.sorting_analyzer.sampling_frequency / 1000.0) assert ( - ms_after <= we._params["ms_after"] + cut_out_after <= nafter ), f"`ms_after` must be smaller than `ms_after` used in WaveformExractor: {we._params['ms_after']}" + else: + cut_out_after = nafter - cut_out_before = int(ms_before / 1000 * we.sampling_frequency) if ms_before is not None else nbefore - cut_out_after = int(ms_after / 1000 * we.sampling_frequency) if ms_after is not None else nafter + peak_sign = "neg" if np.abs(np.min(all_templates)) > np.max(all_templates) else "pos" + extremum_channels_indices = get_template_extremum_channel( + self.sorting_analyzer, peak_sign=peak_sign, outputs="index" + ) - if we.is_sparse() and self._params["sparsity"] is None: - sparsity = we.sparsity - elif we.is_sparse() and self._params["sparsity"] is not None: - sparsity = self._params["sparsity"] + # collisions + handle_collisions = self.params["handle_collisions"] + delta_collision_ms = self.params["delta_collision_ms"] + delta_collision_samples = int(delta_collision_ms / 1000 * self.sorting_analyzer.sampling_frequency) + + if self.sorting_analyzer.is_sparse() and self.params["sparsity"] is None: + sparsity = self.sorting_analyzer.sparsity + elif self.sorting_analyzer.is_sparse() and self.params["sparsity"] is not None: + sparsity = self.params["sparsity"] # assert provided sparsity is sparser than the one in the waveform extractor - waveform_sparsity = we.sparsity + waveform_sparsity = self.sorting_analyzer.sparsity assert np.all( np.sum(waveform_sparsity.mask, 1) - np.sum(sparsity.mask, 1) > 0 ), "The provided sparsity needs to be sparser than the one in the waveform extractor!" - elif not we.is_sparse() and self._params["sparsity"] is not None: - sparsity = self._params["sparsity"] + elif not self.sorting_analyzer.is_sparse() and self.params["sparsity"] is not None: + sparsity = self.params["sparsity"] else: - if self._params["max_dense_channels"] is not None: - assert recording.get_num_channels() <= self._params["max_dense_channels"], "" - sparsity = ChannelSparsity.create_dense(we) + if self.params["max_dense_channels"] is not None: + assert recording.get_num_channels() <= self.params["max_dense_channels"], "" + sparsity = ChannelSparsity.create_dense(self.sorting_analyzer) sparsity_mask = sparsity.mask - all_templates = we.get_all_templates() - - # precompute segment slice - segment_slices = [] - for segment_index in range(we.get_num_segments()): - i0, i1 = np.searchsorted(self.spikes["segment_index"], [segment_index, segment_index + 1]) - segment_slices.append(slice(i0, i1)) - - # and run - func = _amplitude_scalings_chunk - init_func = _init_worker_amplitude_scalings - n_jobs = ensure_n_jobs(recording, job_kwargs.get("n_jobs", None)) - job_kwargs["n_jobs"] = n_jobs - init_args = ( + + spike_retriever_node = SpikeRetriever( recording, - self.spikes, - all_templates, - segment_slices, - sparsity_mask, - nbefore, - nafter, - cut_out_before, - cut_out_after, - return_scaled, - handle_collisions, - delta_collision_samples, + sorting, + channel_from_template=True, + extremum_channel_inds=extremum_channels_indices, + include_spikes_in_margin=True, ) - processor = ChunkRecordingExecutor( + amplitude_scalings_node = AmplitudeScalingNode( recording, - func, - init_func, - init_args, - handle_returns=True, - job_name="extract amplitude scalings", - **job_kwargs, + parents=[spike_retriever_node], + return_output=True, + all_templates=all_templates, + sparsity_mask=sparsity_mask, + nbefore=nbefore, + nafter=nafter, + cut_out_before=cut_out_before, + cut_out_after=cut_out_after, + return_scaled=return_scaled, + handle_collisions=handle_collisions, + delta_collision_samples=delta_collision_samples, ) - out = processor.run() - (amp_scalings, collisions) = zip(*out) - amp_scalings = np.concatenate(amp_scalings) + nodes = [spike_retriever_node, amplitude_scalings_node] + return nodes - collisions_dict = {} - if handle_collisions: - for collision in collisions: - collisions_dict.update(collision) - self.collisions = collisions_dict - # Note: collisions are note in _extension_data because they are not pickable. We only store the indices - self._extension_data["collisions"] = np.array(list(collisions_dict.keys())) - - self._extension_data["amplitude_scalings"] = amp_scalings - - def get_data(self, outputs="concatenated"): - """ - Get computed spike amplitudes. - Parameters - ---------- - outputs : "concatenated" | "by_unit", default: "concatenated" - The output format - - Returns - ------- - spike_amplitudes : np.array or dict - The spike amplitudes as an array (outputs="concatenated") or - as a dict with units as key and spike amplitudes as values. - """ - we = self.waveform_extractor - sorting = we.sorting - - if outputs == "concatenated": - return self._extension_data[f"amplitude_scalings"] - elif outputs == "by_unit": - amplitudes_by_unit = [] - for segment_index in range(we.get_num_segments()): - amplitudes_by_unit.append({}) - segment_mask = self.spikes["segment_index"] == segment_index - spikes_segment = self.spikes[segment_mask] - amp_scalings_segment = self._extension_data[f"amplitude_scalings"][segment_mask] - for unit_index, unit_id in enumerate(sorting.unit_ids): - unit_mask = spikes_segment["unit_index"] == unit_index - amp_scalings = amp_scalings_segment[unit_mask] - amplitudes_by_unit[segment_index][unit_id] = amp_scalings - return amplitudes_by_unit - - @staticmethod - def get_extension_function(): - return compute_amplitude_scalings - - -WaveformExtractor.register_extension(AmplitudeScalingsCalculator) - - -def compute_amplitude_scalings( - waveform_extractor, - sparsity=None, - max_dense_channels=16, - ms_before=None, - ms_after=None, - handle_collisions=True, - delta_collision_ms=2, - load_if_exists=False, - outputs="concatenated", - **job_kwargs, -): - """ - Computes the amplitude scalings from a WaveformExtractor. + def _run(self, **job_kwargs): + job_kwargs = fix_job_kwargs(job_kwargs) + nodes = self.get_pipeline_nodes() + amp_scalings, collision_mask = run_node_pipeline( + self.sorting_analyzer.recording, + nodes, + job_kwargs=job_kwargs, + job_name="amplitude_scalings", + gather_mode="memory", + ) + self.data["amplitude_scalings"] = amp_scalings + if self.params["handle_collisions"]: + self.data["collision_mask"] = collision_mask + # TODO: make collisions "global" + # for collision in collisions: + # collisions_dict.update(collision) + # self.collisions = collisions_dict + # # Note: collisions are note in _extension_data because they are not pickable. We only store the indices + # self._extension_data["collisions"] = np.array(list(collisions_dict.keys())) - Parameters - ---------- - waveform_extractor: WaveformExtractor - The waveform extractor object - sparsity: ChannelSparsity or None, default: None - If waveforms are not sparse, sparsity is required if the number of channels is greater than - `max_dense_channels`. If the waveform extractor is sparse, its sparsity is automatically used. - max_dense_channels: int, default: 16 - Maximum number of channels to allow running without sparsity. To compute amplitude scaling using - dense waveforms, set this to None, sparsity to None, and pass dense waveforms as input. - ms_before : float or None, default: None - The cut out to apply before the spike peak to extract local waveforms. - If None, the WaveformExtractor ms_before is used. - ms_after : float or None, default: None - The cut out to apply after the spike peak to extract local waveforms. - If None, the WaveformExtractor ms_after is used. - handle_collisions: bool, default: True - Whether to handle collisions between spikes. If True, the amplitude scaling of colliding spikes - (defined as spikes within `delta_collision_ms` ms and with overlapping sparsity) is computed by fitting a - multi-linear regression model (with `sklearn.LinearRegression`). If False, each spike is fitted independently. - delta_collision_ms: float, default: 2 - The maximum time difference in ms before and after a spike to gather colliding spikes. - load_if_exists : bool, default: False - Whether to load precomputed spike amplitudes, if they already exist. - outputs: "concatenated" | "by_unit", default: "concatenated" - How the output should be returned - {} + def _get_data(self): + return self.data[f"amplitude_scalings"] - Returns - ------- - amplitude_scalings: np.array or list of dict - The amplitude scalings. - - If "concatenated" all amplitudes for all spikes and all units are concatenated - - If "by_unit", amplitudes are returned as a list (for segments) of dictionaries (for units) - """ - if load_if_exists and waveform_extractor.is_extension(AmplitudeScalingsCalculator.extension_name): - sac = waveform_extractor.load_extension(AmplitudeScalingsCalculator.extension_name) - else: - sac = AmplitudeScalingsCalculator(waveform_extractor) - sac.set_params( - sparsity=sparsity, - max_dense_channels=max_dense_channels, - ms_before=ms_before, - ms_after=ms_after, + +register_result_extension(ComputeAmplitudeScalings) +compute_amplitude_scalings = ComputeAmplitudeScalings.function_factory() + + +class AmplitudeScalingNode(PipelineNode): + def __init__( + self, + recording, + parents, + return_output, + all_templates, + sparsity_mask, + nbefore, + nafter, + cut_out_before, + cut_out_after, + return_scaled, + handle_collisions, + delta_collision_samples, + ): + PipelineNode.__init__(self, recording, parents=parents, return_output=return_output) + self.return_scaled = return_scaled + if return_scaled and recording.has_scaled(): + self._dtype = np.float32 + self._gains = recording.get_channel_gains() + self._offsets = recording.get_channel_gains() + else: + self._dtype = recording.get_dtype() + self._gains = None + self._offsets = None + spike_retriever = find_parent_of_type(parents, SpikeRetriever) + assert isinstance( + spike_retriever, SpikeRetriever + ), "SpikeAmplitudeNode needs a single SpikeRetriever as a parent" + assert spike_retriever.include_spikes_in_margin, "Need SpikeRetriever with include_spikes_in_margin=True" + if not handle_collisions: + self._margin = max(nbefore, nafter) + else: + # in this case we extend the margin to be able to get with collisions outside the chunk + margin_waveforms = max(nbefore, nafter) + max_margin_collisions = delta_collision_samples + margin_waveforms + self._margin = max_margin_collisions + + self._all_templates = all_templates + self._sparsity_mask = sparsity_mask + self._nbefore = nbefore + self._nafter = nafter + self._cut_out_before = cut_out_before + self._cut_out_after = cut_out_after + self._handle_collisions = handle_collisions + self._delta_collision_samples = delta_collision_samples + + self._kwargs.update( + all_templates=all_templates, + sparsity_mask=sparsity_mask, + nbefore=nbefore, + nafter=nafter, + cut_out_before=cut_out_before, + cut_out_after=cut_out_after, + return_scaled=return_scaled, handle_collisions=handle_collisions, - delta_collision_ms=delta_collision_ms, + delta_collision_samples=delta_collision_samples, ) - sac.run(**job_kwargs) - amps = sac.get_data(outputs=outputs) - return amps + def get_dtype(self): + return self._dtype + def compute(self, traces, peaks): + from scipy.stats import linregress -compute_amplitude_scalings.__doc__.format(_shared_job_kwargs_doc) + # scale traces with margin to match scaling of templates + if self._gains is not None: + traces = traces.astype("float32") * self._gains + self._offsets + all_templates = self._all_templates + sparsity_mask = self._sparsity_mask + nbefore = self._nbefore + cut_out_before = self._cut_out_before + cut_out_after = self._cut_out_after + handle_collisions = self._handle_collisions + delta_collision_samples = self._delta_collision_samples -def _init_worker_amplitude_scalings( - recording, - spikes, - all_templates, - segment_slices, - sparsity_mask, - nbefore, - nafter, - cut_out_before, - cut_out_after, - return_scaled, - handle_collisions, - delta_collision_samples, -): - # create a local dict per worker - worker_ctx = {} - worker_ctx["recording"] = recording - worker_ctx["spikes"] = spikes - worker_ctx["all_templates"] = all_templates - worker_ctx["segment_slices"] = segment_slices - worker_ctx["nbefore"] = nbefore - worker_ctx["nafter"] = nafter - worker_ctx["cut_out_before"] = cut_out_before - worker_ctx["cut_out_after"] = cut_out_after - worker_ctx["return_scaled"] = return_scaled - worker_ctx["sparsity_mask"] = sparsity_mask - worker_ctx["handle_collisions"] = handle_collisions - worker_ctx["delta_collision_samples"] = delta_collision_samples - - if not handle_collisions: - worker_ctx["margin"] = max(nbefore, nafter) - else: - # in this case we extend the margin to be able to get with collisions outside the chunk - margin_waveforms = max(nbefore, nafter) - max_margin_collisions = delta_collision_samples + margin_waveforms - worker_ctx["margin"] = max_margin_collisions - - return worker_ctx - - -def _amplitude_scalings_chunk(segment_index, start_frame, end_frame, worker_ctx): - # from sklearn.linear_model import LinearRegression - from scipy.stats import linregress - - # recover variables of the worker - spikes = worker_ctx["spikes"] - recording = worker_ctx["recording"] - all_templates = worker_ctx["all_templates"] - segment_slices = worker_ctx["segment_slices"] - sparsity_mask = worker_ctx["sparsity_mask"] - nbefore = worker_ctx["nbefore"] - cut_out_before = worker_ctx["cut_out_before"] - cut_out_after = worker_ctx["cut_out_after"] - margin = worker_ctx["margin"] - return_scaled = worker_ctx["return_scaled"] - handle_collisions = worker_ctx["handle_collisions"] - delta_collision_samples = worker_ctx["delta_collision_samples"] - - spikes_in_segment = spikes[segment_slices[segment_index]] - - i0, i1 = np.searchsorted(spikes_in_segment["sample_index"], [start_frame, end_frame]) - - if i0 != i1: - local_spikes = spikes_in_segment[i0:i1] - traces_with_margin, left, right = get_chunk_with_margin( - recording._recording_segments[segment_index], start_frame, end_frame, channel_indices=None, margin=margin - ) + # local_spikes_w_margin = peaks + # i0 = np.searchsorted(local_spikes_w_margin["sample_index"], left_margin) + # i1 = np.searchsorted(local_spikes_w_margin["sample_index"], traces.shape[0] - right_margin) + # local_spikes = local_spikes_w_margin[i0:i1] - # scale traces with margin to match scaling of templates - if return_scaled and recording.has_scaled(): - gains = recording.get_property("gain_to_uV") - offsets = recording.get_property("offset_to_uV") - traces_with_margin = traces_with_margin.astype("float32") * gains + offsets + local_spikes_w_margin = peaks + local_spikes = local_spikes_w_margin[~peaks["in_margin"]] # set colliding spikes apart (if needed) if handle_collisions: # local spikes with margin! - i0_margin, i1_margin = np.searchsorted( - spikes_in_segment["sample_index"], [start_frame - left, end_frame + right] - ) - local_spikes_w_margin = spikes_in_segment[i0_margin:i1_margin] - collisions_local = find_collisions( - local_spikes, local_spikes_w_margin, delta_collision_samples, sparsity_mask - ) + collisions = find_collisions(local_spikes, local_spikes_w_margin, delta_collision_samples, sparsity_mask) else: - collisions_local = {} + collisions = {} # compute the scaling for each spike scalings = np.zeros(len(local_spikes), dtype=float) - # collision_global transforms local spike index to global spike index - collisions_global = {} + spike_collision_mask = np.zeros(len(local_spikes), dtype=bool) + for spike_index, spike in enumerate(local_spikes): - if spike_index in collisions_local.keys(): + if spike_index in collisions.keys(): # we deal with overlapping spikes later continue unit_index = spike["unit_index"] - sample_index = spike["sample_index"] + sample_centered = spike["sample_index"] (sparse_indices,) = np.nonzero(sparsity_mask[unit_index]) template = all_templates[unit_index][:, sparse_indices] template = template[nbefore - cut_out_before : nbefore + cut_out_after] - sample_centered = sample_index - start_frame - cut_out_start = left + sample_centered - cut_out_before - cut_out_end = left + sample_centered + cut_out_after - if sample_index - cut_out_before < 0: - local_waveform = traces_with_margin[:cut_out_end, sparse_indices] - template = template[cut_out_before - sample_index :] - elif sample_index + cut_out_after > end_frame + right: - local_waveform = traces_with_margin[cut_out_start:, sparse_indices] - template = template[: -(sample_index + cut_out_after - (end_frame + right))] + cut_out_start = sample_centered - cut_out_before + cut_out_end = sample_centered + cut_out_after + if sample_centered - cut_out_before < 0: + local_waveform = traces[:cut_out_end, sparse_indices] + template = template[cut_out_before - sample_centered :] + elif sample_centered + cut_out_after > traces.shape[0]: + local_waveform = traces[cut_out_start:, sparse_indices] + template = template[: -(sample_centered + cut_out_after - (traces.shape[0]))] else: - local_waveform = traces_with_margin[cut_out_start:cut_out_end, sparse_indices] + local_waveform = traces[cut_out_start:cut_out_end, sparse_indices] assert template.shape == local_waveform.shape # here we use linregress, which is equivalent to using sklearn LinearRegression with fit_intercept=True @@ -379,22 +335,23 @@ def _amplitude_scalings_chunk(segment_index, start_frame, end_frame, worker_ctx) # X = template.flatten()[:, np.newaxis] # reg = LinearRegression(positive=True, fit_intercept=True).fit(X, y) # scalings[spike_index] = reg.coef_[0] + + # closed form: W = (X' * X)^-1 X' y + # y = local_waveform.flatten()[:, None] + # X = np.ones((len(y), 2)) + # X[:, 0] = template.flatten() + # W = np.linalg.inv(X.T @ X) @ X.T @ y + # scalings[spike_index] = W[0, 0] + linregress_res = linregress(template.flatten(), local_waveform.flatten()) scalings[spike_index] = linregress_res[0] # deal with collisions - if len(collisions_local) > 0: - num_spikes_in_previous_segments = int( - np.sum([len(spikes[segment_slices[s]]) for s in range(segment_index)]) - ) - for spike_index, collision in collisions_local.items(): + if len(collisions) > 0: + for spike_index, collision in collisions.items(): scaled_amps = fit_collision( collision, - traces_with_margin, - start_frame, - end_frame, - left, - right, + traces, nbefore, all_templates, sparsity_mask, @@ -403,14 +360,13 @@ def _amplitude_scalings_chunk(segment_index, start_frame, end_frame, worker_ctx) ) # the scaling for the current spike is at index 0 scalings[spike_index] = scaled_amps[0] + spike_collision_mask[spike_index] = True - # make collision_dict indices "absolute" by adding i0 and the cumulative number of spikes in previous segments - collisions_global.update({spike_index + i0 + num_spikes_in_previous_segments: collision}) - else: - scalings = np.array([]) - collisions_global = {} + # TODO: switch to collision mask and return that (to use concatenation) + return (scalings, spike_collision_mask) - return (scalings, collisions_global) + def get_trace_margin(self): + return self._margin ### Collision handling ### @@ -496,10 +452,6 @@ def find_collisions(spikes, spikes_w_margin, delta_collision_samples, sparsity_m def fit_collision( collision, traces_with_margin, - start_frame, - end_frame, - left, - right, nbefore, all_templates, sparsity_mask, @@ -544,8 +496,8 @@ def fit_collision( from sklearn.linear_model import LinearRegression # make center of the spike externally - sample_first_centered = np.min(collision["sample_index"]) - (start_frame - left) - sample_last_centered = np.max(collision["sample_index"]) - (start_frame - left) + sample_first_centered = np.min(collision["sample_index"]) + sample_last_centered = np.max(collision["sample_index"]) # construct sparsity as union between units' sparsity common_sparse_mask = np.zeros(sparsity_mask.shape[1], dtype="int") @@ -564,7 +516,7 @@ def fit_collision( for i, spike in enumerate(collision): full_template = np.zeros_like(local_waveform) # center wrt cutout traces - sample_centered = spike["sample_index"] - (start_frame - left) - local_waveform_start + sample_centered = spike["sample_index"] - local_waveform_start template = all_templates[spike["unit_index"]][:, sparse_indices] template_cut = template[nbefore - cut_out_before : nbefore + cut_out_after] # deal with borders @@ -590,11 +542,11 @@ def fit_collision( # Parameters # ---------- -# we : WaveformExtractor -# The WaveformExtractor object. -# sparsity : ChannelSparsity, default: None +# we : SortingAnalyzer +# The SortingAnalyzer object. +# sparsity : ChannelSparsity, default=None # The ChannelSparsity. If None, only main channels are plotted. -# num_collisions : int, default: None +# num_collisions : int, default=None # Number of collisions to plot. If None, all collisions are plotted. # """ # assert we.is_extension("amplitude_scalings"), "Could not find amplitude scalings extension!" diff --git a/src/spikeinterface/postprocessing/correlograms.py b/src/spikeinterface/postprocessing/correlograms.py index da50119cf8..f826cf9e8d 100644 --- a/src/spikeinterface/postprocessing/correlograms.py +++ b/src/spikeinterface/postprocessing/correlograms.py @@ -2,8 +2,7 @@ import math import warnings import numpy as np -from ..core import WaveformExtractor -from ..core.waveform_extractor import BaseWaveformExtractorExtension +from spikeinterface.core.sortinganalyzer import register_result_extension, AnalyzerExtension, SortingAnalyzer try: import numba @@ -13,59 +12,92 @@ HAVE_NUMBA = False -class CorrelogramsCalculator(BaseWaveformExtractorExtension): - """Compute correlograms of spike trains. +class ComputeCorrelograms(AnalyzerExtension): + """ + Compute auto and cross correlograms. Parameters ---------- - waveform_extractor: WaveformExtractor - A waveform extractor object + sorting_analyzer: SortingAnalyzer + A SortingAnalyzer object + window_ms : float, default: 50.0 + The window in ms + bin_ms : float, default: 1.0 + The bin size in ms + method : "auto" | "numpy" | "numba", default: "auto" + If "auto" and numba is installed, numba is used, otherwise numpy is used + + Returns + ------- + ccgs : np.array + Correlograms with shape (num_units, num_units, num_bins) + The diagonal of ccgs is the auto correlogram. + ccgs[A, B, :] is the symetrie of ccgs[B, A, :] + ccgs[A, B, :] have to be read as the histogram of spiketimesA - spiketimesB + bins : np.array + The bin edges in ms + + Returns + ------- + isi_histograms : np.array + 2D array with ISI histograms (num_units, num_bins) + bins : np.array + 1D array with bins in ms + """ extension_name = "correlograms" + depend_on = [] + need_recording = False + use_nodepipeline = False + need_job_kwargs = False - def __init__(self, waveform_extractor): - BaseWaveformExtractorExtension.__init__(self, waveform_extractor) + def __init__(self, sorting_analyzer): + AnalyzerExtension.__init__(self, sorting_analyzer) - def _set_params(self, window_ms: float = 100.0, bin_ms: float = 5.0, method: str = "auto"): + def _set_params(self, window_ms: float = 50.0, bin_ms: float = 1.0, method: str = "auto"): params = dict(window_ms=window_ms, bin_ms=bin_ms, method=method) return params def _select_extension_data(self, unit_ids): # filter metrics dataframe - unit_indices = self.waveform_extractor.sorting.ids_to_indices(unit_ids) - new_ccgs = self._extension_data["ccgs"][unit_indices][:, unit_indices] - new_bins = self._extension_data["bins"] - new_extension_data = dict(ccgs=new_ccgs, bins=new_bins) - return new_extension_data + unit_indices = self.sorting_analyzer.sorting.ids_to_indices(unit_ids) + new_ccgs = self.data["ccgs"][unit_indices][:, unit_indices] + new_bins = self.data["bins"] + new_data = dict(ccgs=new_ccgs, bins=new_bins) + return new_data def _run(self): - ccgs, bins = _compute_correlograms(self.waveform_extractor.sorting, **self._params) - self._extension_data["ccgs"] = ccgs - self._extension_data["bins"] = bins + ccgs, bins = compute_correlograms_on_sorting(self.sorting_analyzer.sorting, **self.params) + self.data["ccgs"] = ccgs + self.data["bins"] = bins - def get_data(self): - """ - Get the computed ISI histograms. + def _get_data(self): + return self.data["ccgs"], self.data["bins"] - Returns - ------- - isi_histograms : np.array - 2D array with ISI histograms (num_units, num_bins) - bins : np.array - 1D array with bins in ms - """ - msg = "Crosscorrelograms are not computed. Use the 'run()' function." - assert self._extension_data["ccgs"] is not None and self._extension_data["bins"] is not None, msg - return self._extension_data["ccgs"], self._extension_data["bins"] - @staticmethod - def get_extension_function(): - return compute_correlograms +register_result_extension(ComputeCorrelograms) +compute_correlograms_sorting_analyzer = ComputeCorrelograms.function_factory() + + +def compute_correlograms( + sorting_analyzer_or_sorting, + window_ms: float = 50.0, + bin_ms: float = 1.0, + method: str = "auto", +): + if isinstance(sorting_analyzer_or_sorting, SortingAnalyzer): + return compute_correlograms_sorting_analyzer( + sorting_analyzer_or_sorting, window_ms=window_ms, bin_ms=bin_ms, method=method + ) + else: + return compute_correlograms_on_sorting( + sorting_analyzer_or_sorting, window_ms=window_ms, bin_ms=bin_ms, method=method + ) -WaveformExtractor.register_extension(CorrelogramsCalculator) +compute_correlograms.__doc__ = compute_correlograms_sorting_analyzer.__doc__ def _make_bins(sorting, window_ms, bin_ms): @@ -135,52 +167,7 @@ def compute_crosscorrelogram_from_spiketrain(spike_times1, spike_times2, window_ return _compute_crosscorr_numba(spike_times1.astype(np.int64), spike_times2.astype(np.int64), window_size, bin_size) -def compute_correlograms( - waveform_or_sorting_extractor, - load_if_exists=False, - window_ms: float = 50.0, - bin_ms: float = 1.0, - method: "auto" | "numpy" | "numba" = "auto", -): - """Compute auto and cross correlograms. - - Parameters - ---------- - waveform_or_sorting_extractor : WaveformExtractor or BaseSorting - If WaveformExtractor, the correlograms are saved as WaveformExtensions - load_if_exists : bool, default: False - Whether to load precomputed crosscorrelograms, if they already exist - window_ms : float, default: 100.0 - The window in ms - bin_ms : float, default: 5 - The bin size in ms - method : "auto" | "numpy" | "numba", default: "auto" - If "auto" and numba is installed, numba is used, otherwise numpy is used - - Returns - ------- - ccgs : np.array - Correlograms with shape (num_units, num_units, num_bins) - The diagonal of ccgs is the auto correlogram. - ccgs[A, B, :] is the symmetry of ccgs[B, A, :] - ccgs[A, B, :] have to be read as the histogram of spiketimesA - spiketimesB - bins : np.array - The bin edges in ms - """ - if isinstance(waveform_or_sorting_extractor, WaveformExtractor): - if load_if_exists and waveform_or_sorting_extractor.is_extension(CorrelogramsCalculator.extension_name): - ccc = waveform_or_sorting_extractor.load_extension(CorrelogramsCalculator.extension_name) - else: - ccc = CorrelogramsCalculator(waveform_or_sorting_extractor) - ccc.set_params(window_ms=window_ms, bin_ms=bin_ms, method=method) - ccc.run() - ccgs, bins = ccc.get_data() - return ccgs, bins - else: - return _compute_correlograms(waveform_or_sorting_extractor, window_ms=window_ms, bin_ms=bin_ms, method=method) - - -def _compute_correlograms(sorting, window_ms, bin_ms, method="auto"): +def compute_correlograms_on_sorting(sorting, window_ms, bin_ms, method="auto"): """ Computes several cross-correlogram in one course from several clusters. """ diff --git a/src/spikeinterface/postprocessing/isi.py b/src/spikeinterface/postprocessing/isi.py index d3affae322..22aee972b9 100644 --- a/src/spikeinterface/postprocessing/isi.py +++ b/src/spikeinterface/postprocessing/isi.py @@ -1,8 +1,8 @@ from __future__ import annotations import numpy as np -from ..core import WaveformExtractor -from ..core.waveform_extractor import BaseWaveformExtractorExtension + +from spikeinterface.core.sortinganalyzer import register_result_extension, AnalyzerExtension try: import numba @@ -12,101 +12,61 @@ HAVE_NUMBA = False -class ISIHistogramsCalculator(BaseWaveformExtractorExtension): - """Compute ISI histograms of spike trains. +class ComputeISIHistograms(AnalyzerExtension): + """Compute ISI histograms. Parameters ---------- - waveform_extractor: WaveformExtractor - A waveform extractor object + sorting_analyzer: SortingAnalyzer + A SortingAnalyzer object + window_ms : float, default: 50 + The window in ms + bin_ms : float, default: 1 + The bin size in ms + method : "auto" | "numpy" | "numba", default: "auto" + . If "auto" and numba is installed, numba is used, otherwise numpy is used + + Returns + ------- + isi_histograms : np.array + IDI_histograms with shape (num_units, num_bins) + bins : np.array + The bin edges in ms """ extension_name = "isi_histograms" + depend_on = [] + need_recording = False + use_nodepipeline = False + need_job_kwargs = False - def __init__(self, waveform_extractor): - BaseWaveformExtractorExtension.__init__(self, waveform_extractor) + def __init__(self, sorting_analyzer): + AnalyzerExtension.__init__(self, sorting_analyzer) - def _set_params(self, window_ms: float = 100.0, bin_ms: float = 5.0, method: str = "auto"): + def _set_params(self, window_ms: float = 50.0, bin_ms: float = 1.0, method: str = "auto"): params = dict(window_ms=window_ms, bin_ms=bin_ms, method=method) return params def _select_extension_data(self, unit_ids): # filter metrics dataframe - unit_indices = self.waveform_extractor.sorting.ids_to_indices(unit_ids) - new_isi_hists = self._extension_data["isi_histograms"][unit_indices, :] - new_bins = self._extension_data["bins"] + unit_indices = self.sorting_analyzer.sorting.ids_to_indices(unit_ids) + new_isi_hists = self.data["isi_histograms"][unit_indices, :] + new_bins = self.data["bins"] new_extension_data = dict(isi_histograms=new_isi_hists, bins=new_bins) return new_extension_data def _run(self): - isi_histograms, bins = _compute_isi_histograms(self.waveform_extractor.sorting, **self._params) - self._extension_data["isi_histograms"] = isi_histograms - self._extension_data["bins"] = bins - - def get_data(self): - """ - Get the computed ISI histograms. - - Returns - ------- - isi_histograms : np.array - 2D array with ISI histograms (num_units, num_bins) - bins : np.array - 1D array with bins in ms - """ - msg = "ISI histograms are not computed. Use the 'run()' function." - assert self._extension_data["isi_histograms"] is not None and self._extension_data["bins"] is not None, msg - return self._extension_data["isi_histograms"], self._extension_data["bins"] - - @staticmethod - def get_extension_function(): - return compute_isi_histograms - - -WaveformExtractor.register_extension(ISIHistogramsCalculator) - - -def compute_isi_histograms( - waveform_or_sorting_extractor, - load_if_exists=False, - window_ms: float = 50.0, - bin_ms: float = 1.0, - method: str = "auto", -): - """Compute ISI histograms. + isi_histograms, bins = _compute_isi_histograms(self.sorting_analyzer.sorting, **self.params) + self.data["isi_histograms"] = isi_histograms + self.data["bins"] = bins - Parameters - ---------- - waveform_or_sorting_extractor : WaveformExtractor or BaseSorting - If WaveformExtractor, the ISI histograms are saved as WaveformExtensions - load_if_exists : bool, default: False - Whether to load precomputed crosscorrelograms, if they already exist - window_ms : float, default: 50 - The window in ms - bin_ms : float, default: 1 - The bin size in ms - method : "auto" | "numpy" | "numba", default: "auto" - . If "auto" and numba is installed, numba is used, otherwise numpy is used + def _get_data(self): + return self.data["isi_histograms"], self.data["bins"] - Returns - ------- - isi_histograms : np.array - IDI_histograms with shape (num_units, num_bins) - bins : np.array - The bin edges in ms - """ - if isinstance(waveform_or_sorting_extractor, WaveformExtractor): - if load_if_exists and waveform_or_sorting_extractor.is_extension(ISIHistogramsCalculator.extension_name): - isic = waveform_or_sorting_extractor.load_extension(ISIHistogramsCalculator.extension_name) - else: - isic = ISIHistogramsCalculator(waveform_or_sorting_extractor) - isic.set_params(window_ms=window_ms, bin_ms=bin_ms, method=method) - isic.run() - isi_histograms, bins = isic.get_data() - return isi_histograms, bins - else: - return _compute_isi_histograms(waveform_or_sorting_extractor, window_ms=window_ms, bin_ms=bin_ms, method=method) + +register_result_extension(ComputeISIHistograms) +compute_isi_histograms = ComputeISIHistograms.function_factory() def _compute_isi_histograms(sorting, window_ms: float = 50.0, bin_ms: float = 1.0, method: str = "auto"): @@ -143,7 +103,7 @@ def compute_isi_histograms_numpy(sorting, window_ms: float = 50.0, bin_ms: float window_size = int(round(fs * window_ms * 1e-3)) bin_size = int(round(fs * bin_ms * 1e-3)) window_size -= window_size % bin_size - bins = np.arange(0, window_size + bin_size, bin_size) * 1e3 / fs + bins = np.arange(0, window_size + bin_size, bin_size) # * 1e3 / fs ISIs = np.zeros((num_units, len(bins) - 1), dtype=np.int64) # TODO: There might be a better way than a double for loop? @@ -153,7 +113,7 @@ def compute_isi_histograms_numpy(sorting, window_ms: float = 50.0, bin_ms: float ISI = np.histogram(np.diff(spike_train), bins=bins)[0] ISIs[i] += ISI - return ISIs, bins + return ISIs, bins * 1e3 / fs def compute_isi_histograms_numba(sorting, window_ms: float = 50.0, bin_ms: float = 1.0): @@ -177,7 +137,7 @@ def compute_isi_histograms_numba(sorting, window_ms: float = 50.0, bin_ms: float bin_size = int(round(fs * bin_ms * 1e-3)) window_size -= window_size % bin_size - bins = np.arange(0, window_size + bin_size, bin_size) * 1e3 / fs + bins = np.arange(0, window_size + bin_size, bin_size) # * 1e3 / fs spikes = sorting.to_spike_vector(concatenated=False) ISIs = np.zeros((num_units, len(bins) - 1), dtype=np.int64) @@ -193,13 +153,13 @@ def compute_isi_histograms_numba(sorting, window_ms: float = 50.0, bin_ms: float bins, ) - return ISIs, bins + return ISIs, bins * 1e3 / fs if HAVE_NUMBA: @numba.jit( - (numba.int64[:, ::1], numba.int64[::1], numba.int32[::1], numba.float64[::1]), + (numba.int64[:, ::1], numba.int64[::1], numba.int32[::1], numba.int64[::1]), nopython=True, nogil=True, cache=True, diff --git a/src/spikeinterface/postprocessing/noise_level.py b/src/spikeinterface/postprocessing/noise_level.py index 9656bff2aa..a168f34c7b 100644 --- a/src/spikeinterface/postprocessing/noise_level.py +++ b/src/spikeinterface/postprocessing/noise_level.py @@ -1,79 +1,3 @@ -from __future__ import annotations - -from spikeinterface.core.waveform_extractor import BaseWaveformExtractorExtension, WaveformExtractor -from spikeinterface.core import get_noise_levels - - -class NoiseLevelsCalculator(BaseWaveformExtractorExtension): - extension_name = "noise_levels" - - def __init__(self, waveform_extractor): - BaseWaveformExtractorExtension.__init__(self, waveform_extractor) - - def _set_params(self, num_chunks_per_segment=20, chunk_size=10000, seed=None): - params = dict(num_chunks_per_segment=num_chunks_per_segment, chunk_size=chunk_size, seed=seed) - return params - - def _select_extension_data(self, unit_ids): - # this do not depend on units - return self._extension_data - - def _run(self): - return_scaled = self.waveform_extractor.return_scaled - self._extension_data["noise_levels"] = get_noise_levels( - self.waveform_extractor.recording, return_scaled=return_scaled, **self._params - ) - - def get_data(self): - """ - Get computed noise levels. - - Returns - ------- - noise_levels : np.array - The noise levels associated to each channel. - """ - return self._extension_data["noise_levels"] - - @staticmethod - def get_extension_function(): - return compute_noise_levels - - -WaveformExtractor.register_extension(NoiseLevelsCalculator) - - -def compute_noise_levels(waveform_extractor, load_if_exists=False, **params): - """ - Computes the noise level associated to each recording channel. - - This function will wraps the `get_noise_levels(recording)` to make the noise levels persistent - on disk (folder or zarr) as a `WaveformExtension`. - The noise levels do not depend on the unit list, only the recording, but it is a convenient way to - retrieve the noise levels directly ine the WaveformExtractor. - - Note that the noise levels can be scaled or not, depending on the `return_scaled` parameter - of the `WaveformExtractor`. - - Parameters - ---------- - waveform_extractor: WaveformExtractor - A waveform extractor object - load_if_exists: bool, default: False - If True, the noise levels are loaded if they already exist - **params: dict with additional parameters - - - Returns - ------- - noise_levels: np.array - noise level vector. - """ - if load_if_exists and waveform_extractor.is_extension(NoiseLevelsCalculator.extension_name): - ext = waveform_extractor.load_extension(NoiseLevelsCalculator.extension_name) - else: - ext = NoiseLevelsCalculator(waveform_extractor) - ext.set_params(**params) - ext.run() - - return ext.get_data() +# "noise_levels" extensions is now in core +# this is kept name space compatibility but should be removed soon +from ..core.analyzer_extension_core import ComputeNoiseLevels, compute_noise_levels diff --git a/src/spikeinterface/postprocessing/principal_component.py b/src/spikeinterface/postprocessing/principal_component.py index 1786e4bccb..fb3a367f9b 100644 --- a/src/spikeinterface/postprocessing/principal_component.py +++ b/src/spikeinterface/postprocessing/principal_component.py @@ -9,74 +9,118 @@ import numpy as np +from spikeinterface.core.sortinganalyzer import register_result_extension, AnalyzerExtension from spikeinterface.core.job_tools import ChunkRecordingExecutor, _shared_job_kwargs_doc, fix_job_kwargs -from spikeinterface.core.waveform_extractor import WaveformExtractor, BaseWaveformExtractorExtension -from spikeinterface.core.globals import get_global_tmp_folder _possible_modes = ["by_channel_local", "by_channel_global", "concatenated"] -class WaveformPrincipalComponent(BaseWaveformExtractorExtension): +class ComputePrincipalComponents(AnalyzerExtension): """ - Class to extract principal components from a WaveformExtractor object. + Compute PC scores from waveform extractor. The PCA projections are pre-computed only + on the sampled waveforms available from the extensions "waveforms". + + Parameters + ---------- + sorting_analyzer: SortingAnalyzer + A SortingAnalyzer object + n_components: int, default: 5 + Number of components fo PCA + mode: "by_channel_local" | "by_channel_global" | "concatenated", default: "by_channel_local" + The PCA mode: + - "by_channel_local": a local PCA is fitted for each channel (projection by channel) + - "by_channel_global": a global PCA is fitted for all channels (projection by channel) + - "concatenated": channels are concatenated and a global PCA is fitted + sparsity: ChannelSparsity or None, default: None + The sparsity to apply to waveforms. + If sorting_analyzer is already sparse, the default sparsity will be used + whiten: bool, default: True + If True, waveforms are pre-whitened + dtype: dtype, default: "float32" + Dtype of the pc scores + + Examples + -------- + >>> sorting_analyzer = create_sorting_analyzer(sorting, recording) + >>> sorting_analyzer.compute("principal_components", n_components=3, mode='by_channel_local') + >>> ext_pca = sorting_analyzer.get_extension("principal_components") + >>> # get pre-computed projections for unit_id=1 + >>> unit_projections = ext_pca.get_projections_one_unit(unit_id=1, sparse=False) + >>> # get pre-computed projections for some units on some channels + >>> some_projections, spike_unit_indices = ext_pca.get_some_projections(channel_ids=None, unit_ids=None) + >>> # retrieve fitted pca model(s) + >>> pca_model = ext_pca.get_pca_model() + >>> # compute projections on new waveforms + >>> proj_new = ext_pca.project_new(new_waveforms) + >>> # run for all spikes in the SortingExtractor + >>> pc.run_for_all_spikes(file_path="all_pca_projections.npy") """ extension_name = "principal_components" - handle_sparsity = True - - def __init__(self, waveform_extractor): - BaseWaveformExtractorExtension.__init__(self, waveform_extractor) - - @classmethod - def create(cls, waveform_extractor): - pc = WaveformPrincipalComponent(waveform_extractor) - return pc - - def __repr__(self): - we = self.waveform_extractor - clsname = self.__class__.__name__ - nseg = we.get_num_segments() - nchan = we.get_num_channels() - txt = f"{clsname}: {nchan} channels - {nseg} segments" - if len(self._params) > 0: - mode = self._params["mode"] - n_components = self._params["n_components"] - txt = txt + f"\n mode: {mode} n_components: {n_components}" - if self._params["sparsity"] is not None: - txt += " - sparse" - return txt + depend_on = [ + "random_spikes", + "waveforms", + ] + need_recording = False + use_nodepipeline = False + need_job_kwargs = True + + def __init__(self, sorting_analyzer): + AnalyzerExtension.__init__(self, sorting_analyzer) def _set_params( - self, n_components=5, mode="by_channel_local", whiten=True, dtype="float32", sparsity=None, tmp_folder=None + self, + n_components=5, + mode="by_channel_local", + whiten=True, + dtype="float32", ): assert mode in _possible_modes, "Invalid mode!" - if self.waveform_extractor.is_sparse(): - assert sparsity is None, "WaveformExtractor is already sparse, sparsity must be None" - - # the sparsity in params is ONLY the injected sparsity and not the waveform_extractor one + # the sparsity in params is ONLY the injected sparsity and not the sorting_analyzer one params = dict( - n_components=int(n_components), - mode=str(mode), - whiten=bool(whiten), - dtype=np.dtype(dtype).str, - sparsity=sparsity, - tmp_folder=tmp_folder, + n_components=n_components, + mode=mode, + whiten=whiten, + dtype=np.dtype(dtype), ) - return params def _select_extension_data(self, unit_ids): - new_extension_data = dict() - for unit_id in unit_ids: - new_extension_data[f"pca_{unit_id}"] = self._extension_data[f"pca_{unit_id}"] - for k, v in self._extension_data.items(): + + keep_unit_indices = np.flatnonzero(np.isin(self.sorting_analyzer.unit_ids, unit_ids)) + some_spikes = self.sorting_analyzer.get_extension("random_spikes").some_spikes() + keep_spike_mask = np.isin(some_spikes["unit_index"], keep_unit_indices) + + new_data = dict() + new_data["pca_projection"] = self.data["pca_projection"][keep_spike_mask, :, :] + # one or several model + for k, v in self.data.items(): if "model" in k: - new_extension_data[k] = v - return new_extension_data + new_data[k] = v + return new_data - def get_projections(self, unit_id, sparse=False): + def get_pca_model(self): + """ + Returns the scikit-learn PCA model objects. + + Returns + ------- + pca_models: PCA object(s) + * if mode is "by_channel_local", "pca_model" is a list of PCA model by channel + * if mode is "by_channel_global" or "concatenated", "pca_model" is a single PCA model + """ + mode = self.params["mode"] + if mode == "by_channel_local": + pca_models = [] + for chan_id in self.sorting_analyzer.channel_ids: + pca_models.append(self.data[f"pca_model_{mode}_{chan_id}"]) + else: + pca_models = self.data[f"pca_model_{mode}"] + return pca_models + + def get_projections_one_unit(self, unit_id, sparse=False): """ Returns the computed projections for the sampled waveforms of a unit id. @@ -85,217 +129,171 @@ def get_projections(self, unit_id, sparse=False): unit_id : int or str The unit id to return PCA projections for sparse: bool, default: False - If True, and sparsity is not None, only projections on sparse channels are returned. + If True, and SortingAnalyzer must be sparse then only projections on sparse channels are returned. + Channel indices are also returned. Returns ------- projections: np.array The PCA projections (num_waveforms, num_components, num_channels). In case sparsity is used, only the projections on sparse channels are returned. - """ - projections = self._extension_data[f"pca_{unit_id}"] - mode = self._params["mode"] - if mode in ("by_channel_local", "by_channel_global") and sparse: - sparsity = self.get_sparsity() - if sparsity is not None: - projections = projections[:, :, sparsity.unit_id_to_channel_indices[unit_id]] - return projections + channel_indices: np.array - def get_pca_model(self): """ - Returns the scikit-learn PCA model objects. + sparsity = self.sorting_analyzer.sparsity + sorting = self.sorting_analyzer.sorting - Returns - ------- - pca_models: PCA object(s) - * if mode is "by_channel_local", "pca_model" is a list of PCA model by channel - * if mode is "by_channel_global" or "concatenated", "pca_model" is a single PCA model - """ - mode = self._params["mode"] - if mode == "by_channel_local": - pca_models = [] - for chan_id in self.waveform_extractor.channel_ids: - pca_models.append(self._extension_data[f"pca_model_{mode}_{chan_id}"]) - else: - pca_models = self._extension_data[f"pca_model_{mode}"] - return pca_models + if sparse: + assert self.params["mode"] != "concatenated", "mode concatenated cannot retrieve sparse projection" + assert sparsity is not None, "sparse projection need SortingAnalyzer to be sparse" - def get_all_projections(self, channel_ids=None, unit_ids=None, outputs="id"): + some_spikes = self.sorting_analyzer.get_extension("random_spikes").some_spikes() + + unit_index = sorting.id_to_index(unit_id) + spike_mask = some_spikes["unit_index"] == unit_index + projections = self.data["pca_projection"][spike_mask] + + if sparsity is None: + return projections + else: + channel_indices = sparsity.unit_id_to_channel_indices[unit_id] + projections = projections[:, :, : channel_indices.size] + if sparse: + return projections, channel_indices + else: + num_chans = self.sorting_analyzer.get_num_channels() + projections_ = np.zeros( + (projections.shape[0], projections.shape[1], num_chans), dtype=projections.dtype + ) + projections_[:, :, channel_indices] = projections + return projections_ + + def get_some_projections(self, channel_ids=None, unit_ids=None): """ - Returns the computed projections for the sampled waveforms of all units. + Returns the computed projections for the sampled waveforms of some units and some channels. + + When internally sparse, this function realign projection on given channel_ids set. Parameters ---------- channel_ids : list, default: None - List of channel ids on which projections are computed + List of channel ids on which projections must aligned unit_ids : list, default: None List of unit ids to return projections for - outputs: str - * "id": "all_labels" contain unit ids - * "index": "all_labels" contain unit indices Returns ------- - all_labels: np.array - Array with labels (ids or indices based on "outputs") of returned PCA projections - all_projections: np.array - The PCA projections (num_all_waveforms, num_components, num_channels) + some_projections: np.array + The PCA projections (num_spikes, num_components, num_sparse_channels) + spike_unit_indices: np.array + Array a copy of with some_spikes["unit_index"] of returned PCA projections of shape (num_spikes, ) """ + sorting = self.sorting_analyzer.sorting if unit_ids is None: - unit_ids = self.waveform_extractor.sorting.unit_ids - - all_labels = [] #  can be unit_id or unit_index - all_projections = [] - for unit_index, unit_id in enumerate(unit_ids): - proj = self.get_projections(unit_id, sparse=False) - if channel_ids is not None: - chan_inds = self.waveform_extractor.channel_ids_to_indices(channel_ids) - proj = proj[:, :, chan_inds] - n = proj.shape[0] - if outputs == "id": - labels = np.array([unit_id] * n) - elif outputs == "index": - labels = np.ones(n, dtype="int64") - labels[:] = unit_index - all_labels.append(labels) - all_projections.append(proj) - all_labels = np.concatenate(all_labels, axis=0) - all_projections = np.concatenate(all_projections, axis=0) - - return all_labels, all_projections - - def project_new(self, new_waveforms, unit_id=None, sparse=False): + unit_ids = sorting.unit_ids + + if channel_ids is None: + channel_ids = self.sorting_analyzer.channel_ids + + channel_indices = self.sorting_analyzer.channel_ids_to_indices(channel_ids) + + # note : internally when sparse PCA are not aligned!! Exactly like waveforms. + all_projections = self.data["pca_projection"] + num_components = all_projections.shape[1] + dtype = all_projections.dtype + + sparsity = self.sorting_analyzer.sparsity + + some_spikes = self.sorting_analyzer.get_extension("random_spikes").some_spikes() + + unit_indices = sorting.ids_to_indices(unit_ids) + selected_inds = np.flatnonzero(np.isin(some_spikes["unit_index"], unit_indices)) + + spike_unit_indices = some_spikes["unit_index"][selected_inds] + + if sparsity is None: + some_projections = all_projections[selected_inds, :, :][:, :, channel_indices] + else: + # need re-alignement + some_projections = np.zeros((selected_inds.size, num_components, channel_indices.size), dtype=dtype) + + for unit_id in unit_ids: + unit_index = sorting.id_to_index(unit_id) + sparse_projection, local_chan_inds = self.get_projections_one_unit(unit_id, sparse=True) + + # keep only requested channels + channel_mask = np.isin(local_chan_inds, channel_indices) + sparse_projection = sparse_projection[:, :, channel_mask] + local_chan_inds = local_chan_inds[channel_mask] + + spike_mask = np.flatnonzero(spike_unit_indices == unit_index) + proj = np.zeros((spike_mask.size, num_components, channel_indices.size), dtype=dtype) + # inject in requested channels + channel_mask = np.isin(channel_indices, local_chan_inds) + proj[:, :, channel_mask] = sparse_projection + some_projections[spike_mask, :, :] = proj + + return some_projections, spike_unit_indices + + def project_new(self, new_spikes, new_waveforms, progress_bar=True): """ Projects new waveforms or traces snippets on the PC components. Parameters ---------- + new_spikes: np.array + The spikes vector associated to the waveforms buffer. This is need need to get the sparsity spike per spike. new_waveforms: np.array Array with new waveforms to project with shape (num_waveforms, num_samples, num_channels) - unit_id: int or str - In case PCA is sparse and mode is by_channel_local, the unit_id of "new_waveforms" - sparse: bool, default: False - If True, and sparsity is not None, only projections on sparse channels are returned. Returns ------- - projections: np.array + new_projections: np.array Projections of new waveforms on PCA compoents """ - p = self._params - mode = p["mode"] - sparsity = p["sparsity"] - - wfs0 = self.waveform_extractor.get_waveforms(unit_id=self.waveform_extractor.sorting.unit_ids[0]) - assert ( - wfs0.shape[1] == new_waveforms.shape[1] - ), "Mismatch in number of samples between waveforms used to fit the pca model and 'new_waveforms'" - num_channels = len(self.waveform_extractor.channel_ids) - - # check waveform shapes - if sparsity is not None: - assert ( - unit_id is not None - ), "The unit_id of the new_waveforms is needed to apply the waveforms transformation" - channel_inds = sparsity.unit_id_to_channel_indices[unit_id] - if new_waveforms.shape[2] != len(channel_inds): - new_waveforms = new_waveforms.copy()[:, :, channel_inds] - else: - assert ( - wfs0.shape[2] == new_waveforms.shape[2] - ), "Mismatch in number of channels between waveforms used to fit the pca model and 'new_waveforms'" - channel_inds = np.arange(num_channels, dtype=int) - - # get channel ids and pca models pca_model = self.get_pca_model() - projections = None - - if mode == "by_channel_local": - shape = (new_waveforms.shape[0], p["n_components"], num_channels) - projections = np.zeros(shape) - for wf_ind, chan_ind in enumerate(channel_inds): - pca = pca_model[chan_ind] - projections[:, :, chan_ind] = pca.transform(new_waveforms[:, :, wf_ind]) - elif mode == "by_channel_global": - shape = (new_waveforms.shape[0], p["n_components"], num_channels) - projections = np.zeros(shape) - for wf_ind, chan_ind in enumerate(channel_inds): - projections[:, :, chan_ind] = pca_model.transform(new_waveforms[:, :, wf_ind]) - elif mode == "concatenated": - wfs_flat = new_waveforms.reshape(new_waveforms.shape[0], -1) - projections = pca_model.transform(wfs_flat) - - # take care of sparsity (not in case of concatenated) - if mode in ("by_channel_local", "by_channel_global") and sparse: - if sparsity is not None: - projections = projections[:, :, sparsity.unit_id_to_channel_indices[unit_id]] - return projections - - def get_sparsity(self): - if self.waveform_extractor.is_sparse(): - return self.waveform_extractor.sparsity - return self._params["sparsity"] + new_projections = self._transform_waveforms(new_spikes, new_waveforms, pca_model, progress_bar=progress_bar) + return new_projections def _run(self, **job_kwargs): """ - Compute the PCs on waveforms extacted within the WaveformExtarctor. - Projections are computed only on the waveforms sampled by the WaveformExtractor. - - The index of spikes come from the WaveformExtarctor. - This will be cached in the same folder than WaveformExtarctor - in extension subfolder. + Compute the PCs on waveforms extacted within the by ComputeWaveforms. + Projections are computed only on the waveforms sampled by the SortingAnalyzer. """ - p = self._params - we = self.waveform_extractor - num_chans = we.get_num_channels() + p = self.params + mode = p["mode"] # update job_kwargs with global ones job_kwargs = fix_job_kwargs(job_kwargs) n_jobs = job_kwargs["n_jobs"] progress_bar = job_kwargs["progress_bar"] - # prepare memmap files with npy - projection_objects = {} - unit_ids = we.unit_ids - - for unit_id in unit_ids: - n_spike = we.get_waveforms(unit_id).shape[0] - if p["mode"] in ("by_channel_local", "by_channel_global"): - shape = (n_spike, p["n_components"], num_chans) - elif p["mode"] == "concatenated": - shape = (n_spike, p["n_components"]) - proj = np.zeros(shape, dtype=p["dtype"]) - projection_objects[unit_id] = proj - - # run ... - if p["mode"] == "by_channel_local": - self._run_by_channel_local(projection_objects, n_jobs, progress_bar) - elif p["mode"] == "by_channel_global": - self._run_by_channel_global(projection_objects, n_jobs, progress_bar) - elif p["mode"] == "concatenated": - self._run_concatenated(projection_objects, n_jobs, progress_bar) - - # add projections to extension data - for unit_id in unit_ids: - self._extension_data[f"pca_{unit_id}"] = projection_objects[unit_id] - - def get_data(self): - """ - Get computed PCA projections. + # fit model/models + # TODO : make parralel for by_channel_global and concatenated + if mode == "by_channel_local": + pca_models = self._fit_by_channel_local(n_jobs, progress_bar) + for chan_ind, chan_id in enumerate(self.sorting_analyzer.channel_ids): + self.data[f"pca_model_{mode}_{chan_id}"] = pca_models[chan_ind] + pca_model = pca_models + elif mode == "by_channel_global": + pca_model = self._fit_by_channel_global(progress_bar) + self.data[f"pca_model_{mode}"] = pca_model + elif mode == "concatenated": + pca_model = self._fit_concatenated(progress_bar) + self.data[f"pca_model_{mode}"] = pca_model - Returns - ------- - all_labels : 1d np.array - Array with all spike labels - all_projections : 3d array - Array with PCA projections (num_spikes, num_components, num_channels) - """ - return self.get_all_projections() + # transform + waveforms_ext = self.sorting_analyzer.get_extension("waveforms") + some_waveforms = waveforms_ext.data["waveforms"] + some_spikes = self.sorting_analyzer.get_extension("random_spikes").some_spikes() + + pca_projection = self._transform_waveforms(some_spikes, some_waveforms, pca_model, progress_bar) - @staticmethod - def get_extension_function(): - return compute_principal_components + self.data["pca_projection"] = pca_projection + + def _get_data(self): + return self.data["pca_projection"] def run_for_all_spikes(self, file_path=None, **job_kwargs): """ @@ -310,32 +308,25 @@ def run_for_all_spikes(self, file_path=None, **job_kwargs): ---------- file_path : str or Path or None Path to npy file that will store the PCA projections. - If None, output is saved in principal_components/all_pcs.npy {} """ + job_kwargs = fix_job_kwargs(job_kwargs) - p = self._params - we = self.waveform_extractor + p = self.params + we = self.sorting_analyzer sorting = we.sorting assert ( we.has_recording() ), "To compute PCA projections for all spikes, the waveform extractor needs the recording" recording = we.recording - assert sorting.get_num_segments() == 1 + # assert sorting.get_num_segments() == 1 assert p["mode"] in ("by_channel_local", "by_channel_global") - if file_path is None: - file_path = self.extension_folder / "all_pcs.npy" + assert file_path is not None file_path = Path(file_path) - # spikes = sorting.to_spike_vector(concatenated=False) - # # This is the first segment only - # spikes = spikes[0] - # spike_times = spikes["sample_index"] - # spike_labels = spikes["unit_index"] - - sparsity = self.get_sparsity() + sparsity = self.sorting_analyzer.sparsity if sparsity is None: sparse_channels_indices = {unit_id: np.arange(we.get_num_channels()) for unit_id in we.unit_ids} max_channels_per_template = we.get_num_channels() @@ -349,14 +340,13 @@ def run_for_all_spikes(self, file_path=None, **job_kwargs): if p["mode"] in ["by_channel_global", "concatenated"]: pca_model = [pca_model] * recording.get_num_channels() - # nSpikes, nFeaturesPerChannel, nPCFeatures - # this comes from phy template-gui - # https://github.com/kwikteam/phy-contrib/blob/master/docs/template-gui.md#datasets num_spikes = sorting.to_spike_vector().size shape = (num_spikes, p["n_components"], max_channels_per_template) all_pcs = np.lib.format.open_memmap(filename=file_path, mode="w+", dtype="float32", shape=shape) all_pcs_args = dict(filename=file_path, mode="r+", dtype="float32", shape=shape) + waveforms_ext = self.sorting_analyzer.get_extension("waveforms") + # and run func = _all_pc_extractor_chunk init_func = _init_work_all_pc_extractor @@ -364,8 +354,8 @@ def run_for_all_spikes(self, file_path=None, **job_kwargs): recording, sorting.to_multiprocessing(job_kwargs["n_jobs"]), all_pcs_args, - we.nbefore, - we.nafter, + waveforms_ext.nbefore, + waveforms_ext.nafter, unit_channels, pca_model, ) @@ -376,39 +366,20 @@ def _fit_by_channel_local(self, n_jobs, progress_bar): from sklearn.decomposition import IncrementalPCA from concurrent.futures import ProcessPoolExecutor - we = self.waveform_extractor - p = self._params + p = self.params - unit_ids = we.unit_ids - channel_ids = we.channel_ids + unit_ids = self.sorting_analyzer.unit_ids + channel_ids = self.sorting_analyzer.channel_ids # there is one PCA per channel for independent fit per channel pca_models = [IncrementalPCA(n_components=p["n_components"], whiten=p["whiten"]) for _ in channel_ids] - mode = p["mode"] - pca_model_files = [] - - tmp_folder = p["tmp_folder"] - if tmp_folder is None: - if n_jobs > 1: - tmp_folder = tempfile.mkdtemp(prefix="pca", dir=get_global_tmp_folder()) - - for chan_ind, chan_id in enumerate(channel_ids): - pca_model = pca_models[chan_ind] - if n_jobs > 1: - tmp_folder = Path(tmp_folder) - tmp_folder.mkdir(exist_ok=True) - pca_model_file = tmp_folder / f"tmp_pca_model_{mode}_{chan_id}.pkl" - with pca_model_file.open("wb") as f: - pickle.dump(pca_model, f) - pca_model_files.append(pca_model_file) - # fit units_loop = enumerate(unit_ids) if progress_bar: units_loop = tqdm(units_loop, desc="Fitting PCA", total=len(unit_ids)) for unit_ind, unit_id in units_loop: - wfs, channel_inds = self._get_sparse_waveforms(unit_id) + wfs, channel_inds, _ = self._get_sparse_waveforms(unit_id) if len(wfs) < p["n_components"]: continue if n_jobs in (0, 1): @@ -417,71 +388,23 @@ def _fit_by_channel_local(self, n_jobs, progress_bar): pca.partial_fit(wfs[:, :, wf_ind]) else: # parallel - items = [(pca_model_files[chan_ind], wfs[:, :, wf_ind]) for wf_ind, chan_ind in enumerate(channel_inds)] + items = [ + (chan_ind, pca_models[chan_ind], wfs[:, :, wf_ind]) for wf_ind, chan_ind in enumerate(channel_inds) + ] n_jobs = min(n_jobs, len(items)) with ProcessPoolExecutor(max_workers=n_jobs) as executor: - results = executor.map(partial_fit_one_channel, items) - for res in results: - pass - - # reload the models (if n_jobs > 1) - if n_jobs not in (0, 1): - pca_models = [] - for chan_ind, chan_id in enumerate(channel_ids): - pca_model_file = pca_model_files[chan_ind] - with open(pca_model_file, "rb") as fid: - pca_models.append(pickle.load(fid)) - pca_model_file.unlink() - shutil.rmtree(tmp_folder) - - # add models to extension data - for chan_ind, chan_id in enumerate(channel_ids): - pca_model = pca_models[chan_ind] - self._extension_data[f"pca_model_{mode}_{chan_id}"] = pca_model + results = executor.map(_partial_fit_one_channel, items) + for chan_ind, pca_model_updated in results: + pca_models[chan_ind] = pca_model_updated return pca_models - def _run_by_channel_local(self, projection_memmap, n_jobs, progress_bar): - """ - In this mode each PCA is "fit" and "transform" by channel. - The output is then (n_spike, n_components, n_channels) - """ - from sklearn.exceptions import NotFittedError - - we = self.waveform_extractor - unit_ids = we.unit_ids - - pca_model = self._fit_by_channel_local(n_jobs, progress_bar) - - # transform - units_loop = enumerate(unit_ids) - if progress_bar: - units_loop = tqdm(units_loop, desc="Projecting waveforms", total=len(unit_ids)) - - project_on_non_fitted = False - for unit_ind, unit_id in units_loop: - wfs, channel_inds = self._get_sparse_waveforms(unit_id) - if wfs.size == 0: - continue - for wf_ind, chan_ind in enumerate(channel_inds): - pca = pca_model[chan_ind] - try: - proj = pca.transform(wfs[:, :, wf_ind]) - projection_memmap[unit_id][:, :, chan_ind] = proj - except NotFittedError as e: - # this could happen if len(wfs) is less then n_comp for a channel - project_on_non_fitted = True - if project_on_non_fitted: - warnings.warn( - "Projection attempted on unfitted PCA models. This could be due to a small " - "number of waveforms for a particular unit." - ) - def _fit_by_channel_global(self, progress_bar): - we = self.waveform_extractor - p = self._params - unit_ids = we.unit_ids + # we = self.sorting_analyzer + p = self.params + # unit_ids = we.unit_ids + unit_ids = self.sorting_analyzer.unit_ids # there is one unique PCA accross channels from sklearn.decomposition import IncrementalPCA @@ -495,7 +418,7 @@ def _fit_by_channel_global(self, progress_bar): # with 'by_channel_global' we can't parallelize over channels for unit_ind, unit_id in units_loop: - wfs, _ = self._get_sparse_waveforms(unit_id) + wfs, _, _ = self._get_sparse_waveforms(unit_id) shape = wfs.shape if shape[0] * shape[2] < p["n_components"]: continue @@ -503,48 +426,14 @@ def _fit_by_channel_global(self, progress_bar): wfs_concat = wfs.transpose(0, 2, 1).reshape(shape[0] * shape[2], shape[1]) pca_model.partial_fit(wfs_concat) - # save - mode = p["mode"] - self._extension_data[f"pca_model_{mode}"] = pca_model - return pca_model - def _run_by_channel_global(self, projection_objects, n_jobs, progress_bar): - """ - In this mode there is one "fit" for all channels. - The transform is applied by channel. - The output is then (n_spike, n_components, n_channels) - """ - we = self.waveform_extractor - unit_ids = we.unit_ids - - pca_model = self._fit_by_channel_global(progress_bar) - - # transform - units_loop = enumerate(unit_ids) - if progress_bar: - units_loop = tqdm(units_loop, desc="Projecting waveforms", total=len(unit_ids)) - - # with 'by_channel_global' we can't parallelize over channels - for unit_ind, unit_id in units_loop: - wfs, channel_inds = self._get_sparse_waveforms(unit_id) - if wfs.size == 0: - continue - for wf_ind, chan_ind in enumerate(channel_inds): - proj = pca_model.transform(wfs[:, :, wf_ind]) - projection_objects[unit_id][:, :, chan_ind] = proj - def _fit_concatenated(self, progress_bar): - we = self.waveform_extractor - p = self._params - unit_ids = we.unit_ids - sparsity = self.get_sparsity() - if sparsity is not None: - sparsity0 = sparsity.unit_id_to_channel_indices[unit_ids[0]] - assert all( - len(chans) == len(sparsity0) for u, chans in sparsity.unit_id_to_channel_indices.items() - ), "When using sparsity in concatenated mode, make sure each unit has the same number of sparse channels" + p = self.params + unit_ids = self.sorting_analyzer.unit_ids + + assert self.sorting_analyzer.sparsity is None, "For mode 'concatenated' waveforms need to be dense" # there is one unique PCA accross channels from sklearn.decomposition import IncrementalPCA @@ -557,59 +446,101 @@ def _fit_concatenated(self, progress_bar): units_loop = tqdm(units_loop, desc="Fitting PCA", total=len(unit_ids)) for unit_ind, unit_id in units_loop: - wfs, _ = self._get_sparse_waveforms(unit_id) + wfs, _, _ = self._get_sparse_waveforms(unit_id) wfs_flat = wfs.reshape(wfs.shape[0], -1) if len(wfs_flat) < p["n_components"]: continue pca_model.partial_fit(wfs_flat) - # save - mode = p["mode"] - self._extension_data[f"pca_model_{mode}"] = pca_model - return pca_model - def _run_concatenated(self, projection_objects, n_jobs, progress_bar): - """ - In this mode the waveforms are concatenated and there is - a global fit_transform at once. - """ - we = self.waveform_extractor - p = self._params + def _transform_waveforms(self, spikes, waveforms, pca_model, progress_bar): + # transform a waveforms buffer + # used by _run() and project_new() + + from sklearn.exceptions import NotFittedError - unit_ids = we.unit_ids + mode = self.params["mode"] - # there is one unique PCA accross channels - pca_model = self._fit_concatenated(progress_bar) + # prepare buffer + n_components = self.params["n_components"] + if mode in ("by_channel_local", "by_channel_global"): + shape = (waveforms.shape[0], n_components, waveforms.shape[2]) + elif mode == "concatenated": + shape = (waveforms.shape[0], n_components) + pca_projection = np.zeros(shape, dtype="float32") + + unit_ids = self.sorting_analyzer.unit_ids # transform units_loop = enumerate(unit_ids) if progress_bar: units_loop = tqdm(units_loop, desc="Projecting waveforms", total=len(unit_ids)) - for unit_ind, unit_id in units_loop: - wfs, _ = self._get_sparse_waveforms(unit_id) - wfs_flat = wfs.reshape(wfs.shape[0], -1) - proj = pca_model.transform(wfs_flat) - projection_objects[unit_id][:, :] = proj + if mode == "by_channel_local": + # in this case the model is a list of model + pca_models = pca_model + + project_on_non_fitted = False + for unit_ind, unit_id in units_loop: + wfs, channel_inds, spike_mask = self._get_slice_waveforms(unit_id, spikes, waveforms) + if wfs.size == 0: + continue + for wf_ind, chan_ind in enumerate(channel_inds): + pca_model = pca_models[chan_ind] + try: + proj = pca_model.transform(wfs[:, :, wf_ind]) + pca_projection[:, :, wf_ind][spike_mask, :] = proj + except NotFittedError as e: + # this could happen if len(wfs) is less then n_comp for a channel + project_on_non_fitted = True + if project_on_non_fitted: + warnings.warn( + "Projection attempted on unfitted PCA models. This could be due to a small " + "number of waveforms for a particular unit." + ) + elif mode == "by_channel_global": + # with 'by_channel_global' we can't parallelize over channels + for unit_ind, unit_id in units_loop: + wfs, channel_inds, spike_mask = self._get_slice_waveforms(unit_id, spikes, waveforms) + if wfs.size == 0: + continue + for wf_ind, chan_ind in enumerate(channel_inds): + proj = pca_model.transform(wfs[:, :, wf_ind]) + pca_projection[:, :, wf_ind][spike_mask, :] = proj + elif mode == "concatenated": + for unit_ind, unit_id in units_loop: + wfs, channel_inds, spike_mask = self._get_slice_waveforms(unit_id, spikes, waveforms) + wfs_flat = wfs.reshape(wfs.shape[0], -1) + proj = pca_model.transform(wfs_flat) + pca_projection[spike_mask, :] = proj - def _get_sparse_waveforms(self, unit_id): - # get waveforms : dense or sparse - we = self.waveform_extractor - sparsity = self._params["sparsity"] - if we.is_sparse(): - # natural sparsity - wfs = we.get_waveforms(unit_id, lazy=False) - channel_inds = we.sparsity.unit_id_to_channel_indices[unit_id] - elif sparsity is not None: - # injected sparsity - wfs = self.waveform_extractor.get_waveforms(unit_id, sparsity=sparsity, lazy=False) + return pca_projection + + def _get_slice_waveforms(self, unit_id, spikes, waveforms): + # slice by mask waveforms from one unit + + unit_index = self.sorting_analyzer.sorting.id_to_index(unit_id) + spike_mask = spikes["unit_index"] == unit_index + wfs = waveforms[spike_mask, :, :] + + sparsity = self.sorting_analyzer.sparsity + if sparsity is not None: channel_inds = sparsity.unit_id_to_channel_indices[unit_id] + wfs = wfs[:, :, : channel_inds.size] else: - # dense - wfs = self.waveform_extractor.get_waveforms(unit_id, sparsity=None, lazy=False) - channel_inds = np.arange(we.channel_ids.size, dtype=int) - return wfs, channel_inds + channel_inds = np.arange(self.sorting_analyzer.channel_ids.size, dtype=int) + + return wfs, channel_inds, spike_mask + + def _get_sparse_waveforms(self, unit_id): + # get waveforms + channel_inds: dense or sparse + waveforms_ext = self.sorting_analyzer.get_extension("waveforms") + some_waveforms = waveforms_ext.data["waveforms"] + + some_spikes = self.sorting_analyzer.get_extension("random_spikes").some_spikes() + + return self._get_slice_waveforms(unit_id, some_spikes, some_waveforms) def _all_pc_extractor_chunk(segment_index, start_frame, end_frame, worker_ctx): @@ -687,94 +618,11 @@ def _init_work_all_pc_extractor(recording, sorting, all_pcs_args, nbefore, nafte return worker_ctx -WaveformPrincipalComponent.run_for_all_spikes.__doc__ = WaveformPrincipalComponent.run_for_all_spikes.__doc__.format( - _shared_job_kwargs_doc -) - -WaveformExtractor.register_extension(WaveformPrincipalComponent) - - -def compute_principal_components( - waveform_extractor, - load_if_exists=False, - n_components=5, - mode="by_channel_local", - sparsity=None, - whiten=True, - dtype="float32", - tmp_folder=None, - **job_kwargs, -): - """ - Compute PC scores from waveform extractor. The PCA projections are pre-computed only - on the sampled waveforms available from the WaveformExtractor. - - Parameters - ---------- - waveform_extractor: WaveformExtractor - The waveform extractor - load_if_exists: bool, default: False - If True and pc scores are already in the waveform extractor folders, pc scores are loaded and not recomputed. - n_components: int, default: 5 - Number of components fo PCA - mode: "by_channel_local" | "by_channel_global" | "concatenated", default: "by_channel_local" - The PCA mode: - - "by_channel_local": a local PCA is fitted for each channel (projection by channel) - - "by_channel_global": a global PCA is fitted for all channels (projection by channel) - - "concatenated": channels are concatenated and a global PCA is fitted - sparsity: ChannelSparsity or None, default: None - The sparsity to apply to waveforms. - If waveform_extractor is already sparse, the default sparsity will be used - whiten: bool, default: True - If True, waveforms are pre-whitened - dtype: dtype, default: "float32" - Dtype of the pc scores - tmp_folder: str or Path or None, default: None - The temporary folder to use for parallel computation. If you run several `compute_principal_components` - functions in parallel with mode "by_channel_local", you need to specify a different `tmp_folder` for each call, - to avoid overwriting to the same folder - n_jobs: int, default: 1 - Number of jobs used to fit the PCA model (if mode is "by_channel_local") - progress_bar: bool, default: False - If True, a progress bar is shown - - Returns - ------- - pc: WaveformPrincipalComponent - The waveform principal component object - - Examples - -------- - >>> we = si.extract_waveforms(recording, sorting, folder='waveforms') - >>> pc = si.compute_principal_components(we, n_components=3, mode='by_channel_local') - >>> # get pre-computed projections for unit_id=1 - >>> projections = pc.get_projections(unit_id=1) - >>> # get all pre-computed projections and labels - >>> all_projections, all_labels = pc.get_all_projections() - >>> # retrieve fitted pca model(s) - >>> pca_model = pc.get_pca_model() - >>> # compute projections on new waveforms - >>> proj_new = pc.project_new(new_waveforms) - >>> # run for all spikes in the SortingExtractor - >>> pc.run_for_all_spikes(file_path="all_pca_projections.npy") - """ - - if load_if_exists and waveform_extractor.has_extension(WaveformPrincipalComponent.extension_name): - pc = waveform_extractor.load_extension(WaveformPrincipalComponent.extension_name) - else: - pc = WaveformPrincipalComponent.create(waveform_extractor) - pc.set_params( - n_components=n_components, mode=mode, whiten=whiten, dtype=dtype, sparsity=sparsity, tmp_folder=tmp_folder - ) - pc.run(**job_kwargs) - - return pc +register_result_extension(ComputePrincipalComponents) +compute_principal_components = ComputePrincipalComponents.function_factory() -def partial_fit_one_channel(args): - pca_file, wf_chan = args - with open(pca_file, "rb") as fid: - pca_model = pickle.load(fid) +def _partial_fit_one_channel(args): + chan_ind, pca_model, wf_chan = args pca_model.partial_fit(wf_chan) - with pca_file.open("wb") as f: - pickle.dump(pca_model, f) + return chan_ind, pca_model diff --git a/src/spikeinterface/postprocessing/spike_amplitudes.py b/src/spikeinterface/postprocessing/spike_amplitudes.py index 04be56a04c..7362dfc4dd 100644 --- a/src/spikeinterface/postprocessing/spike_amplitudes.py +++ b/src/spikeinterface/postprocessing/spike_amplitudes.py @@ -1,24 +1,70 @@ from __future__ import annotations import numpy as np -import shutil +import warnings -from spikeinterface.core.job_tools import ChunkRecordingExecutor, _shared_job_kwargs_doc, ensure_n_jobs, fix_job_kwargs +from spikeinterface.core.job_tools import fix_job_kwargs from spikeinterface.core.template_tools import get_template_extremum_channel, get_template_extremum_channel_peak_shift -from spikeinterface.core.waveform_extractor import WaveformExtractor, BaseWaveformExtractorExtension +from spikeinterface.core.sortinganalyzer import register_result_extension, AnalyzerExtension +from spikeinterface.core.node_pipeline import SpikeRetriever, PipelineNode, run_node_pipeline, find_parent_of_type +from spikeinterface.core.sorting_tools import spike_vector_to_indices -class SpikeAmplitudesCalculator(BaseWaveformExtractorExtension): +class ComputeSpikeAmplitudes(AnalyzerExtension): """ - Computes spike amplitudes from WaveformExtractor. + AnalyzerExtension + Computes the spike amplitudes. + + Need "templates" or "fast_templates" to be computed first. + Localize spikes in 2D or 3D with several methods given the template. + + Parameters + ---------- + sorting_analyzer: SortingAnalyzer + A SortingAnalyzer object + ms_before : float, default: 0.5 + The left window, before a peak, in milliseconds + ms_after : float, default: 0.5 + The right window, after a peak, in milliseconds + spike_retriver_kwargs: dict + A dictionary to control the behavior for getting the maximum channel for each spike + This dictionary contains: + + * channel_from_template: bool, default: True + For each spike is the maximum channel computed from template or re estimated at every spikes + channel_from_template = True is old behavior but less acurate + channel_from_template = False is slower but more accurate + * radius_um: float, default: 50 + In case channel_from_template=False, this is the radius to get the true peak + * peak_sign, default: "neg" + In case channel_from_template=False, this is the peak sign. + method : "center_of_mass" | "monopolar_triangulation" | "grid_convolution", default: "center_of_mass" + The localization method to use + method_kwargs : dict, default: dict() + Other kwargs depending on the method. + outputs : "concatenated" | "by_unit", default: "concatenated" + The output format + + Returns + ------- + spike_locations: np.array + All locations for all spikes and all units are concatenated + """ extension_name = "spike_amplitudes" + depend_on = [ + "fast_templates|templates", + ] + need_recording = True + use_nodepipeline = True + nodepipeline_variables = ["amplitudes"] + need_job_kwargs = True - def __init__(self, waveform_extractor): - BaseWaveformExtractorExtension.__init__(self, waveform_extractor) + def __init__(self, sorting_analyzer): + AnalyzerExtension.__init__(self, sorting_analyzer) self._all_spikes = None @@ -27,222 +73,137 @@ def _set_params(self, peak_sign="neg", return_scaled=True): return params def _select_extension_data(self, unit_ids): - # load filter and save amplitude files - sorting = self.waveform_extractor.sorting - spikes = sorting.to_spike_vector(concatenated=False) - (keep_unit_indices,) = np.nonzero(np.isin(sorting.unit_ids, unit_ids)) - - new_extension_data = dict() - for seg_index in range(sorting.get_num_segments()): - amp_data_name = f"amplitude_segment_{seg_index}" - amps = self._extension_data[amp_data_name] - filtered_idxs = np.isin(spikes[seg_index]["unit_index"], keep_unit_indices) - new_extension_data[amp_data_name] = amps[filtered_idxs] - return new_extension_data + keep_unit_indices = np.flatnonzero(np.isin(self.sorting_analyzer.unit_ids, unit_ids)) - def _run(self, **job_kwargs): - if not self.waveform_extractor.has_recording(): - self.waveform_extractor.delete_extension(SpikeAmplitudesCalculator.extension_name) - raise ValueError("compute_spike_amplitudes() cannot run with a WaveformExtractor in recordless mode.") + spikes = self.sorting_analyzer.sorting.to_spike_vector() + keep_spike_mask = np.isin(spikes["unit_index"], keep_unit_indices) - job_kwargs = fix_job_kwargs(job_kwargs) - we = self.waveform_extractor - recording = we.recording - sorting = we.sorting + new_data = dict() + new_data["amplitudes"] = self.data["amplitudes"][keep_spike_mask] - all_spikes = sorting.to_spike_vector() - self._all_spikes = all_spikes + return new_data - peak_sign = self._params["peak_sign"] - return_scaled = self._params["return_scaled"] + def _get_pipeline_nodes(self): - extremum_channels_index = get_template_extremum_channel(we, peak_sign=peak_sign, outputs="index") - peak_shifts = get_template_extremum_channel_peak_shift(we, peak_sign=peak_sign) + recording = self.sorting_analyzer.recording + sorting = self.sorting_analyzer.sorting - # put extremum_channels_index and peak_shifts in vector way - extremum_channels_index = np.array( - [extremum_channels_index[unit_id] for unit_id in sorting.unit_ids], dtype="int64" + peak_sign = self.params["peak_sign"] + return_scaled = self.params["return_scaled"] + + extremum_channels_indices = get_template_extremum_channel( + self.sorting_analyzer, peak_sign=peak_sign, outputs="index" ) - peak_shifts = np.array([peak_shifts[unit_id] for unit_id in sorting.unit_ids], dtype="int64") + peak_shifts = get_template_extremum_channel_peak_shift(self.sorting_analyzer, peak_sign=peak_sign) if return_scaled: # check if has scaled values: - if not recording.has_scaled_traces(): - print("Setting 'return_scaled' to False") + if not recording.has_scaled_traces() and recording.get_dtype().kind == "i": + warnings.warn("Recording doesn't have scaled traces! Setting 'return_scaled' to False") return_scaled = False - # and run - func = _spike_amplitudes_chunk - init_func = _init_worker_spike_amplitudes - n_jobs = ensure_n_jobs(recording, job_kwargs.get("n_jobs", None)) - init_args = (recording, sorting.to_multiprocessing(n_jobs), extremum_channels_index, peak_shifts, return_scaled) - processor = ChunkRecordingExecutor( - recording, func, init_func, init_args, handle_returns=True, job_name="extract amplitudes", **job_kwargs + spike_retriever_node = SpikeRetriever( + recording, sorting, channel_from_template=True, extremum_channel_inds=extremum_channels_indices ) - out = processor.run() - amps, segments = zip(*out) - amps = np.concatenate(amps) - segments = np.concatenate(segments) - - for segment_index in range(recording.get_num_segments()): - mask = segments == segment_index - amps_seg = amps[mask] - self._extension_data[f"amplitude_segment_{segment_index}"] = amps_seg - - def get_data(self, outputs="concatenated"): - """ - Get computed spike amplitudes. - - Parameters - ---------- - outputs : "concatenated" | "by_unit", default: "concatenated" - The output format - - Returns - ------- - spike_amplitudes : np.array or dict - The spike amplitudes as an array (outputs="concatenated") or - as a dict with units as key and spike amplitudes as values. - """ - we = self.waveform_extractor - sorting = we.sorting - - if outputs == "concatenated": - amplitudes = [] - for segment_index in range(we.get_num_segments()): - amplitudes.append(self._extension_data[f"amplitude_segment_{segment_index}"]) - return amplitudes - elif outputs == "by_unit": - all_spikes = sorting.to_spike_vector(concatenated=False) - - amplitudes_by_unit = [] - for segment_index in range(we.get_num_segments()): - amplitudes_by_unit.append({}) - for unit_index, unit_id in enumerate(sorting.unit_ids): - spike_labels = all_spikes[segment_index]["unit_index"] - mask = spike_labels == unit_index - amps = self._extension_data[f"amplitude_segment_{segment_index}"][mask] - amplitudes_by_unit[segment_index][unit_id] = amps - return amplitudes_by_unit - - @staticmethod - def get_extension_function(): - return compute_spike_amplitudes - - -WaveformExtractor.register_extension(SpikeAmplitudesCalculator) - - -def compute_spike_amplitudes( - waveform_extractor, load_if_exists=False, peak_sign="neg", return_scaled=True, outputs="concatenated", **job_kwargs -): - """ - Computes the spike amplitudes from a WaveformExtractor. - - 1. The waveform extractor is used to determine the max channel per unit. - 2. Then a "peak_shift" is estimated because for some sorters the spike index is not always at the - peak. - 3. Amplitudes are extracted in chunks (parallel or not) - - Parameters - ---------- - waveform_extractor: WaveformExtractor - The waveform extractor object - load_if_exists : bool, default: False - Whether to load precomputed spike amplitudes, if they already exist. - peak_sign: "neg" | "pos" | "both", default: "neg - The sign to compute maximum channel - return_scaled: bool, deafult: True - If True and recording has gain_to_uV/offset_to_uV properties, amplitudes are converted to uV. - outputs: "concatenated" | "by_unit", default: "concatenated" - How the output should be returned - {} - - Returns - ------- - amplitudes: np.array or list of dict - The spike amplitudes. - - If "concatenated" all amplitudes for all spikes and all units are concatenated - - If "by_unit", amplitudes are returned as a list (for segments) of dictionaries (for units) - """ - if load_if_exists and waveform_extractor.has_extension(SpikeAmplitudesCalculator.extension_name): - sac = waveform_extractor.load_extension(SpikeAmplitudesCalculator.extension_name) - else: - sac = SpikeAmplitudesCalculator(waveform_extractor) - sac.set_params(peak_sign=peak_sign, return_scaled=return_scaled) - sac.run(**job_kwargs) - - amps = sac.get_data(outputs=outputs) - return amps - - -compute_spike_amplitudes.__doc__.format(_shared_job_kwargs_doc) - - -def _init_worker_spike_amplitudes(recording, sorting, extremum_channels_index, peak_shifts, return_scaled): - worker_ctx = {} - worker_ctx["recording"] = recording - worker_ctx["sorting"] = sorting - worker_ctx["return_scaled"] = return_scaled - worker_ctx["peak_shifts"] = peak_shifts - worker_ctx["min_shift"] = np.min(peak_shifts) - worker_ctx["max_shifts"] = np.max(peak_shifts) - - worker_ctx["all_spikes"] = sorting.to_spike_vector(concatenated=False) - worker_ctx["extremum_channels_index"] = extremum_channels_index - - return worker_ctx - - -def _spike_amplitudes_chunk(segment_index, start_frame, end_frame, worker_ctx): - # recover variables of the worker - all_spikes = worker_ctx["all_spikes"] - recording = worker_ctx["recording"] - return_scaled = worker_ctx["return_scaled"] - peak_shifts = worker_ctx["peak_shifts"] - - seg_size = recording.get_num_samples(segment_index=segment_index) - - spike_times = all_spikes[segment_index]["sample_index"] - spike_labels = all_spikes[segment_index]["unit_index"] - - d = np.diff(spike_times) - assert np.all(d >= 0) + spike_amplitudes_node = SpikeAmplitudeNode( + recording, + parents=[spike_retriever_node], + return_output=True, + peak_shifts=peak_shifts, + return_scaled=return_scaled, + ) + nodes = [spike_retriever_node, spike_amplitudes_node] + return nodes - i0, i1 = np.searchsorted(spike_times, [start_frame, end_frame]) - n_spikes = i1 - i0 - amplitudes = np.zeros(n_spikes, dtype=recording.get_dtype()) + def _run(self, **job_kwargs): + job_kwargs = fix_job_kwargs(job_kwargs) + nodes = self.get_pipeline_nodes() + amps = run_node_pipeline( + self.sorting_analyzer.recording, + nodes, + job_kwargs=job_kwargs, + job_name="spike_amplitudes", + gather_mode="memory", + ) + self.data["amplitudes"] = amps - if i0 != i1: - # some spike in the chunk + def _get_data(self, outputs="numpy"): + all_amplitudes = self.data["amplitudes"] + if outputs == "numpy": + return all_amplitudes + elif outputs == "by_unit": + unit_ids = self.sorting_analyzer.unit_ids + spike_vector = self.sorting_analyzer.sorting.to_spike_vector(concatenated=False) + spike_indices = spike_vector_to_indices(spike_vector, unit_ids) + amplitudes_by_units = {} + for segment_index in range(self.sorting_analyzer.sorting.get_num_segments()): + amplitudes_by_units[segment_index] = {} + for unit_id in unit_ids: + inds = spike_indices[segment_index][unit_id] + amplitudes_by_units[segment_index][unit_id] = all_amplitudes[inds] + return amplitudes_by_units + else: + raise ValueError(f"Wrong .get_data(outputs={outputs})") + + +register_result_extension(ComputeSpikeAmplitudes) + +compute_spike_amplitudes = ComputeSpikeAmplitudes.function_factory() + + +class SpikeAmplitudeNode(PipelineNode): + def __init__( + self, + recording, + parents=None, + return_output=True, + peak_shifts=None, + return_scaled=True, + ): + PipelineNode.__init__(self, recording, parents=parents, return_output=return_output) + self.return_scaled = return_scaled + if return_scaled and recording.has_scaled(): + self._dtype = np.float32 + self._gains = recording.get_channel_gains() + self._offsets = recording.get_channel_gains() + else: + self._dtype = recording.get_dtype() + self._gains = None + self._offsets = None + spike_retriever = find_parent_of_type(parents, SpikeRetriever) + assert isinstance( + spike_retriever, SpikeRetriever + ), "SpikeAmplitudeNode needs a single SpikeRetriever as a parent" + # put peak_shifts in vector way + self._peak_shifts = np.array(list(peak_shifts.values()), dtype="int64") + self._margin = np.max(np.abs(self._peak_shifts)) + self._kwargs.update( + peak_shifts=peak_shifts, + return_scaled=return_scaled, + ) - extremum_channels_index = worker_ctx["extremum_channels_index"] + def get_dtype(self): + return self._dtype - sample_inds = spike_times[i0:i1].copy() - labels = spike_labels[i0:i1] + def compute(self, traces, peaks): + sample_indices = peaks["sample_index"].copy() + unit_index = peaks["unit_index"] + chan_inds = peaks["channel_index"] # apply shifts per spike - sample_inds += peak_shifts[labels] - - # get channels per spike - chan_inds = extremum_channels_index[labels] - - # prevent border accident due to shift - sample_inds[sample_inds < 0] = 0 - sample_inds[sample_inds >= seg_size] = seg_size - 1 - - first = np.min(sample_inds) - last = np.max(sample_inds) - sample_inds -= first - - # load trace in memory - traces = recording.get_traces( - start_frame=first, end_frame=last + 1, segment_index=segment_index, return_scaled=return_scaled - ) + sample_indices += self._peak_shifts[unit_index] # and get amplitudes - amplitudes = traces[sample_inds, chan_inds] + amplitudes = traces[sample_indices, chan_inds] + + # and scale + if self._gains is not None: + traces = traces.astype("float32") * self._gains + self._offsets + amplitudes = amplitudes.astype("float32", copy=True) + amplitudes *= self._gains[chan_inds] + amplitudes += self._offsets[chan_inds] - segments = np.zeros(amplitudes.size, dtype="int64") + segment_index + return amplitudes - return amplitudes, segments + def get_trace_margin(self): + return self._margin diff --git a/src/spikeinterface/postprocessing/spike_locations.py b/src/spikeinterface/postprocessing/spike_locations.py index a29741182f..f5b6ca4fdc 100644 --- a/src/spikeinterface/postprocessing/spike_locations.py +++ b/src/spikeinterface/postprocessing/spike_locations.py @@ -3,148 +3,22 @@ import numpy as np from spikeinterface.core.job_tools import _shared_job_kwargs_doc, fix_job_kwargs +from spikeinterface.core.sortinganalyzer import register_result_extension, AnalyzerExtension +from spikeinterface.core.template_tools import get_template_extremum_channel -from spikeinterface.core.template_tools import get_template_extremum_channel, get_template_extremum_channel_peak_shift +from spikeinterface.core.sorting_tools import spike_vector_to_indices -from spikeinterface.core.waveform_extractor import WaveformExtractor, BaseWaveformExtractorExtension -from spikeinterface.core.node_pipeline import SpikeRetriever +from spikeinterface.core.node_pipeline import SpikeRetriever, run_node_pipeline -class SpikeLocationsCalculator(BaseWaveformExtractorExtension): - """ - Computes spike locations from WaveformExtractor. - - Parameters - ---------- - waveform_extractor: WaveformExtractor - A waveform extractor object - """ - - extension_name = "spike_locations" - - def __init__(self, waveform_extractor): - BaseWaveformExtractorExtension.__init__(self, waveform_extractor) - - extremum_channel_inds = get_template_extremum_channel(self.waveform_extractor, outputs="index") - self.spikes = self.waveform_extractor.sorting.to_spike_vector(extremum_channel_inds=extremum_channel_inds) - - def _set_params( - self, - ms_before=0.5, - ms_after=0.5, - spike_retriver_kwargs=dict( - channel_from_template=True, - radius_um=50, - peak_sign="neg", - ), - method="center_of_mass", - method_kwargs={}, - ): - params = dict( - ms_before=ms_before, ms_after=ms_after, spike_retriver_kwargs=spike_retriver_kwargs, method=method - ) - params.update(**method_kwargs) - return params - - def _select_extension_data(self, unit_ids): - old_unit_ids = self.waveform_extractor.sorting.unit_ids - unit_inds = np.flatnonzero(np.isin(old_unit_ids, unit_ids)) - - spike_mask = np.isin(self.spikes["unit_index"], unit_inds) - new_spike_locations = self._extension_data["spike_locations"][spike_mask] - return dict(spike_locations=new_spike_locations) - - def _run(self, **job_kwargs): - """ - This function first transforms the sorting object into a `peaks` numpy array and then - uses the`sortingcomponents.peak_localization.localize_peaks()` function to triangulate - spike locations. - """ - from spikeinterface.sortingcomponents.peak_localization import _run_localization_from_peak_source - - job_kwargs = fix_job_kwargs(job_kwargs) - - we = self.waveform_extractor - - extremum_channel_inds = get_template_extremum_channel(we, peak_sign="neg", outputs="index") - - params = self._params.copy() - spike_retriver_kwargs = params.pop("spike_retriver_kwargs") - - spike_retriever = SpikeRetriever( - we.recording, we.sorting, extremum_channel_inds=extremum_channel_inds, **spike_retriver_kwargs - ) - spike_locations = _run_localization_from_peak_source(we.recording, spike_retriever, **params, **job_kwargs) - - self._extension_data["spike_locations"] = spike_locations - - def get_data(self, outputs="concatenated"): - """ - Get computed spike locations - - Parameters - ---------- - outputs : "concatenated" | "by_unit", default: "concatenated" - The output format - - Returns - ------- - spike_locations : np.array or dict - The spike locations as a structured array (outputs="concatenated") or - as a dict with units as key and spike locations as values. - """ - we = self.waveform_extractor - sorting = we.sorting - - if outputs == "concatenated": - return self._extension_data["spike_locations"] - - elif outputs == "by_unit": - locations_by_unit = [] - for segment_index in range(self.waveform_extractor.get_num_segments()): - i0 = np.searchsorted(self.spikes["segment_index"], segment_index, side="left") - i1 = np.searchsorted(self.spikes["segment_index"], segment_index, side="right") - spikes = self.spikes[i0:i1] - locations = self._extension_data["spike_locations"][i0:i1] - - locations_by_unit.append({}) - for unit_ind, unit_id in enumerate(sorting.unit_ids): - mask = spikes["unit_index"] == unit_ind - locations_by_unit[segment_index][unit_id] = locations[mask] - return locations_by_unit - - @staticmethod - def get_extension_function(): - return compute_spike_locations - - -WaveformExtractor.register_extension(SpikeLocationsCalculator) - - -def compute_spike_locations( - waveform_extractor, - load_if_exists=False, - ms_before=0.5, - ms_after=0.5, - spike_retriver_kwargs=dict( - channel_from_template=True, - radius_um=50, - peak_sign="neg", - ), - method="center_of_mass", - method_kwargs={}, - outputs="concatenated", - **job_kwargs, -): +class ComputeSpikeLocations(AnalyzerExtension): """ Localize spikes in 2D or 3D with several methods given the template. Parameters ---------- - waveform_extractor : WaveformExtractor - A waveform extractor object - load_if_exists : bool, default: False - Whether to load precomputed spike locations, if they already exist + sorting_analyzer: SortingAnalyzer + A SortingAnalyzer object ms_before : float, default: 0.5 The left window, before a peak, in milliseconds ms_after : float, default: 0.5 @@ -171,26 +45,115 @@ def compute_spike_locations( Returns ------- - spike_locations: np.array or list of dict - The spike locations. - - If "concatenated" all locations for all spikes and all units are concatenated - - If "by_unit", locations are returned as a list (for segments) of dictionaries (for units) + spike_locations: np.array + All locations for all spikes """ - if load_if_exists and waveform_extractor.is_extension(SpikeLocationsCalculator.extension_name): - slc = waveform_extractor.load_extension(SpikeLocationsCalculator.extension_name) - else: - slc = SpikeLocationsCalculator(waveform_extractor) - slc.set_params( + + extension_name = "spike_locations" + depend_on = [ + "fast_templates|templates", + ] + need_recording = True + use_nodepipeline = True + nodepipeline_variables = ["spike_locations"] + need_job_kwargs = True + + def __init__(self, sorting_analyzer): + AnalyzerExtension.__init__(self, sorting_analyzer) + + extremum_channel_inds = get_template_extremum_channel(self.sorting_analyzer, outputs="index") + self.spikes = self.sorting_analyzer.sorting.to_spike_vector(extremum_channel_inds=extremum_channel_inds) + + def _set_params( + self, + ms_before=0.5, + ms_after=0.5, + spike_retriver_kwargs=None, + method="center_of_mass", + method_kwargs={}, + ): + spike_retriver_kwargs_ = dict( + channel_from_template=True, + radius_um=50, + peak_sign="neg", + ) + if spike_retriver_kwargs is not None: + spike_retriver_kwargs_.update(spike_retriver_kwargs) + params = dict( ms_before=ms_before, ms_after=ms_after, - spike_retriver_kwargs=spike_retriver_kwargs, + spike_retriver_kwargs=spike_retriver_kwargs_, method=method, method_kwargs=method_kwargs, ) - slc.run(**job_kwargs) + return params + + def _select_extension_data(self, unit_ids): + old_unit_ids = self.sorting_analyzer.unit_ids + unit_inds = np.flatnonzero(np.isin(old_unit_ids, unit_ids)) - locs = slc.get_data(outputs=outputs) - return locs + spike_mask = np.isin(self.spikes["unit_index"], unit_inds) + new_spike_locations = self.data["spike_locations"][spike_mask] + return dict(spike_locations=new_spike_locations) + def _get_pipeline_nodes(self): + from spikeinterface.sortingcomponents.peak_localization import get_localization_pipeline_nodes + + recording = self.sorting_analyzer.recording + sorting = self.sorting_analyzer.sorting + peak_sign = self.params["spike_retriver_kwargs"]["peak_sign"] + extremum_channels_indices = get_template_extremum_channel( + self.sorting_analyzer, peak_sign=peak_sign, outputs="index" + ) -compute_spike_locations.__doc__.format(_shared_job_kwargs_doc) + retriever = SpikeRetriever( + recording, + sorting, + channel_from_template=True, + extremum_channel_inds=extremum_channels_indices, + ) + nodes = get_localization_pipeline_nodes( + recording, + retriever, + method=self.params["method"], + ms_before=self.params["ms_before"], + ms_after=self.params["ms_after"], + **self.params["method_kwargs"], + ) + return nodes + + def _run(self, **job_kwargs): + job_kwargs = fix_job_kwargs(job_kwargs) + nodes = self.get_pipeline_nodes() + spike_locations = run_node_pipeline( + self.sorting_analyzer.recording, + nodes, + job_kwargs=job_kwargs, + job_name="spike_locations", + gather_mode="memory", + ) + self.data["spike_locations"] = spike_locations + + def _get_data(self, outputs="numpy"): + all_spike_locations = self.data["spike_locations"] + if outputs == "numpy": + return all_spike_locations + elif outputs == "by_unit": + unit_ids = self.sorting_analyzer.unit_ids + spike_vector = self.sorting_analyzer.sorting.to_spike_vector(concatenated=False) + spike_indices = spike_vector_to_indices(spike_vector, unit_ids) + spike_locations_by_units = {} + for segment_index in range(self.sorting_analyzer.sorting.get_num_segments()): + spike_locations_by_units[segment_index] = {} + for unit_id in unit_ids: + inds = spike_indices[segment_index][unit_id] + spike_locations_by_units[segment_index][unit_id] = all_spike_locations[inds] + return spike_locations_by_units + else: + raise ValueError(f"Wrong .get_data(outputs={outputs})") + + +ComputeSpikeLocations.__doc__.format(_shared_job_kwargs_doc) + +register_result_extension(ComputeSpikeLocations) +compute_spike_locations = ComputeSpikeLocations.function_factory() diff --git a/src/spikeinterface/postprocessing/template_metrics.py b/src/spikeinterface/postprocessing/template_metrics.py index eaf3a686be..9d57e5364d 100644 --- a/src/spikeinterface/postprocessing/template_metrics.py +++ b/src/spikeinterface/postprocessing/template_metrics.py @@ -11,10 +11,10 @@ from typing import Optional from copy import deepcopy -from ..core import WaveformExtractor, ChannelSparsity +from ..core.sortinganalyzer import register_result_extension, AnalyzerExtension +from ..core import ChannelSparsity from ..core.template_tools import get_template_extremum_channel -from ..core.waveform_extractor import BaseWaveformExtractorExtension - +from ..core.template_tools import _get_dense_templates_array # DEBUG = False @@ -31,20 +31,79 @@ def get_template_metric_names(): return get_single_channel_template_metric_names() + get_multi_channel_template_metric_names() -class TemplateMetricsCalculator(BaseWaveformExtractorExtension): - """Class to compute template metrics of waveform shapes. +class ComputeTemplateMetrics(AnalyzerExtension): + """ + Compute template metrics including: + * peak_to_valley + * peak_trough_ratio + * halfwidth + * repolarization_slope + * recovery_slope + * num_positive_peaks + * num_negative_peaks + + Optionally, the following multi-channel metrics can be computed (when include_multi_channel_metrics=True): + * velocity_above + * velocity_below + * exp_decay + * spread Parameters ---------- - waveform_extractor: WaveformExtractor - The waveform extractor object + sorting_analyzer: SortingAnalyzer + The SortingAnalyzer object + metric_names : list or None, default: None + List of metrics to compute (see si.postprocessing.get_template_metric_names()) + peak_sign : {"neg", "pos"}, default: "neg" + Whether to use the positive ("pos") or negative ("neg") peaks to estimate extremum channels. + upsampling_factor : int, default: 10 + The upsampling factor to upsample the templates + sparsity: ChannelSparsity or None, default: None + If None, template metrics are computed on the extremum channel only. + If sparsity is given, template metrics are computed on all sparse channels of each unit. + For more on generating a ChannelSparsity, see the `~spikeinterface.compute_sparsity()` function. + include_multi_channel_metrics: bool, default: False + Whether to compute multi-channel metrics + metrics_kwargs: dict + Additional arguments to pass to the metric functions. Including: + * recovery_window_ms: the window in ms after the peak to compute the recovery_slope, default: 0.7 + * peak_relative_threshold: the relative threshold to detect positive and negative peaks, default: 0.2 + * peak_width_ms: the width in samples to detect peaks, default: 0.2 + * depth_direction: the direction to compute velocity above and below, default: "y" (see notes) + * min_channels_for_velocity: the minimum number of channels above or below to compute velocity, default: 5 + * min_r2_velocity: the minimum r2 to accept the velocity fit, default: 0.7 + * exp_peak_function: the function to use to compute the peak amplitude for the exp decay, default: "ptp" + * min_r2_exp_decay: the minimum r2 to accept the exp decay fit, default: 0.5 + * spread_threshold: the threshold to compute the spread, default: 0.2 + * spread_smooth_um: the smoothing in um to compute the spread, default: 20 + * column_range: the range in um in the horizontal direction to consider channels for velocity, default: None + - If None, all channels all channels are considered + - If 0 or 1, only the "column" that includes the max channel is considered + - If > 1, only channels within range (+/-) um from the max channel horizontal position are used + + Returns + ------- + template_metrics : pd.DataFrame + Dataframe with the computed template metrics. + If "sparsity" is None, the index is the unit_id. + If "sparsity" is given, the index is a multi-index (unit_id, channel_id) + + Notes + ----- + If any multi-channel metric is in the metric_names or include_multi_channel_metrics is True, sparsity must be None, + so that one metric value will be computed per unit. + For multi-channel metrics, 3D channel locations are not supported. By default, the depth direction is "y". """ extension_name = "template_metrics" - min_channels_for_multi_channel_warning = 10 + depend_on = [ + "fast_templates|templates", + ] + need_recording = True + use_nodepipeline = False + need_job_kwargs = False - def __init__(self, waveform_extractor: WaveformExtractor): - BaseWaveformExtractorExtension.__init__(self, waveform_extractor) + min_channels_for_multi_channel_warning = 10 def _set_params( self, @@ -55,43 +114,61 @@ def _set_params( metrics_kwargs=None, include_multi_channel_metrics=False, ): + + # TODO alessio can you check this : this used to be in the function but now we have ComputeTemplateMetrics.function_factory() + if include_multi_channel_metrics or ( + metric_names is not None and any([m in get_multi_channel_template_metric_names() for m in metric_names]) + ): + assert sparsity is None, ( + "If multi-channel metrics are computed, sparsity must be None, " + "so that each unit will correspond to 1 row of the output dataframe." + ) + assert ( + self.sorting_analyzer.get_channel_locations().shape[1] == 2 + ), "If multi-channel metrics are computed, channel locations must be 2D." + if metric_names is None: metric_names = get_single_channel_template_metric_names() if include_multi_channel_metrics: metric_names += get_multi_channel_template_metric_names() - metrics_kwargs = metrics_kwargs or dict() + + if metrics_kwargs is None: + metrics_kwargs_ = _default_function_kwargs.copy() + else: + metrics_kwargs_ = _default_function_kwargs.copy() + metrics_kwargs_.update(metrics_kwargs) + params = dict( metric_names=[str(name) for name in np.unique(metric_names)], sparsity=sparsity, peak_sign=peak_sign, upsampling_factor=int(upsampling_factor), - metrics_kwargs=metrics_kwargs, + metrics_kwargs=metrics_kwargs_, ) return params def _select_extension_data(self, unit_ids): - # filter metrics dataframe - new_metrics = self._extension_data["metrics"].loc[np.array(unit_ids)] + new_metrics = self.data["metrics"].loc[np.array(unit_ids)] return dict(metrics=new_metrics) def _run(self): import pandas as pd from scipy.signal import resample_poly - metric_names = self._params["metric_names"] - sparsity = self._params["sparsity"] - peak_sign = self._params["peak_sign"] - upsampling_factor = self._params["upsampling_factor"] - unit_ids = self.waveform_extractor.sorting.unit_ids - sampling_frequency = self.waveform_extractor.sampling_frequency + metric_names = self.params["metric_names"] + sparsity = self.params["sparsity"] + peak_sign = self.params["peak_sign"] + upsampling_factor = self.params["upsampling_factor"] + unit_ids = self.sorting_analyzer.unit_ids + sampling_frequency = self.sorting_analyzer.sampling_frequency metrics_single_channel = [m for m in metric_names if m in get_single_channel_template_metric_names()] metrics_multi_channel = [m for m in metric_names if m in get_multi_channel_template_metric_names()] if sparsity is None: extremum_channels_ids = get_template_extremum_channel( - self.waveform_extractor, peak_sign=peak_sign, outputs="id" + self.sorting_analyzer, peak_sign=peak_sign, outputs="id" ) template_metrics = pd.DataFrame(index=unit_ids, columns=metric_names) @@ -107,15 +184,16 @@ def _run(self): ) template_metrics = pd.DataFrame(index=multi_index, columns=metric_names) - all_templates = self.waveform_extractor.get_all_templates() - channel_locations = self.waveform_extractor.get_channel_locations() + all_templates = _get_dense_templates_array(self.sorting_analyzer, return_scaled=True) + + channel_locations = self.sorting_analyzer.get_channel_locations() for unit_index, unit_id in enumerate(unit_ids): template_all_chans = all_templates[unit_index] chan_ids = np.array(extremum_channels_ids[unit_id]) if chan_ids.ndim == 0: chan_ids = [chan_ids] - chan_ind = self.waveform_extractor.channel_ids_to_indices(chan_ids) + chan_ind = self.sorting_analyzer.channel_ids_to_indices(chan_ids) template = template_all_chans[:, chan_ind] # compute single_channel metrics @@ -141,22 +219,25 @@ def _run(self): sampling_frequency=sampling_frequency_up, trough_idx=trough_idx, peak_idx=peak_idx, - **self._params["metrics_kwargs"], + **self.params["metrics_kwargs"], ) template_metrics.at[index, metric_name] = value # compute metrics multi_channel for metric_name in metrics_multi_channel: # retrieve template (with sparsity if waveform extractor is sparse) - template = self.waveform_extractor.get_template(unit_id=unit_id) + template = all_templates[unit_index, :, :] + if self.sorting_analyzer.is_sparse(): + mask = self.sorting_analyzer.sparsity.mask[unit_index, :] + template = template[:, mask] if template.shape[1] < self.min_channels_for_multi_channel_warning: warnings.warn( f"With less than {self.min_channels_for_multi_channel_warning} channels, " "multi-channel metrics might not be reliable." ) - if self.waveform_extractor.is_sparse(): - channel_locations_sparse = channel_locations[self.waveform_extractor.sparsity.mask[unit_index]] + if self.sorting_analyzer.is_sparse(): + channel_locations_sparse = channel_locations[self.sorting_analyzer.sparsity.mask[unit_index]] else: channel_locations_sparse = channel_locations @@ -173,30 +254,17 @@ def _run(self): template_upsampled, channel_locations=channel_locations_sparse, sampling_frequency=sampling_frequency_up, - **self._params["metrics_kwargs"], + **self.params["metrics_kwargs"], ) template_metrics.at[index, metric_name] = value - self._extension_data["metrics"] = template_metrics - - def get_data(self): - """ - Get the computed metrics. + self.data["metrics"] = template_metrics - Returns - ------- - metrics : pd.DataFrame - Dataframe with template metrics - """ - msg = "Template metrics are not computed. Use the 'run()' function." - assert self._extension_data["metrics"] is not None, msg - return self._extension_data["metrics"] + def _get_data(self): + return self.data["metrics"] - @staticmethod - def get_extension_function(): - return compute_template_metrics - -WaveformExtractor.register_extension(TemplateMetricsCalculator) +register_result_extension(ComputeTemplateMetrics) +compute_template_metrics = ComputeTemplateMetrics.function_factory() _default_function_kwargs = dict( @@ -214,116 +282,6 @@ def get_extension_function(): ) -def compute_template_metrics( - waveform_extractor, - load_if_exists: bool = False, - metric_names: Optional[list[str]] = None, - peak_sign: Optional[str] = "neg", - upsampling_factor: int = 10, - sparsity: Optional[ChannelSparsity] = None, - include_multi_channel_metrics: bool = False, - metrics_kwargs: dict = None, -): - """ - Compute template metrics including: - * peak_to_valley - * peak_trough_ratio - * halfwidth - * repolarization_slope - * recovery_slope - * num_positive_peaks - * num_negative_peaks - - Optionally, the following multi-channel metrics can be computed (when include_multi_channel_metrics=True): - * velocity_above - * velocity_below - * exp_decay - * spread - - Parameters - ---------- - waveform_extractor : WaveformExtractor - The waveform extractor used to compute template metrics - load_if_exists : bool, default: False - Whether to load precomputed template metrics, if they already exist. - metric_names : list or None, default: None - List of metrics to compute (see si.postprocessing.get_template_metric_names()) - peak_sign : {"neg", "pos"}, default: "neg" - Whether to use the positive ("pos") or negative ("neg") peaks to estimate extremum channels. - upsampling_factor : int, default: 10 - The upsampling factor to upsample the templates - sparsity: ChannelSparsity or None, default: None - If None, template metrics are computed on the extremum channel only. - If sparsity is given, template metrics are computed on all sparse channels of each unit. - For more on generating a ChannelSparsity, see the `~spikeinterface.compute_sparsity()` function. - include_multi_channel_metrics: bool, default: False - Whether to compute multi-channel metrics - metrics_kwargs: dict - Additional arguments to pass to the metric functions. Including: - * recovery_window_ms: the window in ms after the peak to compute the recovery_slope, default: 0.7 - * peak_relative_threshold: the relative threshold to detect positive and negative peaks, default: 0.2 - * peak_width_ms: the width in samples to detect peaks, default: 0.2 - * depth_direction: the direction to compute velocity above and below, default: "y" (see notes) - * min_channels_for_velocity: the minimum number of channels above or below to compute velocity, default: 5 - * min_r2_velocity: the minimum r2 to accept the velocity fit, default: 0.7 - * exp_peak_function: the function to use to compute the peak amplitude for the exp decay, default: "ptp" - * min_r2_exp_decay: the minimum r2 to accept the exp decay fit, default: 0.5 - * spread_threshold: the threshold to compute the spread, default: 0.2 - * spread_smooth_um: the smoothing in um to compute the spread, default: 20 - * column_range: the range in um in the horizontal direction to consider channels for velocity, default: None - - If None, all channels all channels are considered - - If 0 or 1, only the "column" that includes the max channel is considered - - If > 1, only channels within range (+/-) um from the max channel horizontal position are used - - Returns - ------- - template_metrics : pd.DataFrame - Dataframe with the computed template metrics. - If "sparsity" is None, the index is the unit_id. - If "sparsity" is given, the index is a multi-index (unit_id, channel_id) - - Notes - ----- - If any multi-channel metric is in the metric_names or include_multi_channel_metrics is True, sparsity must be None, - so that one metric value will be computed per unit. - For multi-channel metrics, 3D channel locations are not supported. By default, the depth direction is "y". - """ - if load_if_exists and waveform_extractor.is_extension(TemplateMetricsCalculator.extension_name): - tmc = waveform_extractor.load_extension(TemplateMetricsCalculator.extension_name) - else: - tmc = TemplateMetricsCalculator(waveform_extractor) - # For 2D metrics, external sparsity must be None, so that one metric value will be computed per unit. - if include_multi_channel_metrics or ( - metric_names is not None and any([m in get_multi_channel_template_metric_names() for m in metric_names]) - ): - assert sparsity is None, ( - "If multi-channel metrics are computed, sparsity must be None, " - "so that each unit will correspond to 1 row of the output dataframe." - ) - assert ( - waveform_extractor.get_channel_locations().shape[1] == 2 - ), "If multi-channel metrics are computed, channel locations must be 2D." - default_kwargs = _default_function_kwargs.copy() - if metrics_kwargs is None: - metrics_kwargs = default_kwargs - else: - default_kwargs.update(metrics_kwargs) - metrics_kwargs = default_kwargs - tmc.set_params( - metric_names=metric_names, - peak_sign=peak_sign, - upsampling_factor=upsampling_factor, - sparsity=sparsity, - include_multi_channel_metrics=include_multi_channel_metrics, - metrics_kwargs=metrics_kwargs, - ) - tmc.run() - - metrics = tmc.get_data() - - return metrics - - def get_trough_and_peak_idx(template): """ Return the indices into the input template of the detected trough diff --git a/src/spikeinterface/postprocessing/template_similarity.py b/src/spikeinterface/postprocessing/template_similarity.py index 51064fafd2..18d7c868da 100644 --- a/src/spikeinterface/postprocessing/template_similarity.py +++ b/src/spikeinterface/postprocessing/template_similarity.py @@ -1,118 +1,85 @@ from __future__ import annotations import numpy as np -from ..core import WaveformExtractor -from ..core.waveform_extractor import BaseWaveformExtractorExtension +from spikeinterface.core.sortinganalyzer import register_result_extension, AnalyzerExtension +from ..core.template_tools import _get_dense_templates_array -class TemplateSimilarityCalculator(BaseWaveformExtractorExtension): + +class ComputeTemplateSimilarity(AnalyzerExtension): """Compute similarity between templates with several methods. + Parameters ---------- - waveform_extractor: WaveformExtractor - A waveform extractor object + sorting_analyzer: SortingAnalyzer + The SortingAnalyzer object + method: str, default: "cosine_similarity" + The method to compute the similarity + + Returns + ------- + similarity: np.array + The similarity matrix """ - extension_name = "similarity" + extension_name = "template_similarity" + depend_on = [ + "fast_templates|templates", + ] + need_recording = True + use_nodepipeline = False + need_job_kwargs = False - def __init__(self, waveform_extractor): - BaseWaveformExtractorExtension.__init__(self, waveform_extractor) + def __init__(self, sorting_analyzer): + AnalyzerExtension.__init__(self, sorting_analyzer) def _set_params(self, method="cosine_similarity"): params = dict(method=method) - return params def _select_extension_data(self, unit_ids): # filter metrics dataframe - unit_indices = self.waveform_extractor.sorting.ids_to_indices(unit_ids) - new_similarity = self._extension_data["similarity"][unit_indices][:, unit_indices] + unit_indices = self.sorting_analyzer.sorting.ids_to_indices(unit_ids) + new_similarity = self.data["similarity"][unit_indices][:, unit_indices] return dict(similarity=new_similarity) def _run(self): - similarity = _compute_template_similarity(self.waveform_extractor, method=self._params["method"]) - self._extension_data["similarity"] = similarity - - def get_data(self): - """ - Get the computed similarity. + templates_array = _get_dense_templates_array(self.sorting_analyzer, return_scaled=True) + similarity = compute_similarity_with_templates_array( + templates_array, templates_array, method=self.params["method"] + ) + self.data["similarity"] = similarity - Returns - ------- - similarity : 2d np.array - 2d matrix with computed similarity values. - """ - msg = "Template similarity is not computed. Use the 'run()' function." - assert self._extension_data["similarity"] is not None, msg - return self._extension_data["similarity"] + def _get_data(self): + return self.data["similarity"] - @staticmethod - def get_extension_function(): - return compute_template_similarity +# @alessio: compute_template_similarity() is now one inner SortingAnalyzer only +register_result_extension(ComputeTemplateSimilarity) +compute_template_similarity = ComputeTemplateSimilarity.function_factory() -WaveformExtractor.register_extension(TemplateSimilarityCalculator) - -def _compute_template_similarity( - waveform_extractor, load_if_exists=False, method="cosine_similarity", waveform_extractor_other=None -): +def compute_similarity_with_templates_array(templates_array, other_templates_array, method): import sklearn.metrics.pairwise - templates = waveform_extractor.get_all_templates() - s = templates.shape if method == "cosine_similarity": - templates_flat = templates.reshape(s[0], -1) - if waveform_extractor_other is not None: - templates_other = waveform_extractor_other.get_all_templates() - s_other = templates_other.shape - templates_other_flat = templates_other.reshape(s_other[0], -1) - assert len(templates_flat[0]) == len(templates_other_flat[0]), ( - "Templates from second WaveformExtractor " "don't have the correct shape!" - ) - else: - templates_other_flat = None - similarity = sklearn.metrics.pairwise.cosine_similarity(templates_flat, templates_other_flat) - # elif method == '': + assert templates_array.shape[0] == other_templates_array.shape[0] + templates_flat = templates_array.reshape(templates_array.shape[0], -1) + other_templates_flat = templates_array.reshape(other_templates_array.shape[0], -1) + similarity = sklearn.metrics.pairwise.cosine_similarity(templates_flat, other_templates_flat) + else: raise ValueError(f"compute_template_similarity(method {method}) not exists") return similarity -def compute_template_similarity( - waveform_extractor, load_if_exists=False, method="cosine_similarity", waveform_extractor_other=None -): - """Compute similarity between templates with several methods. - - Parameters - ---------- - waveform_extractor: WaveformExtractor - A waveform extractor object - load_if_exists : bool, default: False - Whether to load precomputed similarity, if is already exists. - method: str, default: "cosine_similarity" - The method to compute the similarity - waveform_extractor_other: WaveformExtractor, default: None - A second waveform extractor object - - Returns - ------- - similarity: np.array - The similarity matrix - """ - if waveform_extractor_other is None: - if load_if_exists and waveform_extractor.is_extension(TemplateSimilarityCalculator.extension_name): - tmc = waveform_extractor.load_extension(TemplateSimilarityCalculator.extension_name) - else: - tmc = TemplateSimilarityCalculator(waveform_extractor) - tmc.set_params(method=method) - tmc.run() - similarity = tmc.get_data() - return similarity - else: - return _compute_template_similarity(waveform_extractor, waveform_extractor_other, method) +def compute_template_similarity_by_pair(sorting_analyzer_1, sorting_analyzer_2, method="cosine_similarity"): + templates_array_1 = _get_dense_templates_array(sorting_analyzer_1, return_scaled=True) + templates_array_2 = _get_dense_templates_array(sorting_analyzer_2, return_scaled=True) + similmarity = compute_similarity_with_templates_array(templates_array_1, templates_array_2, method) + return similmarity def check_equal_template_with_distribution_overlap( diff --git a/src/spikeinterface/postprocessing/tests/common_extension_tests.py b/src/spikeinterface/postprocessing/tests/common_extension_tests.py index 488a2f7eab..29c1d0d499 100644 --- a/src/spikeinterface/postprocessing/tests/common_extension_tests.py +++ b/src/spikeinterface/postprocessing/tests/common_extension_tests.py @@ -7,243 +7,121 @@ import platform from pathlib import Path -from spikeinterface import extract_waveforms, load_extractor, load_waveforms, compute_sparsity -from spikeinterface.core.generate import generate_ground_truth_recording +from spikeinterface.core import generate_ground_truth_recording +from spikeinterface.core import create_sorting_analyzer +from spikeinterface.core import estimate_sparsity + if hasattr(pytest, "global_test_folder"): cache_folder = pytest.global_test_folder / "postprocessing" else: cache_folder = Path("cache_folder") / "postprocessing" - -class WaveformExtensionCommonTestSuite: - """ - This class runs common tests for extensions. +cache_folder.mkdir(exist_ok=True, parents=True) + + +def get_dataset(): + recording, sorting = generate_ground_truth_recording( + durations=[15.0, 5.0], + sampling_frequency=24000.0, + num_channels=6, + num_units=3, + generate_sorting_kwargs=dict(firing_rates=3.0, refractory_period_ms=4.0), + generate_unit_locations_kwargs=dict( + margin_um=5.0, + minimum_z=5.0, + maximum_z=20.0, + ), + generate_templates_kwargs=dict( + unit_params_range=dict( + alpha=(9_000.0, 12_000.0), + ) + ), + noise_kwargs=dict(noise_level=5.0, strategy="tile_pregenerated"), + seed=2205, + ) + return recording, sorting + + +def get_sorting_analyzer(recording, sorting, format="memory", sparsity=None, name=""): + sparse = sparsity is not None + if format == "memory": + folder = None + elif format == "binary_folder": + folder = cache_folder / f"test_{name}_sparse{sparse}_{format}" + elif format == "zarr": + folder = cache_folder / f"test_{name}_sparse{sparse}_{format}.zarr" + if folder and folder.exists(): + shutil.rmtree(folder) + + sorting_analyzer = create_sorting_analyzer( + sorting, recording, format=format, folder=folder, sparse=False, sparsity=sparsity + ) + + return sorting_analyzer + + +class AnalyzerExtensionCommonTestSuite: """ + Common tests with class approach to compute extension on several cases (3 format x 2 sparsity) - extension_class = None - extension_data_names = [] - extension_function_kwargs_list = None - - # this flag enables us to check that all backends have the same contents - exact_same_content = True - - def _clean_all_folders(self): - for name in ( - "toy_rec_1seg", - "toy_sorting_1seg", - "toy_waveforms_1seg", - "toy_rec_2seg", - "toy_sorting_2seg", - "toy_waveforms_2seg", - "toy_sorting_2seg.zarr", - "toy_sorting_2seg_sparse", - ): - if (cache_folder / name).is_dir(): - shutil.rmtree(cache_folder / name) - - for name in ("toy_waveforms_1seg", "toy_waveforms_2seg", "toy_sorting_2seg_sparse"): - for ext in self.extension_data_names: - folder = self.cache_folder / f"{name}_{ext}_selected" - if folder.exists(): - shutil.rmtree(folder) - - def setUp(self): - self.cache_folder = cache_folder - self._clean_all_folders() - - # 1-segment - recording, sorting = generate_ground_truth_recording( - durations=[10], - sampling_frequency=30000, - num_channels=12, - num_units=10, - dtype="float32", - seed=91, - generate_sorting_kwargs=dict(add_spikes_on_borders=True), - noise_kwargs=dict(noise_level=10.0, strategy="tile_pregenerated"), - ) + This is done a a list of differents parameters (extension_function_params_list). - # add gains and offsets and save - gain = 0.1 - recording.set_channel_gains(gain) - recording.set_channel_offsets(0) - - recording = recording.save(folder=cache_folder / "toy_rec_1seg") - sorting = sorting.save(folder=cache_folder / "toy_sorting_1seg") - - we1 = extract_waveforms( - recording, - sorting, - cache_folder / "toy_waveforms_1seg", - max_spikes_per_unit=500, - sparse=False, - n_jobs=1, - chunk_size=30000, - overwrite=True, - ) - self.we1 = we1 - self.sparsity1 = compute_sparsity(we1, method="radius", radius_um=50) - - # 2-segments - recording, sorting = generate_ground_truth_recording( - durations=[10, 5], - sampling_frequency=30000, - num_channels=12, - num_units=10, - dtype="float32", - seed=91, - generate_sorting_kwargs=dict(add_spikes_on_borders=True), - noise_kwargs=dict(noise_level=10.0, strategy="tile_pregenerated"), - ) - recording.set_channel_gains(gain) - recording.set_channel_offsets(0) - recording = recording.save(folder=cache_folder / "toy_rec_2seg") - sorting = sorting.save(folder=cache_folder / "toy_sorting_2seg") - - we2 = extract_waveforms( - recording, - sorting, - cache_folder / "toy_waveforms_2seg", - max_spikes_per_unit=500, - sparse=False, - n_jobs=1, - chunk_size=30000, - overwrite=True, - ) - self.we2 = we2 - - # make we read-only - if platform.system() != "Windows": - we_ro_folder = cache_folder / "toy_waveforms_2seg_readonly" - if not we_ro_folder.is_dir(): - shutil.copytree(we2.folder, we_ro_folder) - # change permissions (R+X) - we_ro_folder.chmod(0o555) - self.we_ro = load_waveforms(we_ro_folder) - - self.sparsity2 = compute_sparsity(we2, method="radius", radius_um=30) - we_memory = extract_waveforms( - recording, - sorting, - mode="memory", - sparse=False, - max_spikes_per_unit=500, - n_jobs=1, - chunk_size=30000, - ) - self.we_memory2 = we_memory + This automatically precompute extension dependencies with default params before running computation. - self.we_zarr2 = we_memory.save(folder=cache_folder / "toy_sorting_2seg", overwrite=True, format="zarr") + This also test the select_units() ability. + """ - # use best channels for PC-concatenated - sparsity = compute_sparsity(we_memory, method="best_channels", num_channels=2) - self.we_sparse = we_memory.save( - folder=cache_folder / "toy_sorting_2seg_sparse", format="binary", sparsity=sparsity, overwrite=True + extension_class = None + extension_function_params_list = None + + @classmethod + def setUpClass(cls): + cls.recording, cls.sorting = get_dataset() + # sparsity is computed once for all cases to save processing time and force a small radius + cls.sparsity = estimate_sparsity(cls.recording, cls.sorting, method="radius", radius_um=20) + + @property + def extension_name(self): + return self.extension_class.extension_name + + def _prepare_sorting_analyzer(self, format, sparse): + # prepare a SortingAnalyzer object with depencies already computed + sparsity_ = self.sparsity if sparse else None + sorting_analyzer = get_sorting_analyzer( + self.recording, self.sorting, format=format, sparsity=sparsity_, name=self.extension_class.extension_name ) + sorting_analyzer.compute("random_spikes", max_spikes_per_unit=50, seed=2205) + for dependency_name in self.extension_class.depend_on: + if "|" in dependency_name: + dependency_name = dependency_name.split("|")[0] + sorting_analyzer.compute(dependency_name) + return sorting_analyzer + + def _check_one(self, sorting_analyzer): + if self.extension_class.need_job_kwargs: + job_kwargs = dict(n_jobs=2, chunk_duration="1s", progress_bar=True) + else: + job_kwargs = dict() - def tearDown(self): - # delete object to release memmap - del self.we1, self.we2, self.we_memory2, self.we_zarr2, self.we_sparse - if hasattr(self, "we_ro"): - del self.we_ro - - # allow pytest to delete RO folder - if platform.system() != "Windows": - we_ro_folder = cache_folder / "toy_waveforms_2seg_readonly" - we_ro_folder.chmod(0o777) + for params in self.extension_function_params_list: + print(" params", params) + ext = sorting_analyzer.compute(self.extension_name, **params, **job_kwargs) + assert len(ext.data) > 0 + main_data = ext.get_data() - self._clean_all_folders() + ext = sorting_analyzer.get_extension(self.extension_name) + assert ext is not None - def _test_extension_folder(self, we, in_memory=False): - if self.extension_function_kwargs_list is None: - extension_function_kwargs_list = [dict()] - else: - extension_function_kwargs_list = self.extension_function_kwargs_list - for ext_kwargs in extension_function_kwargs_list: - compute_func = self.extension_class.get_extension_function() - _ = compute_func(we, load_if_exists=False, **ext_kwargs) - - # reload as an extension from we - assert self.extension_class.extension_name in we.get_available_extension_names() - assert we.has_extension(self.extension_class.extension_name) - ext = we.load_extension(self.extension_class.extension_name) - assert isinstance(ext, self.extension_class) - for ext_name in self.extension_data_names: - assert ext_name in ext._extension_data - - if not in_memory: - ext_loaded = self.extension_class.load(we.folder, we) - for ext_name in self.extension_data_names: - assert ext_name in ext_loaded._extension_data - - # test select units - # print('test select units', we.format) - if we.format == "binary": - new_folder = cache_folder / f"{we.folder.stem}_{self.extension_class.extension_name}_selected" - if new_folder.is_dir(): - shutil.rmtree(new_folder) - we_new = we.select_units( - unit_ids=we.sorting.unit_ids[::2], - new_folder=new_folder, - ) - # check that extension is present after select_units() - assert self.extension_class.extension_name in we_new.get_available_extension_names() - elif we.folder is None: - # test select units in-memory and zarr - we_new = we.select_units(unit_ids=we.sorting.unit_ids[::2]) - # check that extension is present after select_units() - assert self.extension_class.extension_name in we_new.get_available_extension_names() - if we.format == "zarr": - # select_units() not supported for Zarr - pass + some_unit_ids = sorting_analyzer.unit_ids[::2] + sliced = sorting_analyzer.select_units(some_unit_ids, format="memory") + assert np.array_equal(sliced.unit_ids, sorting_analyzer.unit_ids[::2]) + # print(sliced) def test_extension(self): - print("Test extension", self.extension_class) - # 1 segment - print("1 segment", self.we1) - self._test_extension_folder(self.we1) - - # 2 segment - print("2 segment", self.we2) - self._test_extension_folder(self.we2) - # memory - print("Memory", self.we_memory2) - self._test_extension_folder(self.we_memory2, in_memory=True) - # zarr - # @alessio : this need to be fixed the PCA extention do not work wih zarr - print("Zarr", self.we_zarr2) - self._test_extension_folder(self.we_zarr2) - - # sparse - print("Sparse", self.we_sparse) - self._test_extension_folder(self.we_sparse) - - if self.exact_same_content: - # check content is the same across modes: memory/content/zarr - - for ext in self.we2.get_available_extension_names(): - print(f"Testing data for {ext}") - ext_memory = self.we_memory2.load_extension(ext) - ext_folder = self.we2.load_extension(ext) - ext_zarr = self.we_zarr2.load_extension(ext) - - for ext_data_name, ext_data_mem in ext_memory._extension_data.items(): - ext_data_folder = ext_folder._extension_data[ext_data_name] - ext_data_zarr = ext_zarr._extension_data[ext_data_name] - if isinstance(ext_data_mem, np.ndarray): - np.testing.assert_array_equal(ext_data_mem, ext_data_folder) - np.testing.assert_array_equal(ext_data_mem, ext_data_zarr) - elif isinstance(ext_data_mem, pd.DataFrame): - assert ext_data_mem.equals(ext_data_folder) - assert ext_data_mem.equals(ext_data_zarr) - else: - print(f"{ext_data_name} of type {type(ext_data_mem)} not tested.") - - # read-only - Extension is memory only - if platform.system() != "Windows": - _ = self.extension_class.get_extension_function()(self.we_ro, load_if_exists=False) - assert self.extension_class.extension_name in self.we_ro.get_available_extension_names() - ext_ro = self.we_ro.load_extension(self.extension_class.extension_name) - assert ext_ro.format == "memory" - assert ext_ro.extension_folder is None + for sparse in (True, False): + for format in ("memory", "binary_folder", "zarr"): + print() + print("sparse", sparse, format) + sorting_analyzer = self._prepare_sorting_analyzer(format, sparse) + self._check_one(sorting_analyzer) diff --git a/src/spikeinterface/postprocessing/tests/test_amplitude_scalings.py b/src/spikeinterface/postprocessing/tests/test_amplitude_scalings.py index 4fac98078f..b59aca16a8 100644 --- a/src/spikeinterface/postprocessing/tests/test_amplitude_scalings.py +++ b/src/spikeinterface/postprocessing/tests/test_amplitude_scalings.py @@ -1,57 +1,42 @@ import unittest import numpy as np -from spikeinterface import compute_sparsity -from spikeinterface.postprocessing import AmplitudeScalingsCalculator - -from spikeinterface.postprocessing.tests.common_extension_tests import ( - WaveformExtensionCommonTestSuite, -) - - -class AmplitudeScalingsExtensionTest(WaveformExtensionCommonTestSuite, unittest.TestCase): - extension_class = AmplitudeScalingsCalculator - extension_data_names = ["amplitude_scalings"] - extension_function_kwargs_list = [ - dict(outputs="concatenated", chunk_size=10000, n_jobs=1), - dict(outputs="concatenated", chunk_size=10000, n_jobs=1, ms_before=0.5, ms_after=0.5), - dict(outputs="by_unit", chunk_size=10000, n_jobs=1), - dict(outputs="concatenated", chunk_size=10000, n_jobs=-1), - dict(outputs="concatenated", chunk_size=10000, n_jobs=2, ms_before=0.5, ms_after=0.5), - ] - def test_scaling_parallel(self): - scalings1 = self.extension_class.get_extension_function()( - self.we1, - outputs="concatenated", - chunk_size=10000, - n_jobs=1, - ) - scalings2 = self.extension_class.get_extension_function()( - self.we1, - outputs="concatenated", - chunk_size=10000, - n_jobs=2, - ) - np.testing.assert_array_equal(scalings1, scalings2) +from spikeinterface.postprocessing.tests.common_extension_tests import AnalyzerExtensionCommonTestSuite + +from spikeinterface.postprocessing import ComputeAmplitudeScalings + + +class AmplitudeScalingsExtensionTest(AnalyzerExtensionCommonTestSuite, unittest.TestCase): + extension_class = ComputeAmplitudeScalings + extension_function_params_list = [ + dict(handle_collisions=True), + dict(handle_collisions=False), + ] def test_scaling_values(self): - scalings1 = self.extension_class.get_extension_function()( - self.we1, - outputs="by_unit", - chunk_size=10000, - n_jobs=1, - ) - # since this is GT spikes, the rounded median must be 1 - for u, scalings in scalings1[0].items(): + sorting_analyzer = self._prepare_sorting_analyzer("memory", True) + sorting_analyzer.compute("amplitude_scalings", handle_collisions=False) + + spikes = sorting_analyzer.sorting.to_spike_vector() + + ext = sorting_analyzer.get_extension("amplitude_scalings") + + for unit_index, unit_id in enumerate(sorting_analyzer.unit_ids): + mask = spikes["unit_index"] == unit_index + scalings = ext.data["amplitude_scalings"][mask] median_scaling = np.median(scalings) - print(u, median_scaling) + # print(unit_index, median_scaling) np.testing.assert_array_equal(np.round(median_scaling), 1) + # import matplotlib.pyplot as plt + # fig, ax = plt.subplots() + # ax.hist(ext.data["amplitude_scalings"]) + # plt.show() + if __name__ == "__main__": test = AmplitudeScalingsExtensionTest() - test.setUp() + test.setUpClass() test.test_extension() - # test.test_scaling_values() - # test.test_scaling_parallel() + test.test_scaling_values() diff --git a/src/spikeinterface/postprocessing/tests/test_correlograms.py b/src/spikeinterface/postprocessing/tests/test_correlograms.py index 3d562ba5a0..6d727e6448 100644 --- a/src/spikeinterface/postprocessing/tests/test_correlograms.py +++ b/src/spikeinterface/postprocessing/tests/test_correlograms.py @@ -2,17 +2,6 @@ import numpy as np from typing import List - -from spikeinterface.postprocessing.tests.common_extension_tests import WaveformExtensionCommonTestSuite, cache_folder - -from spikeinterface import download_dataset, extract_waveforms, NumpySorting -import spikeinterface.extractors as se - -from spikeinterface.postprocessing import compute_correlograms, CorrelogramsCalculator -from spikeinterface.postprocessing.correlograms import _make_bins -from spikeinterface.core import generate_sorting - - try: import numba @@ -21,20 +10,20 @@ HAVE_NUMBA = False -class CorrelogramsExtensionTest(WaveformExtensionCommonTestSuite, unittest.TestCase): - extension_class = CorrelogramsCalculator - extension_data_names = ["ccgs", "bins"] - extension_function_kwargs_list = [dict(method="numpy")] - - def test_compute_correlograms(self): - methods = ["numpy", "auto"] - if HAVE_NUMBA: - methods.append("numba") +from spikeinterface import NumpySorting, generate_sorting +from spikeinterface.postprocessing.tests.common_extension_tests import AnalyzerExtensionCommonTestSuite +from spikeinterface.postprocessing import ComputeCorrelograms +from spikeinterface.postprocessing.correlograms import compute_correlograms_on_sorting, _make_bins - sorting = self.we1.sorting - _test_correlograms(sorting, window_ms=60.0, bin_ms=2.0, methods=methods) - _test_correlograms(sorting, window_ms=43.57, bin_ms=1.6421, methods=methods) +class ComputeCorrelogramsTest(AnalyzerExtensionCommonTestSuite, unittest.TestCase): + extension_class = ComputeCorrelograms + extension_function_params_list = [ + dict(method="numpy"), + dict(method="auto"), + ] + if HAVE_NUMBA: + extension_function_params_list.append(dict(method="numba")) def test_make_bins(): @@ -55,7 +44,7 @@ def test_make_bins(): def _test_correlograms(sorting, window_ms, bin_ms, methods): for method in methods: - correlograms, bins = compute_correlograms(sorting, window_ms=window_ms, bin_ms=bin_ms, method=method) + correlograms, bins = compute_correlograms_on_sorting(sorting, window_ms=window_ms, bin_ms=bin_ms, method=method) if method == "numpy": ref_correlograms = correlograms ref_bins = bins @@ -99,7 +88,7 @@ def test_flat_cross_correlogram(): # ~ fig, ax = plt.subplots() for method in methods: - correlograms, bins = compute_correlograms(sorting, window_ms=50.0, bin_ms=1.0, method=method) + correlograms, bins = compute_correlograms_on_sorting(sorting, window_ms=50.0, bin_ms=1.0, method=method) cc = correlograms[0, 1, :].copy() m = np.mean(cc) assert np.all(cc > (m * 0.90)) @@ -131,7 +120,7 @@ def test_auto_equal_cross_correlograms(): sorting = NumpySorting.from_unit_dict([units_dict], sampling_frequency=10000.0) for method in methods: - correlograms, bins = compute_correlograms(sorting, window_ms=10.0, bin_ms=0.1, method=method) + correlograms, bins = compute_correlograms_on_sorting(sorting, window_ms=10.0, bin_ms=0.1, method=method) num_half_bins = correlograms.shape[2] // 2 @@ -181,7 +170,7 @@ def test_detect_injected_correlation(): sorting = NumpySorting.from_unit_dict([units_dict], sampling_frequency=sampling_frequency) for method in methods: - correlograms, bins = compute_correlograms(sorting, window_ms=10.0, bin_ms=0.1, method=method) + correlograms, bins = compute_correlograms_on_sorting(sorting, window_ms=10.0, bin_ms=0.1, method=method) cc_01 = correlograms[0, 1, :] cc_10 = correlograms[1, 0, :] @@ -204,13 +193,12 @@ def test_detect_injected_correlation(): if __name__ == "__main__": - test_make_bins() - test_equal_results_correlograms() - test_flat_cross_correlogram() - test_auto_equal_cross_correlograms() - test_detect_injected_correlation() - - test = CorrelogramsExtensionTest() - test.setUp() - test.test_compute_correlograms() + # test_make_bins() + # test_equal_results_correlograms() + # test_flat_cross_correlogram() + # test_auto_equal_cross_correlograms() + # test_detect_injected_correlation() + + test = ComputeCorrelogramsTest() + test.setUpClass() test.test_extension() diff --git a/src/spikeinterface/postprocessing/tests/test_isi.py b/src/spikeinterface/postprocessing/tests/test_isi.py index 421c8f80cc..8626e56453 100644 --- a/src/spikeinterface/postprocessing/tests/test_isi.py +++ b/src/spikeinterface/postprocessing/tests/test_isi.py @@ -2,9 +2,10 @@ import numpy as np from typing import List -from spikeinterface.postprocessing import compute_isi_histograms, ISIHistogramsCalculator -from spikeinterface.postprocessing.tests.common_extension_tests import WaveformExtensionCommonTestSuite +from spikeinterface.postprocessing.tests.common_extension_tests import AnalyzerExtensionCommonTestSuite +from spikeinterface.postprocessing import compute_isi_histograms, ComputeISIHistograms +from spikeinterface.postprocessing.isi import _compute_isi_histograms try: @@ -15,24 +16,27 @@ HAVE_NUMBA = False -class ISIHistogramsExtensionTest(WaveformExtensionCommonTestSuite, unittest.TestCase): - extension_class = ISIHistogramsCalculator - extension_data_names = ["isi_histograms", "bins"] +class ComputeISIHistogramsTest(AnalyzerExtensionCommonTestSuite, unittest.TestCase): + extension_class = ComputeISIHistograms + extension_function_params_list = [ + dict(method="numpy"), + dict(method="auto"), + ] + if HAVE_NUMBA: + extension_function_params_list.append(dict(method="numba")) def test_compute_ISI(self): methods = ["numpy", "auto"] if HAVE_NUMBA: methods.append("numba") - sorting = self.we2.sorting - - _test_ISI(sorting, window_ms=60.0, bin_ms=1.0, methods=methods) - _test_ISI(sorting, window_ms=43.57, bin_ms=1.6421, methods=methods) + _test_ISI(self.sorting, window_ms=60.0, bin_ms=1.0, methods=methods) + _test_ISI(self.sorting, window_ms=43.57, bin_ms=1.6421, methods=methods) def _test_ISI(sorting, window_ms: float, bin_ms: float, methods: List[str]): for method in methods: - ISI, bins = compute_isi_histograms(sorting, window_ms=window_ms, bin_ms=bin_ms, method=method) + ISI, bins = _compute_isi_histograms(sorting, window_ms=window_ms, bin_ms=bin_ms, method=method) if method == "numpy": ref_ISI = ISI @@ -43,6 +47,7 @@ def _test_ISI(sorting, window_ms: float, bin_ms: float, methods: List[str]): if __name__ == "__main__": - test = ISIHistogramsExtensionTest() - test.setUp() + test = ComputeISIHistogramsTest() + test.setUpClass() + test.test_extension() test.test_compute_ISI() diff --git a/src/spikeinterface/postprocessing/tests/test_noise_levels.py b/src/spikeinterface/postprocessing/tests/test_noise_levels.py index 9e3a4fd45c..f334f92fa6 100644 --- a/src/spikeinterface/postprocessing/tests/test_noise_levels.py +++ b/src/spikeinterface/postprocessing/tests/test_noise_levels.py @@ -1,17 +1 @@ -import unittest - -from spikeinterface.postprocessing import compute_noise_levels, NoiseLevelsCalculator -from spikeinterface.postprocessing.tests.common_extension_tests import WaveformExtensionCommonTestSuite - - -class NoiseLevelsCalculatorExtensionTest(WaveformExtensionCommonTestSuite, unittest.TestCase): - extension_class = NoiseLevelsCalculator - extension_data_names = ["noise_levels"] - - exact_same_content = False - - -if __name__ == "__main__": - test = NoiseLevelsCalculatorExtensionTest() - test.setUp() - test.test_extension() +# "noise_levels" extensions is now in core diff --git a/src/spikeinterface/postprocessing/tests/test_principal_component.py b/src/spikeinterface/postprocessing/tests/test_principal_component.py index 0b7e8b4602..d94d7ea586 100644 --- a/src/spikeinterface/postprocessing/tests/test_principal_component.py +++ b/src/spikeinterface/postprocessing/tests/test_principal_component.py @@ -4,205 +4,146 @@ import numpy as np -from spikeinterface import compute_sparsity -from spikeinterface.postprocessing import WaveformPrincipalComponent, compute_principal_components -from spikeinterface.postprocessing.tests.common_extension_tests import WaveformExtensionCommonTestSuite - -if hasattr(pytest, "global_test_folder"): - cache_folder = pytest.global_test_folder / "postprocessing" -else: - cache_folder = Path("cache_folder") / "postprocessing" +from spikeinterface.postprocessing import ComputePrincipalComponents, compute_principal_components +from spikeinterface.postprocessing.tests.common_extension_tests import AnalyzerExtensionCommonTestSuite, cache_folder DEBUG = False -class PrincipalComponentsExtensionTest(WaveformExtensionCommonTestSuite, unittest.TestCase): - extension_class = WaveformPrincipalComponent - extension_data_names = ["pca_0", "pca_1"] - extension_function_kwargs_list = [ +class PrincipalComponentsExtensionTest(AnalyzerExtensionCommonTestSuite, unittest.TestCase): + extension_class = ComputePrincipalComponents + extension_function_params_list = [ dict(mode="by_channel_local"), - dict(mode="by_channel_local", n_jobs=2), dict(mode="by_channel_global"), - dict(mode="concatenated"), + # mode concatenated cannot be tested here because it do not work with sparse=True ] - def test_shapes(self): - nchan1 = self.we1.recording.get_num_channels() - for mode in ("by_channel_local", "by_channel_global"): - _ = self.extension_class.get_extension_function()(self.we1, mode=mode, n_components=5) - pc = self.we1.load_extension(self.extension_class.extension_name) - for unit_id in self.we1.sorting.unit_ids: - proj = pc.get_projections(unit_id) - assert proj.shape[1:] == (5, nchan1) - for mode in ("concatenated",): - _ = self.extension_class.get_extension_function()(self.we2, mode=mode, n_components=3) - pc = self.we2.load_extension(self.extension_class.extension_name) - for unit_id in self.we2.sorting.unit_ids: - proj = pc.get_projections(unit_id) - assert proj.shape[1] == 3 + def test_mode_concatenated(self): + # this is tested outside "extension_function_params_list" because it do not support sparsity! + + sorting_analyzer = self._prepare_sorting_analyzer(format="memory", sparse=False) + + n_components = 3 + sorting_analyzer.compute("principal_components", mode="concatenated", n_components=n_components) + ext = sorting_analyzer.get_extension("principal_components") + assert ext is not None + assert len(ext.data) > 0 + pca = ext.data["pca_projection"] + assert pca.ndim == 2 + assert pca.shape[1] == n_components + + def test_get_projections(self): + + for sparse in (False, True): + + sorting_analyzer = self._prepare_sorting_analyzer(format="memory", sparse=sparse) + num_chans = sorting_analyzer.get_num_channels() + n_components = 2 + + sorting_analyzer.compute("principal_components", mode="by_channel_global", n_components=n_components) + ext = sorting_analyzer.get_extension("principal_components") + + for unit_id in sorting_analyzer.unit_ids: + if not sparse: + one_proj = ext.get_projections_one_unit(unit_id, sparse=False) + assert one_proj.shape[1] == n_components + assert one_proj.shape[2] == num_chans + else: + one_proj = ext.get_projections_one_unit(unit_id, sparse=False) + assert one_proj.shape[1] == n_components + assert one_proj.shape[2] == num_chans + + one_proj, chan_inds = ext.get_projections_one_unit(unit_id, sparse=True) + assert one_proj.shape[1] == n_components + assert one_proj.shape[2] < num_chans + assert one_proj.shape[2] == chan_inds.size + + some_unit_ids = sorting_analyzer.unit_ids[::2] + some_channel_ids = sorting_analyzer.channel_ids[::2] + + random_spikes_indices = sorting_analyzer.get_extension("random_spikes").get_data() + + # this should be all spikes all channels + some_projections, spike_unit_index = ext.get_some_projections(channel_ids=None, unit_ids=None) + assert some_projections.shape[0] == spike_unit_index.shape[0] + assert spike_unit_index.shape[0] == random_spikes_indices.size + assert some_projections.shape[1] == n_components + assert some_projections.shape[2] == num_chans + + # this should be some spikes all channels + some_projections, spike_unit_index = ext.get_some_projections(channel_ids=None, unit_ids=some_unit_ids) + assert some_projections.shape[0] == spike_unit_index.shape[0] + assert spike_unit_index.shape[0] < random_spikes_indices.size + assert some_projections.shape[1] == n_components + assert some_projections.shape[2] == num_chans + assert 1 not in spike_unit_index + + # this should be some spikes some channels + some_projections, spike_unit_index = ext.get_some_projections( + channel_ids=some_channel_ids, unit_ids=some_unit_ids + ) + assert some_projections.shape[0] == spike_unit_index.shape[0] + assert spike_unit_index.shape[0] < random_spikes_indices.size + assert some_projections.shape[1] == n_components + assert some_projections.shape[2] == some_channel_ids.size + assert 1 not in spike_unit_index def test_compute_for_all_spikes(self): - we = self.we1 - pc = self.extension_class.get_extension_function()(we, load_if_exists=True) - print(pc) - - pc_file1 = pc.extension_folder / "all_pc1.npy" - pc.run_for_all_spikes(pc_file1, chunk_size=10000, n_jobs=1) - all_pc1 = np.load(pc_file1) - - pc_file2 = pc.extension_folder / "all_pc2.npy" - pc.run_for_all_spikes(pc_file2, chunk_size=10000, n_jobs=2) - all_pc2 = np.load(pc_file2) - - assert np.array_equal(all_pc1, all_pc2) - - # test with sparsity - sparsity = compute_sparsity(we, method="radius", radius_um=50) - we_copy = we.save(folder=cache_folder / "we_copy") - pc_sparse = self.extension_class.get_extension_function()(we_copy, sparsity=sparsity, load_if_exists=False) - pc_file_sparse = pc.extension_folder / "all_pc_sparse.npy" - pc_sparse.run_for_all_spikes(pc_file_sparse, chunk_size=10000, n_jobs=1) - all_pc_sparse = np.load(pc_file_sparse) - all_spikes_seg0 = we_copy.sorting.to_spike_vector(concatenated=False)[0] - for unit_index, unit_id in enumerate(we.unit_ids): - sparse_channel_ids = sparsity.unit_id_to_channel_ids[unit_id] - pc_unit = all_pc_sparse[all_spikes_seg0["unit_index"] == unit_index] - assert np.allclose(pc_unit[:, :, len(sparse_channel_ids) :], 0) - - def test_sparse(self): - we = self.we2 - unit_ids = we.unit_ids - num_channels = we.get_num_channels() - pc = self.extension_class(we) - - sparsity_radius = compute_sparsity(we, method="radius", radius_um=50) - sparsity_best = compute_sparsity(we, method="best_channels", num_channels=2) - sparsities = [sparsity_radius, sparsity_best] - print(sparsities) - - for mode in ("by_channel_local", "by_channel_global"): - for sparsity in sparsities: - pc.set_params(n_components=5, mode=mode, sparsity=sparsity) - pc.run() - for i, unit_id in enumerate(unit_ids): - proj_sparse = pc.get_projections(unit_id, sparse=True) - assert proj_sparse.shape[1:] == (5, len(sparsity.unit_id_to_channel_ids[unit_id])) - proj_dense = pc.get_projections(unit_id, sparse=False) - assert proj_dense.shape[1:] == (5, num_channels) - - # test project_new - unit_id = 3 - new_wfs = we.get_waveforms(unit_id) - new_proj_sparse = pc.project_new(new_wfs, unit_id=unit_id, sparse=True) - assert new_proj_sparse.shape == (new_wfs.shape[0], 5, len(sparsity.unit_id_to_channel_ids[unit_id])) - new_proj_dense = pc.project_new(new_wfs, unit_id=unit_id, sparse=False) - assert new_proj_dense.shape == (new_wfs.shape[0], 5, num_channels) - - if DEBUG: - import matplotlib.pyplot as plt - - plt.ion() - cmap = plt.get_cmap("jet", len(unit_ids)) - fig, axs = plt.subplots(nrows=len(unit_ids), ncols=num_channels) - for i, unit_id in enumerate(unit_ids): - comp = pc.get_projections(unit_id) - print(comp.shape) - for chan_ind in range(num_channels): - ax = axs[i, chan_ind] - ax.scatter(comp[:, 0, chan_ind], comp[:, 1, chan_ind], color=cmap(i)) - ax.set_title(f"{mode}-{sparsity.unit_id_to_channel_ids[unit_id]}") - if i == 0: - ax.set_xlabel(f"Ch{chan_ind}") - plt.show() - - for mode in ("concatenated",): - # concatenated is only compatible with "best" - pc.set_params(n_components=5, mode=mode, sparsity=sparsity_best) - print(pc) - pc.run() - for i, unit_id in enumerate(unit_ids): - proj = pc.get_projections(unit_id) - assert proj.shape[1] == 5 - - # test project_new - unit_id = 3 - new_wfs = we.get_waveforms(unit_id) - new_proj = pc.project_new(new_wfs, unit_id) - assert new_proj.shape == (len(new_wfs), 5) - - def test_project_new(self): - from sklearn.decomposition import IncrementalPCA - - we = self.we1 - if we.has_extension("principal_components"): - we.delete_extension("principal_components") - we_cp = we.select_units(we.unit_ids, self.cache_folder / "toy_waveforms_1seg_cp") - - wfs0 = we.get_waveforms(unit_id=we.unit_ids[0]) - n_samples = wfs0.shape[1] - n_channels = wfs0.shape[2] - n_components = 5 - # local - pc_local = compute_principal_components( - we, n_components=n_components, load_if_exists=True, mode="by_channel_local" - ) - pc_local_par = compute_principal_components( - we_cp, n_components=n_components, load_if_exists=True, mode="by_channel_local", n_jobs=2, progress_bar=True - ) + for sparse in (True, False): + sorting_analyzer = self._prepare_sorting_analyzer(format="memory", sparse=sparse) - all_pca = pc_local.get_pca_model() - all_pca_par = pc_local_par.get_pca_model() + num_spikes = sorting_analyzer.sorting.to_spike_vector().size - assert len(all_pca) == we.get_num_channels() - assert len(all_pca_par) == we.get_num_channels() + n_components = 3 + sorting_analyzer.compute("principal_components", mode="by_channel_local", n_components=n_components) + ext = sorting_analyzer.get_extension("principal_components") - for pc, pc_par in zip(all_pca, all_pca_par): - assert np.allclose(pc.components_, pc_par.components_) + pc_file1 = cache_folder / "all_pc1.npy" + ext.run_for_all_spikes(pc_file1, chunk_size=10000, n_jobs=1) + all_pc1 = np.load(pc_file1) + assert all_pc1.shape[0] == num_spikes - # project - new_waveforms = np.random.randn(100, n_samples, n_channels) - new_proj = pc_local.project_new(new_waveforms) + pc_file2 = cache_folder / "all_pc2.npy" + ext.run_for_all_spikes(pc_file2, chunk_size=10000, n_jobs=2) + all_pc2 = np.load(pc_file2) - assert new_proj.shape == (100, n_components, n_channels) + assert np.array_equal(all_pc1, all_pc2) - # global - we.delete_extension("principal_components") - pc_global = compute_principal_components( - we, n_components=n_components, load_if_exists=True, mode="by_channel_global" - ) - - all_pca = pc_global.get_pca_model() - assert isinstance(all_pca, IncrementalPCA) - - # project - new_waveforms = np.random.randn(100, n_samples, n_channels) - new_proj = pc_global.project_new(new_waveforms) + def test_project_new(self): + from sklearn.decomposition import IncrementalPCA - assert new_proj.shape == (100, n_components, n_channels) + sorting_analyzer = self._prepare_sorting_analyzer(format="memory", sparse=False) - # concatenated - we.delete_extension("principal_components") - pc_concatenated = compute_principal_components( - we, n_components=n_components, load_if_exists=True, mode="concatenated" - ) + waveforms = sorting_analyzer.get_extension("waveforms").data["waveforms"] - all_pca = pc_concatenated.get_pca_model() - assert isinstance(all_pca, IncrementalPCA) + n_components = 3 + sorting_analyzer.compute("principal_components", mode="by_channel_local", n_components=n_components) + ext_pca = sorting_analyzer.get_extension(self.extension_name) - # project - new_waveforms = np.random.randn(100, n_samples, n_channels) - new_proj = pc_concatenated.project_new(new_waveforms) + num_spike = 100 + new_spikes = sorting_analyzer.sorting.to_spike_vector()[:num_spike] + new_waveforms = np.random.randn(num_spike, waveforms.shape[1], waveforms.shape[2]) + new_proj = ext_pca.project_new(new_spikes, new_waveforms) - assert new_proj.shape == (100, n_components) + assert new_proj.shape[0] == num_spike + assert new_proj.shape[1] == n_components + assert new_proj.shape[2] == ext_pca.data["pca_projection"].shape[2] if __name__ == "__main__": test = PrincipalComponentsExtensionTest() - test.setUp() - # test.test_extension() - # test.test_shapes() - # test.test_compute_for_all_spikes() - # test.test_sparse() + test.setUpClass() + test.test_extension() + test.test_mode_concatenated() + test.test_get_projections() + test.test_compute_for_all_spikes() test.test_project_new() + + # ext = test.sorting_analyzers["sparseTrue_memory"].get_extension("principal_components") + # pca = ext.data["pca_projection"] + # import matplotlib.pyplot as plt + # fig, ax = plt.subplots() + # ax.scatter(pca[:, 0, 0], pca[:, 0, 1]) + # plt.show() diff --git a/src/spikeinterface/postprocessing/tests/test_spike_amplitudes.py b/src/spikeinterface/postprocessing/tests/test_spike_amplitudes.py index d96598691e..e02c981774 100644 --- a/src/spikeinterface/postprocessing/tests/test_spike_amplitudes.py +++ b/src/spikeinterface/postprocessing/tests/test_spike_amplitudes.py @@ -1,45 +1,23 @@ import unittest import numpy as np -from spikeinterface.postprocessing import SpikeAmplitudesCalculator +from spikeinterface.postprocessing import ComputeSpikeAmplitudes +from spikeinterface.postprocessing.tests.common_extension_tests import AnalyzerExtensionCommonTestSuite -from spikeinterface.postprocessing.tests.common_extension_tests import WaveformExtensionCommonTestSuite - -class SpikeAmplitudesExtensionTest(WaveformExtensionCommonTestSuite, unittest.TestCase): - extension_class = SpikeAmplitudesCalculator - extension_data_names = ["amplitude_segment_0"] - extension_function_kwargs_list = [ - dict(peak_sign="neg", outputs="concatenated", chunk_size=10000, n_jobs=1), - dict(peak_sign="neg", outputs="by_unit", chunk_size=10000, n_jobs=1), +class ComputeSpikeAmplitudesTest(AnalyzerExtensionCommonTestSuite, unittest.TestCase): + extension_class = ComputeSpikeAmplitudes + extension_function_params_list = [ + dict(return_scaled=True), + dict(return_scaled=False), ] - def test_scaled(self): - amplitudes_scaled = self.extension_class.get_extension_function()( - self.we1, peak_sign="neg", outputs="concatenated", chunk_size=10000, n_jobs=1, return_scaled=True - ) - amplitudes_unscaled = self.extension_class.get_extension_function()( - self.we1, peak_sign="neg", outputs="concatenated", chunk_size=10000, n_jobs=1, return_scaled=False - ) - gain = self.we1.recording.get_channel_gains()[0] - - assert np.allclose(amplitudes_scaled[0], amplitudes_unscaled[0] * gain) - - def test_parallel(self): - amplitudes1 = self.extension_class.get_extension_function()( - self.we1, peak_sign="neg", load_if_exists=False, outputs="concatenated", chunk_size=10000, n_jobs=1 - ) - # TODO : fix multi processing for spike amplitudes!!!!!!! - amplitudes2 = self.extension_class.get_extension_function()( - self.we1, peak_sign="neg", load_if_exists=False, outputs="concatenated", chunk_size=10000, n_jobs=2 - ) - - assert np.array_equal(amplitudes1[0], amplitudes2[0]) - if __name__ == "__main__": - test = SpikeAmplitudesExtensionTest() - test.setUp() + test = ComputeSpikeAmplitudesTest() + test.setUpClass() test.test_extension() - # test.test_scaled() - # test.test_parallel() + + # for k, sorting_analyzer in test.sorting_analyzers.items(): + # print(sorting_analyzer) + # print(sorting_analyzer.get_extension("spike_amplitudes").data["amplitudes"].shape) diff --git a/src/spikeinterface/postprocessing/tests/test_spike_locations.py b/src/spikeinterface/postprocessing/tests/test_spike_locations.py index d047a2f67e..d48ff3d84b 100644 --- a/src/spikeinterface/postprocessing/tests/test_spike_locations.py +++ b/src/spikeinterface/postprocessing/tests/test_spike_locations.py @@ -1,39 +1,26 @@ import unittest import numpy as np -from spikeinterface.postprocessing import SpikeLocationsCalculator +from spikeinterface.postprocessing import ComputeSpikeLocations +from spikeinterface.postprocessing.tests.common_extension_tests import AnalyzerExtensionCommonTestSuite -from spikeinterface.postprocessing.tests.common_extension_tests import WaveformExtensionCommonTestSuite - -class SpikeLocationsExtensionTest(WaveformExtensionCommonTestSuite, unittest.TestCase): - extension_class = SpikeLocationsCalculator - extension_data_names = ["spike_locations"] - extension_function_kwargs_list = [ +class SpikeLocationsExtensionTest(AnalyzerExtensionCommonTestSuite, unittest.TestCase): + extension_class = ComputeSpikeLocations + extension_function_params_list = [ dict( - method="center_of_mass", chunk_size=10000, n_jobs=1, spike_retriver_kwargs=dict(channel_from_template=True) - ), + method="center_of_mass", spike_retriver_kwargs=dict(channel_from_template=True) + ), # chunk_size=10000, n_jobs=1, + dict(method="center_of_mass", spike_retriver_kwargs=dict(channel_from_template=False)), dict( - method="center_of_mass", chunk_size=10000, n_jobs=1, spike_retriver_kwargs=dict(channel_from_template=False) + method="center_of_mass", ), - dict(method="center_of_mass", chunk_size=10000, n_jobs=1, outputs="by_unit"), - dict(method="monopolar_triangulation", chunk_size=10000, n_jobs=1, outputs="by_unit"), - dict(method="monopolar_triangulation", chunk_size=10000, n_jobs=1, outputs="by_unit"), + dict(method="monopolar_triangulation"), # , chunk_size=10000, n_jobs=1 + dict(method="grid_convolution"), # , chunk_size=10000, n_jobs=1 ] - def test_parallel(self): - locs_mono1 = self.extension_class.get_extension_function()( - self.we1, method="monopolar_triangulation", chunk_size=10000, n_jobs=1 - ) - locs_mono2 = self.extension_class.get_extension_function()( - self.we1, method="monopolar_triangulation", chunk_size=10000, n_jobs=2 - ) - - assert np.array_equal(locs_mono1[0], locs_mono2[0]) - if __name__ == "__main__": test = SpikeLocationsExtensionTest() - test.setUp() + test.setUpClass() test.test_extension() - test.test_parallel() diff --git a/src/spikeinterface/postprocessing/tests/test_template_metrics.py b/src/spikeinterface/postprocessing/tests/test_template_metrics.py index 30e5881024..360f0f379f 100644 --- a/src/spikeinterface/postprocessing/tests/test_template_metrics.py +++ b/src/spikeinterface/postprocessing/tests/test_template_metrics.py @@ -1,30 +1,20 @@ import unittest -from spikeinterface import extract_waveforms, WaveformExtractor -from spikeinterface.extractors import toy_example -from spikeinterface.postprocessing import TemplateMetricsCalculator +from spikeinterface.postprocessing.tests.common_extension_tests import AnalyzerExtensionCommonTestSuite +from spikeinterface.postprocessing import ComputeTemplateMetrics -from spikeinterface.postprocessing.tests.common_extension_tests import WaveformExtensionCommonTestSuite - -class TemplateMetricsExtensionTest(WaveformExtensionCommonTestSuite, unittest.TestCase): - extension_class = TemplateMetricsCalculator - extension_data_names = ["metrics"] - extension_function_kwargs_list = [dict(), dict(upsampling_factor=2)] - exact_same_content = False - - def test_sparse_metrics(self): - tm_sparse = self.extension_class.get_extension_function()(self.we1, sparsity=self.sparsity1) - print(tm_sparse) - - def test_multi_channel_metrics(self): - tm_multi = self.extension_class.get_extension_function()(self.we1, include_multi_channel_metrics=True) - print(tm_multi) +class TemplateMetricsTest(AnalyzerExtensionCommonTestSuite, unittest.TestCase): + extension_class = ComputeTemplateMetrics + extension_function_params_list = [ + dict(), + dict(upsampling_factor=2), + dict(include_multi_channel_metrics=True), + ] if __name__ == "__main__": - test = TemplateMetricsExtensionTest() - test.setUp() + test = TemplateMetricsTest() + test.setUpClass() test.test_extension() - test.test_multi_channel_metrics() diff --git a/src/spikeinterface/postprocessing/tests/test_template_similarity.py b/src/spikeinterface/postprocessing/tests/test_template_similarity.py index 210954bbc4..534c909592 100644 --- a/src/spikeinterface/postprocessing/tests/test_template_similarity.py +++ b/src/spikeinterface/postprocessing/tests/test_template_similarity.py @@ -1,28 +1,44 @@ import unittest -from spikeinterface.postprocessing import check_equal_template_with_distribution_overlap, TemplateSimilarityCalculator +from spikeinterface.postprocessing.tests.common_extension_tests import ( + AnalyzerExtensionCommonTestSuite, + get_sorting_analyzer, + get_dataset, +) -from spikeinterface.postprocessing.tests.common_extension_tests import WaveformExtensionCommonTestSuite +from spikeinterface.postprocessing import check_equal_template_with_distribution_overlap, ComputeTemplateSimilarity -class SimilarityExtensionTest(WaveformExtensionCommonTestSuite, unittest.TestCase): - extension_class = TemplateSimilarityCalculator - extension_data_names = ["similarity"] +class SimilarityExtensionTest(AnalyzerExtensionCommonTestSuite, unittest.TestCase): + extension_class = ComputeTemplateSimilarity + extension_function_params_list = [ + dict(method="cosine_similarity"), + ] - # extend common test - def test_check_equal_template_with_distribution_overlap(self): - we = self.we1 - for unit_id0 in we.unit_ids: - waveforms0 = we.get_waveforms(unit_id0) - for unit_id1 in we.unit_ids: - if unit_id0 == unit_id1: - continue - waveforms1 = we.get_waveforms(unit_id1) - check_equal_template_with_distribution_overlap(waveforms0, waveforms1) + +def test_check_equal_template_with_distribution_overlap(): + + recording, sorting = get_dataset() + + sorting_analyzer = get_sorting_analyzer(recording, sorting, sparsity=None) + sorting_analyzer.compute("random_spikes") + sorting_analyzer.compute("waveforms") + sorting_analyzer.compute("templates") + + wf_ext = sorting_analyzer.get_extension("waveforms") + + for unit_id0 in sorting_analyzer.unit_ids: + waveforms0 = wf_ext.get_waveforms_one_unit(unit_id0) + for unit_id1 in sorting_analyzer.unit_ids: + if unit_id0 == unit_id1: + continue + waveforms1 = wf_ext.get_waveforms_one_unit(unit_id1) + check_equal_template_with_distribution_overlap(waveforms0, waveforms1) if __name__ == "__main__": - test = SimilarityExtensionTest() - test.setUp() - test.test_extension() - test.test_check_equal_template_with_distribution_overlap() + # test = SimilarityExtensionTest() + # test.setUpClass() + # test.test_extension() + + test_check_equal_template_with_distribution_overlap() diff --git a/src/spikeinterface/postprocessing/tests/test_unit_localization.py b/src/spikeinterface/postprocessing/tests/test_unit_localization.py index d3a171b4c6..b23adf5868 100644 --- a/src/spikeinterface/postprocessing/tests/test_unit_localization.py +++ b/src/spikeinterface/postprocessing/tests/test_unit_localization.py @@ -1,28 +1,21 @@ import unittest +from spikeinterface.postprocessing.tests.common_extension_tests import AnalyzerExtensionCommonTestSuite +from spikeinterface.postprocessing import ComputeUnitLocations -from spikeinterface.postprocessing import UnitLocationsCalculator -from spikeinterface.postprocessing.tests.common_extension_tests import WaveformExtensionCommonTestSuite - - -class UnitLocationsExtensionTest(WaveformExtensionCommonTestSuite, unittest.TestCase): - extension_class = UnitLocationsCalculator - extension_data_names = ["unit_locations"] - extension_function_kwargs_list = [ +class UnitLocationsExtensionTest(AnalyzerExtensionCommonTestSuite, unittest.TestCase): + extension_class = ComputeUnitLocations + extension_function_params_list = [ dict(method="center_of_mass", radius_um=100), - dict(method="center_of_mass", radius_um=100, outputs="by_unit"), - dict(method="grid_convolution", radius_um=50, outputs="by_unit"), - dict(method="grid_convolution", radius_um=150, weight_method={"mode": "gaussian_2d"}, outputs="by_unit"), + dict(method="grid_convolution", radius_um=50), + dict(method="grid_convolution", radius_um=150, weight_method={"mode": "gaussian_2d"}), dict(method="monopolar_triangulation", radius_um=150), - dict(method="monopolar_triangulation", radius_um=150, outputs="by_unit"), - dict( - method="monopolar_triangulation", radius_um=150, outputs="by_unit", optimizer="minimize_with_log_penality" - ), + dict(method="monopolar_triangulation", radius_um=150, optimizer="minimize_with_log_penality"), ] if __name__ == "__main__": test = UnitLocationsExtensionTest() - test.setUp() + test.setUpClass() test.test_extension() - test.tearDown() + # test.tearDown() diff --git a/src/spikeinterface/postprocessing/unit_localization.py b/src/spikeinterface/postprocessing/unit_localization.py index 5fbbe956bf..eabec5e610 100644 --- a/src/spikeinterface/postprocessing/unit_localization.py +++ b/src/spikeinterface/postprocessing/unit_localization.py @@ -12,9 +12,9 @@ except ImportError: HAVE_NUMBA = False +from ..core.sortinganalyzer import register_result_extension, AnalyzerExtension from ..core import compute_sparsity -from ..core.waveform_extractor import WaveformExtractor, BaseWaveformExtractorExtension -from ..core.template_tools import get_template_extremum_channel +from ..core.template_tools import get_template_extremum_channel, _get_nbefore, _get_dense_templates_array dtype_localize_by_method = { @@ -27,109 +27,73 @@ possible_localization_methods = list(dtype_localize_by_method.keys()) -class UnitLocationsCalculator(BaseWaveformExtractorExtension): +class ComputeUnitLocations(AnalyzerExtension): """ - Comput unit locations from WaveformExtractor. + Localize units in 2D or 3D with several methods given the template. Parameters ---------- - waveform_extractor: WaveformExtractor - A waveform extractor object + sorting_analyzer: SortingAnalyzer + A SortingAnalyzer object + method: "center_of_mass" | "monopolar_triangulation" | "grid_convolution", default: "center_of_mass" + The method to use for localization + outputs: "numpy" | "by_unit", default: "numpy" + The output format + method_kwargs: + Other kwargs depending on the method + + Returns + ------- + unit_locations: np.array + unit location with shape (num_unit, 2) or (num_unit, 3) or (num_unit, 3) (with alpha) """ extension_name = "unit_locations" + depend_on = [ + "fast_templates|templates", + ] + need_recording = True + use_nodepipeline = False + need_job_kwargs = False - def __init__(self, waveform_extractor): - BaseWaveformExtractorExtension.__init__(self, waveform_extractor) + def __init__(self, sorting_analyzer): + AnalyzerExtension.__init__(self, sorting_analyzer) - def _set_params(self, method="center_of_mass", method_kwargs={}): + def _set_params(self, method="monopolar_triangulation", **method_kwargs): params = dict(method=method, method_kwargs=method_kwargs) return params def _select_extension_data(self, unit_ids): - unit_inds = self.waveform_extractor.sorting.ids_to_indices(unit_ids) - new_unit_location = self._extension_data["unit_locations"][unit_inds] + unit_inds = self.sorting_analyzer.sorting.ids_to_indices(unit_ids) + new_unit_location = self.data["unit_locations"][unit_inds] return dict(unit_locations=new_unit_location) - def _run(self, **job_kwargs): - method = self._params["method"] - method_kwargs = self._params["method_kwargs"] + def _run(self): + method = self.params["method"] + method_kwargs = self.params["method_kwargs"] assert method in possible_localization_methods if method == "center_of_mass": - unit_location = compute_center_of_mass(self.waveform_extractor, **method_kwargs) + unit_location = compute_center_of_mass(self.sorting_analyzer, **method_kwargs) elif method == "grid_convolution": - unit_location = compute_grid_convolution(self.waveform_extractor, **method_kwargs) + unit_location = compute_grid_convolution(self.sorting_analyzer, **method_kwargs) elif method == "monopolar_triangulation": - unit_location = compute_monopolar_triangulation(self.waveform_extractor, **method_kwargs) - self._extension_data["unit_locations"] = unit_location + unit_location = compute_monopolar_triangulation(self.sorting_analyzer, **method_kwargs) + self.data["unit_locations"] = unit_location def get_data(self, outputs="numpy"): - """ - Get the computed unit locations. - - Parameters - ---------- - outputs : "numpy" | "by_unit", default: "numpy" - The output format - - Returns - ------- - unit_locations : np.array or dict - The unit locations as a Nd array (outputs="numpy") or - as a dict with units as key and locations as values. - """ if outputs == "numpy": - return self._extension_data["unit_locations"] - + return self.data["unit_locations"] elif outputs == "by_unit": locations_by_unit = {} - for unit_ind, unit_id in enumerate(self.waveform_extractor.sorting.unit_ids): - locations_by_unit[unit_id] = self._extension_data["unit_locations"][unit_ind] + for unit_ind, unit_id in enumerate(self.sorting_analyzer.unit_ids): + locations_by_unit[unit_id] = self.data["unit_locations"][unit_ind] return locations_by_unit - @staticmethod - def get_extension_function(): - return compute_unit_locations - - -WaveformExtractor.register_extension(UnitLocationsCalculator) - - -def compute_unit_locations( - waveform_extractor, load_if_exists=False, method="monopolar_triangulation", outputs="numpy", **method_kwargs -): - """ - Localize units in 2D or 3D with several methods given the template. - - Parameters - ---------- - waveform_extractor: WaveformExtractor - A waveform extractor object - load_if_exists : bool, default: False - Whether to load precomputed unit locations, if they already exist - method: "center_of_mass" | "monopolar_triangulation" | "grid_convolution", default: "center_of_mass" - The method to use for localization - outputs: "numpy" | "by_unit", default: "numpy" - The output format - method_kwargs: - Other kwargs depending on the method - Returns - ------- - unit_locations: np.array - unit location with shape (num_unit, 2) or (num_unit, 3) or (num_unit, 3) (with alpha) - """ - if load_if_exists and waveform_extractor.is_extension(UnitLocationsCalculator.extension_name): - ulc = waveform_extractor.load_extension(UnitLocationsCalculator.extension_name) - else: - ulc = UnitLocationsCalculator(waveform_extractor) - ulc.set_params(method=method, method_kwargs=method_kwargs) - ulc.run() - - unit_locations = ulc.get_data(outputs=outputs) - return unit_locations +register_result_extension(ComputeUnitLocations) +compute_unit_locations = ComputeUnitLocations.function_factory() def make_initial_guess_and_bounds(wf_data, local_contact_locations, max_distance_um, initial_z=20): @@ -220,7 +184,7 @@ def estimate_distance_error_with_log(vec, wf_data, local_contact_locations, max_ def compute_monopolar_triangulation( - waveform_extractor, + sorting_analyzer, optimizer="minimize_with_log_penality", radius_um=75, max_distance_um=1000, @@ -247,8 +211,8 @@ def compute_monopolar_triangulation( Parameters ---------- - waveform_extractor:WaveformExtractor - A waveform extractor object + sorting_analyzer: SortingAnalyzer + A SortingAnalyzer object method: "least_square" | "minimize_with_log_penality", default: "least_square" The optimizer to use radius_um: float, default: 75 @@ -274,13 +238,13 @@ def compute_monopolar_triangulation( assert optimizer in ("least_square", "minimize_with_log_penality") assert feature in ["ptp", "energy", "peak_voltage"], f"{feature} is not a valid feature" - unit_ids = waveform_extractor.sorting.unit_ids + unit_ids = sorting_analyzer.unit_ids - contact_locations = waveform_extractor.get_channel_locations() - nbefore = waveform_extractor.nbefore + contact_locations = sorting_analyzer.get_channel_locations() - sparsity = compute_sparsity(waveform_extractor, method="radius", radius_um=radius_um) - templates = waveform_extractor.get_all_templates(mode="average") + sparsity = compute_sparsity(sorting_analyzer, method="radius", radius_um=radius_um) + templates = _get_dense_templates_array(sorting_analyzer) + nbefore = _get_nbefore(sorting_analyzer) if enforce_decrease: neighbours_mask = np.zeros((templates.shape[0], templates.shape[2]), dtype=bool) @@ -288,7 +252,7 @@ def compute_monopolar_triangulation( chan_inds = sparsity.unit_id_to_channel_indices[unit_id] neighbours_mask[i, chan_inds] = True enforce_decrease_radial_parents = make_radial_order_parents(contact_locations, neighbours_mask) - best_channels = get_template_extremum_channel(waveform_extractor, outputs="index") + best_channels = get_template_extremum_channel(sorting_analyzer, outputs="index") unit_location = np.zeros((unit_ids.size, 4), dtype="float64") for i, unit_id in enumerate(unit_ids): @@ -317,14 +281,14 @@ def compute_monopolar_triangulation( return unit_location -def compute_center_of_mass(waveform_extractor, peak_sign="neg", radius_um=75, feature="ptp"): +def compute_center_of_mass(sorting_analyzer, peak_sign="neg", radius_um=75, feature="ptp"): """ Computes the center of mass (COM) of a unit based on the template amplitudes. Parameters ---------- - waveform_extractor: WaveformExtractor - The waveform extractor + sorting_analyzer: SortingAnalyzer + A SortingAnalyzer object peak_sign: "neg" | "pos" | "both", default: "neg" Sign of the template to compute best channels radius_um: float @@ -336,15 +300,15 @@ def compute_center_of_mass(waveform_extractor, peak_sign="neg", radius_um=75, fe ------- unit_location: np.array """ - unit_ids = waveform_extractor.sorting.unit_ids + unit_ids = sorting_analyzer.unit_ids - recording = waveform_extractor.recording - contact_locations = recording.get_channel_locations() + contact_locations = sorting_analyzer.get_channel_locations() assert feature in ["ptp", "mean", "energy", "peak_voltage"], f"{feature} is not a valid feature" - sparsity = compute_sparsity(waveform_extractor, peak_sign=peak_sign, method="radius", radius_um=radius_um) - templates = waveform_extractor.get_all_templates(mode="average") + sparsity = compute_sparsity(sorting_analyzer, peak_sign=peak_sign, method="radius", radius_um=radius_um) + templates = _get_dense_templates_array(sorting_analyzer) + nbefore = _get_nbefore(sorting_analyzer) unit_location = np.zeros((unit_ids.size, 2), dtype="float64") for i, unit_id in enumerate(unit_ids): @@ -360,7 +324,7 @@ def compute_center_of_mass(waveform_extractor, peak_sign="neg", radius_um=75, fe elif feature == "energy": wf_data = np.linalg.norm(wf[:, chan_inds], axis=0) elif feature == "peak_voltage": - wf_data = wf[waveform_extractor.nbefore, chan_inds] + wf_data = wf[nbefore, chan_inds] # center of mass com = np.sum(wf_data[:, np.newaxis] * local_contact_locations, axis=0) / np.sum(wf_data) @@ -370,7 +334,7 @@ def compute_center_of_mass(waveform_extractor, peak_sign="neg", radius_um=75, fe def compute_grid_convolution( - waveform_extractor, + sorting_analyzer, peak_sign="neg", radius_um=40.0, upsampling_um=5, @@ -385,8 +349,8 @@ def compute_grid_convolution( Parameters ---------- - waveform_extractor: WaveformExtractor - The waveform extractor + sorting_analyzer: SortingAnalyzer + A SortingAnalyzer object peak_sign: "neg" | "pos" | "both", default: "neg" Sign of the template to compute best channels radius_um: float, default: 40.0 @@ -411,11 +375,14 @@ def compute_grid_convolution( unit_location: np.array """ - contact_locations = waveform_extractor.get_channel_locations() + contact_locations = sorting_analyzer.get_channel_locations() + unit_ids = sorting_analyzer.unit_ids + + templates = _get_dense_templates_array(sorting_analyzer) + nbefore = _get_nbefore(sorting_analyzer) + nafter = templates.shape[1] - nbefore - nbefore = waveform_extractor.nbefore - nafter = waveform_extractor.nafter - fs = waveform_extractor.sampling_frequency + fs = sorting_analyzer.sampling_frequency percentile = 100 - percentile assert 0 <= percentile <= 100, "Percentile should be in [0, 100]" @@ -431,16 +398,13 @@ def compute_grid_convolution( contact_locations, radius_um, upsampling_um, margin_um, weight_method ) - # print(template_positions.shape) - templates = waveform_extractor.get_all_templates(mode="average") - - peak_channels = get_template_extremum_channel(waveform_extractor, peak_sign, outputs="index") - unit_ids = waveform_extractor.sorting.unit_ids + peak_channels = get_template_extremum_channel(sorting_analyzer, peak_sign, outputs="index") weights_sparsity_mask = weights > 0 nb_weights = weights.shape[0] unit_location = np.zeros((unit_ids.size, 3), dtype="float64") + for i, unit_id in enumerate(unit_ids): main_chan = peak_channels[unit_id] wf = templates[i, :, :] diff --git a/src/spikeinterface/preprocessing/remove_artifacts.py b/src/spikeinterface/preprocessing/remove_artifacts.py index 793b44f099..eeb51917e4 100644 --- a/src/spikeinterface/preprocessing/remove_artifacts.py +++ b/src/spikeinterface/preprocessing/remove_artifacts.py @@ -1,11 +1,13 @@ from __future__ import annotations +import warnings + import numpy as np from spikeinterface.core.core_tools import define_function_from_class from .basepreprocessor import BasePreprocessor, BasePreprocessorSegment -from spikeinterface.core import NumpySorting, extract_waveforms +from spikeinterface.core import NumpySorting, estimate_templates class RemoveArtifactsRecording(BasePreprocessor): @@ -80,11 +82,8 @@ class RemoveArtifactsRecording(BasePreprocessor): time_jitter: float, default: 0 If non 0, then for mode "median" or "average", a time jitter in ms can be allowed to minimize the residuals - waveforms_kwargs: dict or None, default: None - The arguments passed to the WaveformExtractor object when extracting the - artifacts, for mode "median" or "average". - By default, the global job kwargs are used, in addition to {"allow_unfiltered" : True, "mode":"memory"}. - To estimate sparse artifact + waveforms_kwargs: None + Depracted and ignored Returns ------- @@ -107,8 +106,11 @@ def __init__( sparsity=None, scale_amplitude=False, time_jitter=0, - waveforms_kwargs={"allow_unfiltered": True, "mode": "memory"}, + waveforms_kwargs=None, ): + if waveforms_kwargs is not None: + warnings("remove_artifacts() waveforms_kwargs is deprecated and ignored") + available_modes = ("zeros", "linear", "cubic", "average", "median") num_seg = recording.get_num_segments() @@ -169,19 +171,22 @@ def __init__( ms_before is not None and ms_after is not None ), f"ms_before/after should not be None for mode {mode}" sorting = NumpySorting.from_times_labels(list_triggers, list_labels, recording.get_sampling_frequency()) - sorting = sorting.save() - waveforms_kwargs.update({"ms_before": ms_before, "ms_after": ms_after}) - w = extract_waveforms(recording, sorting, None, **waveforms_kwargs) + nbefore = int(ms_before * recording.sampling_frequency / 1000.0) + nafter = int(ms_after * recording.sampling_frequency / 1000.0) + + templates = estimate_templates( + recording=recording, + spikes=sorting.to_spike_vector(), + unit_ids=sorting.unit_ids, + nbefore=nbefore, + nafter=nafter, + operator=mode, + return_scaled=False, + ) artifacts = {} - sparsity = {} - for label in w.sorting.unit_ids: - artifacts[label] = w.get_template(label, mode=mode).astype(recording.dtype) - if w.is_sparse(): - unit_ind = w.sorting.id_to_index(label) - sparsity[label] = w.sparsity.mask[unit_ind] - else: - sparsity = None + for i, label in enumerate(sorting.unit_ids): + artifacts[label] = templates[i, :, :] if sparsity is not None: labels = [] diff --git a/src/spikeinterface/preprocessing/silence_periods.py b/src/spikeinterface/preprocessing/silence_periods.py index 6413ec06b4..a1bff8a6bc 100644 --- a/src/spikeinterface/preprocessing/silence_periods.py +++ b/src/spikeinterface/preprocessing/silence_periods.py @@ -119,8 +119,9 @@ def get_traces(self, start_frame, end_frame, channel_indices): if self.mode == "zeros": traces[onset:offset, :] = 0 elif self.mode == "noise": + num_samples = traces[onset:offset, :].shape[0] traces[onset:offset, :] = self.noise_levels[channel_indices] * np.random.randn( - offset - onset, num_channels + num_samples, num_channels ) return traces diff --git a/src/spikeinterface/preprocessing/tests/test_remove_artifacts.py b/src/spikeinterface/preprocessing/tests/test_remove_artifacts.py index dd9fd84fbd..b8a6e83f67 100644 --- a/src/spikeinterface/preprocessing/tests/test_remove_artifacts.py +++ b/src/spikeinterface/preprocessing/tests/test_remove_artifacts.py @@ -6,18 +6,18 @@ from spikeinterface.core import generate_recording from spikeinterface.preprocessing import remove_artifacts -if hasattr(pytest, "global_test_folder"): - cache_folder = pytest.global_test_folder / "preprocessing" -else: - cache_folder = Path("cache_folder") / "preprocessing" +# if hasattr(pytest, "global_test_folder"): +# cache_folder = pytest.global_test_folder / "preprocessing" +# else: +# cache_folder = Path("cache_folder") / "preprocessing" -set_global_tmp_folder(cache_folder) +# set_global_tmp_folder(cache_folder) def test_remove_artifacts(): # one segment only rec = generate_recording(durations=[10.0]) - rec = rec.save(folder=cache_folder / "recording") + # rec = rec.save(folder=cache_folder / "recording") rec.annotate(is_filtered=True) triggers = [15000, 30000] diff --git a/src/spikeinterface/qualitymetrics/__init__.py b/src/spikeinterface/qualitymetrics/__init__.py index 23d3894c03..ce477ce8fb 100644 --- a/src/spikeinterface/qualitymetrics/__init__.py +++ b/src/spikeinterface/qualitymetrics/__init__.py @@ -2,7 +2,7 @@ from .quality_metric_calculator import ( compute_quality_metrics, get_quality_metric_list, - QualityMetricCalculator, + ComputeQualityMetrics, get_default_qm_params, ) from .pca_metrics import get_quality_pca_metric_list diff --git a/src/spikeinterface/qualitymetrics/misc_metrics.py b/src/spikeinterface/qualitymetrics/misc_metrics.py index 079f7dc027..4ee4588f0c 100644 --- a/src/spikeinterface/qualitymetrics/misc_metrics.py +++ b/src/spikeinterface/qualitymetrics/misc_metrics.py @@ -16,13 +16,15 @@ import numpy as np import warnings -from ..postprocessing import compute_spike_amplitudes, correlogram_for_one_segment -from ..core import WaveformExtractor, get_noise_levels +from ..postprocessing import correlogram_for_one_segment +from ..core import SortingAnalyzer, get_noise_levels from ..core.template_tools import ( get_template_extremum_channel, get_template_extremum_amplitude, + _get_dense_templates_array, ) + try: import numba @@ -34,13 +36,13 @@ _default_params = dict() -def compute_num_spikes(waveform_extractor, unit_ids=None, **kwargs): +def compute_num_spikes(sorting_analyzer, unit_ids=None, **kwargs): """Compute the number of spike across segments. Parameters ---------- - waveform_extractor : WaveformExtractor - The waveform extractor object. + sorting_analyzer: SortingAnalyzer + A SortingAnalyzer object unit_ids : list or None The list of unit ids to compute the number of spikes. If None, all units are used. @@ -50,7 +52,7 @@ def compute_num_spikes(waveform_extractor, unit_ids=None, **kwargs): The number of spikes, across all segments, for each unit ID. """ - sorting = waveform_extractor.sorting + sorting = sorting_analyzer.sorting if unit_ids is None: unit_ids = sorting.unit_ids num_segs = sorting.get_num_segments() @@ -66,13 +68,13 @@ def compute_num_spikes(waveform_extractor, unit_ids=None, **kwargs): return num_spikes -def compute_firing_rates(waveform_extractor, unit_ids=None, **kwargs): +def compute_firing_rates(sorting_analyzer, unit_ids=None, **kwargs): """Compute the firing rate across segments. Parameters ---------- - waveform_extractor : WaveformExtractor - The waveform extractor object. + sorting_analyzer: SortingAnalyzer + A SortingAnalyzer object unit_ids : list or None The list of unit ids to compute the firing rate. If None, all units are used. @@ -82,25 +84,25 @@ def compute_firing_rates(waveform_extractor, unit_ids=None, **kwargs): The firing rate, across all segments, for each unit ID. """ - sorting = waveform_extractor.sorting + sorting = sorting_analyzer.sorting if unit_ids is None: unit_ids = sorting.unit_ids - total_duration = waveform_extractor.get_total_duration() + total_duration = sorting_analyzer.get_total_duration() firing_rates = {} - num_spikes = compute_num_spikes(waveform_extractor) + num_spikes = compute_num_spikes(sorting_analyzer) for unit_id in unit_ids: firing_rates[unit_id] = num_spikes[unit_id] / total_duration return firing_rates -def compute_presence_ratios(waveform_extractor, bin_duration_s=60.0, mean_fr_ratio_thresh=0.0, unit_ids=None, **kwargs): +def compute_presence_ratios(sorting_analyzer, bin_duration_s=60.0, mean_fr_ratio_thresh=0.0, unit_ids=None, **kwargs): """Calculate the presence ratio, the fraction of time the unit is firing above a certain threshold. Parameters ---------- - waveform_extractor : WaveformExtractor - The waveform extractor object. + sorting_analyzer: SortingAnalyzer + A SortingAnalyzer object bin_duration_s : float, default: 60 The duration of each bin in seconds. If the duration is less than this value, presence_ratio is set to NaN @@ -120,15 +122,15 @@ def compute_presence_ratios(waveform_extractor, bin_duration_s=60.0, mean_fr_rat The total duration, across all segments, is divided into "num_bins". To do so, spike trains across segments are concatenated to mimic a continuous segment. """ - sorting = waveform_extractor.sorting + sorting = sorting_analyzer.sorting if unit_ids is None: - unit_ids = sorting.unit_ids - num_segs = sorting.get_num_segments() + unit_ids = sorting_analyzer.unit_ids + num_segs = sorting_analyzer.get_num_segments() - seg_lengths = [waveform_extractor.get_num_samples(i) for i in range(num_segs)] - total_length = waveform_extractor.get_total_samples() - total_duration = waveform_extractor.get_total_duration() - bin_duration_samples = int((bin_duration_s * waveform_extractor.sampling_frequency)) + seg_lengths = [sorting_analyzer.get_num_samples(i) for i in range(num_segs)] + total_length = sorting_analyzer.get_total_samples() + total_duration = sorting_analyzer.get_total_duration() + bin_duration_samples = int((bin_duration_s * sorting_analyzer.sampling_frequency)) num_bin_edges = total_length // bin_duration_samples + 1 bin_edges = np.arange(num_bin_edges) * bin_duration_samples @@ -175,27 +177,23 @@ def compute_presence_ratios(waveform_extractor, bin_duration_s=60.0, mean_fr_rat def compute_snrs( - waveform_extractor, + sorting_analyzer, peak_sign: str = "neg", peak_mode: str = "extremum", - random_chunk_kwargs_dict=None, unit_ids=None, ): """Compute signal to noise ratio. Parameters ---------- - waveform_extractor : WaveformExtractor - The waveform extractor object. + sorting_analyzer: SortingAnalyzer + A SortingAnalyzer object peak_sign : "neg" | "pos" | "both", default: "neg" The sign of the template to compute best channels. peak_mode: "extremum" | "at_index", default: "extremum" How to compute the amplitude. Extremum takes the maxima/minima - At_index takes the value at t=waveform_extractor.nbefore - random_chunk_kwarg_dict: dict or None - Dictionary to control the get_random_data_chunks() function. - If None, default values are used + At_index takes the value at t=sorting_analyzer.nbefore unit_ids : list or None The list of unit ids to compute the SNR. If None, all units are used. @@ -204,25 +202,18 @@ def compute_snrs( snrs : dict Computed signal to noise ratio for each unit. """ - if waveform_extractor.has_extension("noise_levels"): - noise_levels = waveform_extractor.load_extension("noise_levels").get_data() - else: - if random_chunk_kwargs_dict is None: - random_chunk_kwargs_dict = {} - noise_levels = get_noise_levels( - waveform_extractor.recording, return_scaled=waveform_extractor.return_scaled, **random_chunk_kwargs_dict - ) + assert sorting_analyzer.has_extension("noise_levels") + noise_levels = sorting_analyzer.get_extension("noise_levels").get_data() assert peak_sign in ("neg", "pos", "both") assert peak_mode in ("extremum", "at_index") - sorting = waveform_extractor.sorting if unit_ids is None: - unit_ids = sorting.unit_ids - channel_ids = waveform_extractor.channel_ids + unit_ids = sorting_analyzer.unit_ids + channel_ids = sorting_analyzer.channel_ids - extremum_channels_ids = get_template_extremum_channel(waveform_extractor, peak_sign=peak_sign, mode=peak_mode) - unit_amplitudes = get_template_extremum_amplitude(waveform_extractor, peak_sign=peak_sign, mode=peak_mode) + extremum_channels_ids = get_template_extremum_channel(sorting_analyzer, peak_sign=peak_sign, mode=peak_mode) + unit_amplitudes = get_template_extremum_amplitude(sorting_analyzer, peak_sign=peak_sign, mode=peak_mode) # make a dict to access by chan_id noise_levels = dict(zip(channel_ids, noise_levels)) @@ -237,10 +228,10 @@ def compute_snrs( return snrs -_default_params["snr"] = dict(peak_sign="neg", peak_mode="extremum", random_chunk_kwargs_dict=None) +_default_params["snr"] = dict(peak_sign="neg", peak_mode="extremum") -def compute_isi_violations(waveform_extractor, isi_threshold_ms=1.5, min_isi_ms=0, unit_ids=None): +def compute_isi_violations(sorting_analyzer, isi_threshold_ms=1.5, min_isi_ms=0, unit_ids=None): """Calculate Inter-Spike Interval (ISI) violations. It computes several metrics related to isi violations: @@ -250,8 +241,8 @@ def compute_isi_violations(waveform_extractor, isi_threshold_ms=1.5, min_isi_ms= Parameters ---------- - waveform_extractor : WaveformExtractor - The waveform extractor object + sorting_analyzer : SortingAnalyzer + The SortingAnalyzer object isi_threshold_ms : float, default: 1.5 Threshold for classifying adjacent spikes as an ISI violation, in ms. This is the biophysical refractory period @@ -284,13 +275,13 @@ def compute_isi_violations(waveform_extractor, isi_threshold_ms=1.5, min_isi_ms= """ res = namedtuple("isi_violation", ["isi_violations_ratio", "isi_violations_count"]) - sorting = waveform_extractor.sorting + sorting = sorting_analyzer.sorting if unit_ids is None: - unit_ids = sorting.unit_ids - num_segs = sorting.get_num_segments() + unit_ids = sorting_analyzer.unit_ids + num_segs = sorting_analyzer.get_num_segments() - total_duration_s = waveform_extractor.get_total_duration() - fs = waveform_extractor.sampling_frequency + total_duration_s = sorting_analyzer.get_total_duration() + fs = sorting_analyzer.sampling_frequency isi_threshold_s = isi_threshold_ms / 1000 min_isi_s = min_isi_ms / 1000 @@ -322,7 +313,7 @@ def compute_isi_violations(waveform_extractor, isi_threshold_ms=1.5, min_isi_ms= def compute_refrac_period_violations( - waveform_extractor, refractory_period_ms: float = 1.0, censored_period_ms: float = 0.0, unit_ids=None + sorting_analyzer, refractory_period_ms: float = 1.0, censored_period_ms: float = 0.0, unit_ids=None ): """Calculates the number of refractory period violations. @@ -333,8 +324,8 @@ def compute_refrac_period_violations( Parameters ---------- - waveform_extractor : WaveformExtractor - The waveform extractor object + sorting_analyzer : SortingAnalyzer + The SortingAnalyzer object refractory_period_ms : float, default: 1.0 The period (in ms) where no 2 good spikes can occur. censored_period_ms : float, default: 0.0 @@ -366,17 +357,17 @@ def compute_refrac_period_violations( print("compute_refrac_period_violations cannot run without numba.") return None - sorting = waveform_extractor.sorting - fs = sorting.get_sampling_frequency() - num_units = len(sorting.unit_ids) - num_segments = sorting.get_num_segments() + sorting = sorting_analyzer.sorting + fs = sorting_analyzer.sampling_frequency + num_units = len(sorting_analyzer.unit_ids) + num_segments = sorting_analyzer.get_num_segments() spikes = sorting.to_spike_vector(concatenated=False) if unit_ids is None: - unit_ids = sorting.unit_ids + unit_ids = sorting_analyzer.unit_ids - num_spikes = compute_num_spikes(waveform_extractor) + num_spikes = compute_num_spikes(sorting_analyzer) t_c = int(round(censored_period_ms * fs * 1e-3)) t_r = int(round(refractory_period_ms * fs * 1e-3)) @@ -387,7 +378,7 @@ def compute_refrac_period_violations( spike_labels = spikes[seg_index]["unit_index"].astype(np.int32) _compute_rp_violations_numba(nb_rp_violations, spike_times, spike_labels, t_c, t_r) - T = waveform_extractor.get_total_samples() + T = sorting_analyzer.get_total_samples() nb_violations = {} rp_contamination = {} @@ -411,7 +402,7 @@ def compute_refrac_period_violations( def compute_sliding_rp_violations( - waveform_extractor, + sorting_analyzer, min_spikes=0, bin_size_ms=0.25, window_size_s=1, @@ -426,8 +417,8 @@ def compute_sliding_rp_violations( Parameters ---------- - waveform_extractor : WaveformExtractor - The waveform extractor object. + sorting_analyzer: SortingAnalyzer + A SortingAnalyzer object min_spikes : int, default: 0 Contamination is set to np.nan if the unit has less than this many spikes across all segments. @@ -455,12 +446,12 @@ def compute_sliding_rp_violations( This code was adapted from: https://github.com/SteinmetzLab/slidingRefractory/blob/1.0.0/python/slidingRP/metrics.py """ - duration = waveform_extractor.get_total_duration() - sorting = waveform_extractor.sorting + duration = sorting_analyzer.get_total_duration() + sorting = sorting_analyzer.sorting if unit_ids is None: - unit_ids = sorting.unit_ids - num_segs = sorting.get_num_segments() - fs = waveform_extractor.sampling_frequency + unit_ids = sorting_analyzer.unit_ids + num_segs = sorting_analyzer.get_num_segments() + fs = sorting_analyzer.sampling_frequency contamination = {} @@ -505,14 +496,14 @@ def compute_sliding_rp_violations( ) -def compute_synchrony_metrics(waveform_extractor, synchrony_sizes=(2, 4, 8), unit_ids=None, **kwargs): +def compute_synchrony_metrics(sorting_analyzer, synchrony_sizes=(2, 4, 8), unit_ids=None, **kwargs): """Compute synchrony metrics. Synchrony metrics represent the rate of occurrences of "synchrony_size" spikes at the exact same sample index. Parameters ---------- - waveform_extractor : WaveformExtractor - The waveform extractor object. + sorting_analyzer: SortingAnalyzer + A SortingAnalyzer object synchrony_sizes : list or tuple, default: (2, 4, 8) The synchrony sizes to compute. unit_ids : list or None, default: None @@ -530,17 +521,17 @@ def compute_synchrony_metrics(waveform_extractor, synchrony_sizes=(2, 4, 8), uni This code was adapted from `Elephant - Electrophysiology Analysis Toolkit `_ """ assert min(synchrony_sizes) > 1, "Synchrony sizes must be greater than 1" - spike_counts = waveform_extractor.sorting.count_num_spikes_per_unit(outputs="dict") - sorting = waveform_extractor.sorting + spike_counts = sorting_analyzer.sorting.count_num_spikes_per_unit(outputs="dict") + sorting = sorting_analyzer.sorting spikes = sorting.to_spike_vector(concatenated=False) if unit_ids is None: - unit_ids = sorting.unit_ids + unit_ids = sorting_analyzer.unit_ids # Pre-allocate synchrony counts synchrony_counts = {} for synchrony_size in synchrony_sizes: - synchrony_counts[synchrony_size] = np.zeros(len(waveform_extractor.unit_ids), dtype=np.int64) + synchrony_counts[synchrony_size] = np.zeros(len(sorting_analyzer.unit_ids), dtype=np.int64) all_unit_ids = list(sorting.unit_ids) for segment_index in range(sorting.get_num_segments()): @@ -578,14 +569,14 @@ def compute_synchrony_metrics(waveform_extractor, synchrony_sizes=(2, 4, 8), uni _default_params["synchrony"] = dict(synchrony_sizes=(2, 4, 8)) -def compute_firing_ranges(waveform_extractor, bin_size_s=5, percentiles=(5, 95), unit_ids=None, **kwargs): +def compute_firing_ranges(sorting_analyzer, bin_size_s=5, percentiles=(5, 95), unit_ids=None, **kwargs): """Calculate firing range, the range between the 5th and 95th percentiles of the firing rates distribution computed in non-overlapping time bins. Parameters ---------- - waveform_extractor : WaveformExtractor - The waveform extractor object. + sorting_analyzer: SortingAnalyzer + A SortingAnalyzer object bin_size_s : float, default: 5 The size of the bin in seconds. percentiles : tuple, default: (5, 95) @@ -602,16 +593,16 @@ def compute_firing_ranges(waveform_extractor, bin_size_s=5, percentiles=(5, 95), ----- Designed by Simon Musall and ported to SpikeInterface by Alessio Buccino. """ - sampling_frequency = waveform_extractor.sampling_frequency + sampling_frequency = sorting_analyzer.sampling_frequency bin_size_samples = int(bin_size_s * sampling_frequency) - sorting = waveform_extractor.sorting + sorting = sorting_analyzer.sorting if unit_ids is None: unit_ids = sorting.unit_ids if all( [ - waveform_extractor.get_num_samples(segment_index) < bin_size_samples - for segment_index in range(waveform_extractor.get_num_segments()) + sorting_analyzer.get_num_samples(segment_index) < bin_size_samples + for segment_index in range(sorting_analyzer.get_num_segments()) ] ): warnings.warn(f"Bin size of {bin_size_s}s is larger than each segment duration. Firing ranges are set to NaN.") @@ -619,8 +610,8 @@ def compute_firing_ranges(waveform_extractor, bin_size_s=5, percentiles=(5, 95), # for each segment, we compute the firing rate histogram and we concatenate them firing_rate_histograms = {unit_id: np.array([], dtype=float) for unit_id in sorting.unit_ids} - for segment_index in range(waveform_extractor.get_num_segments()): - num_samples = waveform_extractor.get_num_samples(segment_index) + for segment_index in range(sorting_analyzer.get_num_segments()): + num_samples = sorting_analyzer.get_num_samples(segment_index) edges = np.arange(0, num_samples + 1, bin_size_samples) for unit_id in unit_ids: @@ -643,7 +634,7 @@ def compute_firing_ranges(waveform_extractor, bin_size_s=5, percentiles=(5, 95), def compute_amplitude_cv_metrics( - waveform_extractor, + sorting_analyzer, average_num_spikes_per_bin=50, percentiles=(5, 95), min_num_bins=10, @@ -656,8 +647,8 @@ def compute_amplitude_cv_metrics( Parameters ---------- - waveform_extractor : WaveformExtractor - The waveform extractor object. + sorting_analyzer: SortingAnalyzer + A SortingAnalyzer object average_num_spikes_per_bin : int, default: 50 The average number of spikes per bin. This is used to estimate a temporal bin size using the firing rate of each unit. For example, if a unit has a firing rate of 10 Hz, amd the average number of spikes per bin is @@ -686,26 +677,23 @@ def compute_amplitude_cv_metrics( "spike_amplitudes", "amplitude_scalings", ), "Invalid amplitude_extension. It can be either 'spike_amplitudes' or 'amplitude_scalings'" - sorting = waveform_extractor.sorting - total_duration = waveform_extractor.get_total_duration() + sorting = sorting_analyzer.sorting + total_duration = sorting_analyzer.get_total_duration() spikes = sorting.to_spike_vector() num_spikes = sorting.count_num_spikes_per_unit(outputs="dict") if unit_ids is None: unit_ids = sorting.unit_ids - if waveform_extractor.has_extension(amplitude_extension): - sac = waveform_extractor.load_extension(amplitude_extension) - amps = sac.get_data(outputs="concatenated") - if amplitude_extension == "spike_amplitudes": - amps = np.concatenate(amps) + if sorting_analyzer.has_extension(amplitude_extension): + amps = sorting_analyzer.get_extension(amplitude_extension).get_data() else: - warnings.warn("") + warnings.warn("compute_amplitude_cv_metrics() need 'spike_amplitudes' or 'amplitude_scalings'") empty_dict = {unit_id: np.nan for unit_id in unit_ids} return empty_dict # precompute segment slice segment_slices = [] - for segment_index in range(waveform_extractor.get_num_segments()): + for segment_index in range(sorting_analyzer.get_num_segments()): i0 = np.searchsorted(spikes["segment_index"], segment_index) i1 = np.searchsorted(spikes["segment_index"], segment_index + 1) segment_slices.append(slice(i0, i1)) @@ -715,14 +703,14 @@ def compute_amplitude_cv_metrics( for unit_id in unit_ids: firing_rate = num_spikes[unit_id] / total_duration temporal_bin_size_samples = int( - (average_num_spikes_per_bin / firing_rate) * waveform_extractor.sampling_frequency + (average_num_spikes_per_bin / firing_rate) * sorting_analyzer.sampling_frequency ) amp_spreads = [] # bins and amplitude means are computed for each segment - for segment_index in range(waveform_extractor.get_num_segments()): + for segment_index in range(sorting_analyzer.get_num_segments()): sample_bin_edges = np.arange( - 0, waveform_extractor.get_num_samples(segment_index) + 1, temporal_bin_size_samples + 0, sorting_analyzer.get_num_samples(segment_index) + 1, temporal_bin_size_samples ) spikes_in_segment = spikes[segment_slices[segment_index]] amps_in_segment = amps[segment_slices[segment_index]] @@ -752,8 +740,36 @@ def compute_amplitude_cv_metrics( ) +def _get_amplitudes_by_units(sorting_analyzer, unit_ids, peak_sign): + # used by compute_amplitude_cutoffs and compute_amplitude_medians + amplitudes_by_units = {} + if sorting_analyzer.has_extension("spike_amplitudes"): + spikes = sorting_analyzer.sorting.to_spike_vector() + ext = sorting_analyzer.get_extension("spike_amplitudes") + all_amplitudes = ext.get_data() + for unit_id in unit_ids: + unit_index = sorting_analyzer.sorting.id_to_index(unit_id) + spike_mask = spikes["unit_index"] == unit_index + amplitudes_by_units[unit_id] = all_amplitudes[spike_mask] + + elif sorting_analyzer.has_extension("waveforms"): + waveforms_ext = sorting_analyzer.get_extension("waveforms") + before = waveforms_ext.nbefore + extremum_channels_ids = get_template_extremum_channel(sorting_analyzer, peak_sign=peak_sign) + for unit_id in unit_ids: + waveforms = waveforms_ext.get_waveforms_one_unit(unit_id, force_dense=False) + chan_id = extremum_channels_ids[unit_id] + if sorting_analyzer.is_sparse(): + chan_ind = np.where(sorting_analyzer.sparsity.unit_id_to_channel_ids[unit_id] == chan_id)[0] + else: + chan_ind = sorting_analyzer.channel_ids_to_indices([chan_id])[0] + amplitudes_by_units[unit_id] = waveforms[:, before, chan_ind] + + return amplitudes_by_units + + def compute_amplitude_cutoffs( - waveform_extractor, + sorting_analyzer, peak_sign="neg", num_histogram_bins=500, histogram_smoothing_value=3, @@ -764,8 +780,8 @@ def compute_amplitude_cutoffs( Parameters ---------- - waveform_extractor : WaveformExtractor - The waveform extractor object. + sorting_analyzer: SortingAnalyzer + A SortingAnalyzer object peak_sign : "neg" | "pos" | "both", default: "neg" The sign of the peaks. num_histogram_bins : int, default: 100 @@ -789,7 +805,7 @@ def compute_amplitude_cutoffs( ----- This approach assumes the amplitude histogram is symmetric (not valid in the presence of drift). If available, amplitudes are extracted from the "spike_amplitude" extension (recommended). - If the "spike_amplitude" extension is not available, the amplitudes are extracted from the waveform extractor, + If the "spike_amplitude" extension is not available, the amplitudes are extracted from the SortingAnalyzer, which usually has waveforms for a small subset of spikes (500 by default). References @@ -800,52 +816,39 @@ def compute_amplitude_cutoffs( https://github.com/AllenInstitute/ecephys_spike_sorting/tree/master/ecephys_spike_sorting/modules/quality_metrics """ - sorting = waveform_extractor.sorting if unit_ids is None: - unit_ids = sorting.unit_ids + unit_ids = sorting_analyzer.unit_ids - before = waveform_extractor.nbefore - extremum_channels_ids = get_template_extremum_channel(waveform_extractor, peak_sign=peak_sign) + all_fraction_missing = {} + if sorting_analyzer.has_extension("spike_amplitudes") or sorting_analyzer.has_extension("waveforms"): - spike_amplitudes = None - invert_amplitudes = False - if waveform_extractor.has_extension("spike_amplitudes"): - amp_calculator = waveform_extractor.load_extension("spike_amplitudes") - spike_amplitudes = amp_calculator.get_data(outputs="by_unit") - if amp_calculator._params["peak_sign"] == "pos": + invert_amplitudes = False + if ( + sorting_analyzer.has_extension("spike_amplitudes") + and sorting_analyzer.get_extension("spike_amplitudes").params["peak_sign"] == "pos" + ): invert_amplitudes = True - else: - if peak_sign == "pos": + elif sorting_analyzer.has_extension("waveforms") and peak_sign == "pos": invert_amplitudes = True - all_fraction_missing = {} - nan_units = [] - for unit_id in unit_ids: - if spike_amplitudes is None: - waveforms = waveform_extractor.get_waveforms(unit_id) - chan_id = extremum_channels_ids[unit_id] - if waveform_extractor.is_sparse(): - chan_ind = np.where(waveform_extractor.sparsity.unit_id_to_channel_ids[unit_id] == chan_id)[0] - else: - chan_ind = waveform_extractor.channel_ids_to_indices([chan_id])[0] - amplitudes = waveforms[:, before, chan_ind] - else: - amplitudes = np.concatenate([spike_amps[unit_id] for spike_amps in spike_amplitudes]) + amplitudes_by_units = _get_amplitudes_by_units(sorting_analyzer, unit_ids, peak_sign) - # change amplitudes signs in case peak_sign is pos - if invert_amplitudes: - amplitudes = -amplitudes + for unit_id in unit_ids: + amplitudes = amplitudes_by_units[unit_id] + if invert_amplitudes: + amplitudes = -amplitudes - fraction_missing = amplitude_cutoff( - amplitudes, num_histogram_bins, histogram_smoothing_value, amplitudes_bins_min_ratio - ) - if np.isnan(fraction_missing): - nan_units.append(unit_id) + all_fraction_missing[unit_id] = amplitude_cutoff( + amplitudes, num_histogram_bins, histogram_smoothing_value, amplitudes_bins_min_ratio + ) - all_fraction_missing[unit_id] = fraction_missing + if np.any(np.isnan(list(all_fraction_missing.values()))): + warnings.warn(f"Some units have too few spikes : amplitude_cutoff is set to NaN") - if len(nan_units) > 0: - warnings.warn(f"Units {nan_units} have too few spikes and " "amplitude_cutoff is set to NaN") + else: + warnings.warn("compute_amplitude_cutoffs need 'spike_amplitudes' or 'waveforms' extension") + for unit_id in unit_ids: + all_fraction_missing[unit_id] = np.nan return all_fraction_missing @@ -855,13 +858,13 @@ def compute_amplitude_cutoffs( ) -def compute_amplitude_medians(waveform_extractor, peak_sign="neg", unit_ids=None): +def compute_amplitude_medians(sorting_analyzer, peak_sign="neg", unit_ids=None): """Compute median of the amplitude distributions (in absolute value). Parameters ---------- - waveform_extractor : WaveformExtractor - The waveform extractor object. + sorting_analyzer: SortingAnalyzer + A SortingAnalyzer object peak_sign : "neg" | "pos" | "both", default: "neg" The sign of the peaks. unit_ids : list or None @@ -878,35 +881,19 @@ def compute_amplitude_medians(waveform_extractor, peak_sign="neg", unit_ids=None This code is ported from: https://github.com/int-brain-lab/ibllib/blob/master/brainbox/metrics/single_units.py """ - sorting = waveform_extractor.sorting + sorting = sorting_analyzer.sorting if unit_ids is None: - unit_ids = sorting.unit_ids - - before = waveform_extractor.nbefore - - extremum_channels_ids = get_template_extremum_channel(waveform_extractor, peak_sign=peak_sign) - - spike_amplitudes = None - if waveform_extractor.has_extension("spike_amplitudes"): - amp_calculator = waveform_extractor.load_extension("spike_amplitudes") - spike_amplitudes = amp_calculator.get_data(outputs="by_unit") + unit_ids = sorting_analyzer.unit_ids all_amplitude_medians = {} - for unit_id in unit_ids: - if spike_amplitudes is None: - waveforms = waveform_extractor.get_waveforms(unit_id) - chan_id = extremum_channels_ids[unit_id] - if waveform_extractor.is_sparse(): - chan_ind = np.where(waveform_extractor.sparsity.unit_id_to_channel_ids[unit_id] == chan_id)[0] - else: - chan_ind = waveform_extractor.channel_ids_to_indices([chan_id])[0] - amplitudes = waveforms[:, before, chan_ind] - else: - amplitudes = np.concatenate([spike_amps[unit_id] for spike_amps in spike_amplitudes]) - - # change amplitudes signs in case peak_sign is pos - abs_amplitudes = np.abs(amplitudes) - all_amplitude_medians[unit_id] = np.median(abs_amplitudes) + if sorting_analyzer.has_extension("spike_amplitudes") or sorting_analyzer.has_extension("waveforms"): + amplitudes_by_units = _get_amplitudes_by_units(sorting_analyzer, unit_ids, peak_sign) + for unit_id in unit_ids: + all_amplitude_medians[unit_id] = np.median(amplitudes_by_units[unit_id]) + else: + warnings.warn("compute_amplitude_medians need 'spike_amplitudes' or 'waveforms' extension") + for unit_id in unit_ids: + all_amplitude_medians[unit_id] = np.nan return all_amplitude_medians @@ -915,7 +902,7 @@ def compute_amplitude_medians(waveform_extractor, peak_sign="neg", unit_ids=None def compute_drift_metrics( - waveform_extractor, + sorting_analyzer, interval_s=60, min_spikes_per_interval=100, direction="y", @@ -939,8 +926,8 @@ def compute_drift_metrics( Parameters ---------- - waveform_extractor : WaveformExtractor - The waveform extractor object. + sorting_analyzer: SortingAnalyzer + A SortingAnalyzer object interval_s : int, default: 60 Interval length is seconds for computing spike depth min_spikes_per_interval : int, default: 100 @@ -976,14 +963,21 @@ def compute_drift_metrics( there are large displacements in between segments, the resulting metric values will be very high. """ res = namedtuple("drift_metrics", ["drift_ptp", "drift_std", "drift_mad"]) - sorting = waveform_extractor.sorting + sorting = sorting_analyzer.sorting if unit_ids is None: unit_ids = sorting.unit_ids - if waveform_extractor.has_extension("spike_locations"): - locs_calculator = waveform_extractor.load_extension("spike_locations") - spike_locations = locs_calculator.get_data(outputs="concatenated") - spike_locations_by_unit = locs_calculator.get_data(outputs="by_unit") + if sorting_analyzer.has_extension("spike_locations"): + spike_locations_ext = sorting_analyzer.get_extension("spike_locations") + spike_locations = spike_locations_ext.get_data() + # spike_locations_by_unit = spike_locations_ext.get_data(outputs="by_unit") + spikes = sorting.to_spike_vector() + spike_locations_by_unit = {} + for unit_id in unit_ids: + unit_index = sorting.id_to_index(unit_id) + spike_mask = spikes["unit_index"] == unit_index + spike_locations_by_unit[unit_id] = spike_locations[spike_mask] + else: warnings.warn( "The drift metrics require the `spike_locations` waveform extension. " @@ -996,11 +990,11 @@ def compute_drift_metrics( else: return res(empty_dict, empty_dict, empty_dict) - interval_samples = int(interval_s * waveform_extractor.sampling_frequency) + interval_samples = int(interval_s * sorting_analyzer.sampling_frequency) assert direction in spike_locations.dtype.names, ( f"Direction {direction} is invalid. Available directions: " f"{spike_locations.dtype.names}" ) - total_duration = waveform_extractor.get_total_duration() + total_duration = sorting_analyzer.get_total_duration() if total_duration < min_num_bins * interval_s: warnings.warn( "The recording is too short given the specified 'interval_s' and " @@ -1020,15 +1014,12 @@ def compute_drift_metrics( # reference positions are the medians across segments reference_positions = np.zeros(len(unit_ids)) for unit_ind, unit_id in enumerate(unit_ids): - locs = [] - for segment_index in range(waveform_extractor.get_num_segments()): - locs.append(spike_locations_by_unit[segment_index][unit_id][direction]) - reference_positions[unit_ind] = np.median(np.concatenate(locs)) + reference_positions[unit_ind] = np.median(spike_locations_by_unit[unit_id][direction]) # now compute median positions and concatenate them over segments median_position_segments = None - for segment_index in range(waveform_extractor.get_num_segments()): - seg_length = waveform_extractor.get_num_samples(segment_index) + for segment_index in range(sorting_analyzer.get_num_segments()): + seg_length = sorting_analyzer.get_num_samples(segment_index) num_bin_edges = seg_length // interval_samples + 1 bins = np.arange(num_bin_edges) * interval_samples spike_vector = sorting.to_spike_vector() @@ -1374,7 +1365,7 @@ def _compute_rp_violations_numba(nb_rp_violations, spike_trains, spike_clusters, def compute_sd_ratio( - wvf_extractor: WaveformExtractor, + sorting_analyzer: SortingAnalyzer, censored_period_ms: float = 4.0, correct_for_drift: bool = True, correct_for_template_itself: bool = True, @@ -1388,8 +1379,8 @@ def compute_sd_ratio( Parameters ---------- - waveform_extractor : WaveformExtractor - The waveform extractor object. + sorting_analyzer: SortingAnalyzer + A SortingAnalyzer object censored_period_ms : float, default: 4.0 The censored period in milliseconds. This is to remove any potential bursts that could affect the SD. correct_for_drift: bool, default: True @@ -1411,20 +1402,23 @@ def compute_sd_ratio( import numba from ..curation.curation_tools import _find_duplicated_spikes_keep_first_iterative - censored_period = int(round(censored_period_ms * 1e-3 * wvf_extractor.sampling_frequency)) + sorting = sorting_analyzer.sorting + + censored_period = int(round(censored_period_ms * 1e-3 * sorting_analyzer.sampling_frequency)) if unit_ids is None: - unit_ids = wvf_extractor.unit_ids + unit_ids = sorting_analyzer.unit_ids - if not wvf_extractor.has_recording(): + if not sorting_analyzer.has_recording(): warnings.warn( - "The `sd_ratio` metric cannot work with a recordless WaveformExtractor object" + "The `sd_ratio` metric cannot work with a recordless SortingAnalyzer object" "SD ratio metric will be set to NaN" ) return {unit_id: np.nan for unit_id in unit_ids} - if wvf_extractor.has_extension("spike_amplitudes"): - amplitudes_ext = wvf_extractor.load_extension("spike_amplitudes") - spike_amplitudes = amplitudes_ext.get_data(outputs="by_unit") + if sorting_analyzer.has_extension("spike_amplitudes"): + amplitudes_ext = sorting_analyzer.get_extension("spike_amplitudes") + # spike_amplitudes = amplitudes_ext.get_data(outputs="by_unit") + spike_amplitudes = amplitudes_ext.get_data() else: warnings.warn( "The `sd_ratio` metric require the `spike_amplitudes` waveform extension. " @@ -1434,24 +1428,36 @@ def compute_sd_ratio( return {unit_id: np.nan for unit_id in unit_ids} noise_levels = get_noise_levels( - wvf_extractor.recording, return_scaled=amplitudes_ext._params["return_scaled"], method="std" + sorting_analyzer.recording, return_scaled=amplitudes_ext.params["return_scaled"], method="std" ) - best_channels = get_template_extremum_channel(wvf_extractor, outputs="index", **kwargs) - n_spikes = wvf_extractor.sorting.count_num_spikes_per_unit() + best_channels = get_template_extremum_channel(sorting_analyzer, outputs="index", **kwargs) + n_spikes = sorting.count_num_spikes_per_unit() + + if correct_for_template_itself: + tamplates_array = _get_dense_templates_array(sorting_analyzer, return_scaled=True) + spikes = sorting.to_spike_vector() sd_ratio = {} for unit_id in unit_ids: + unit_index = sorting_analyzer.sorting.id_to_index(unit_id) + spk_amp = [] - for segment_index in range(wvf_extractor.get_num_segments()): - spike_train = wvf_extractor.sorting.get_unit_spike_train(unit_id, segment_index=segment_index).astype( - np.int64, copy=False - ) + for segment_index in range(sorting_analyzer.get_num_segments()): + # spike_train = sorting_analyzer.sorting.get_unit_spike_train(unit_id, segment_index=segment_index).astype( + # np.int64, copy=False + # ) + spike_mask = (spikes["unit_index"] == unit_index) & (spikes["segment_index"] == segment_index) + spike_train = spikes[spike_mask]["sample_index"].astype(np.int64, copy=False) + amplitudes = spike_amplitudes[spike_mask] + censored_indices = _find_duplicated_spikes_keep_first_iterative( spike_train, censored_period, ) - spk_amp.append(np.delete(spike_amplitudes[segment_index][unit_id], censored_indices)) + # spk_amp.append(np.delete(spike_amplitudes[segment_index][unit_id], censored_indices)) + spk_amp.append(np.delete(amplitudes, censored_indices)) + spk_amp = np.concatenate([spk_amp[i] for i in range(len(spk_amp))]) if len(spk_amp) == 0: @@ -1468,11 +1474,14 @@ def compute_sd_ratio( std_noise = noise_levels[best_channel] if correct_for_template_itself: - template = wvf_extractor.get_template(unit_id, force_dense=True)[:, best_channel] + # template = sorting_analyzer.get_template(unit_id, force_dense=True)[:, best_channel] + + template = tamplates_array[unit_index, :, :][:, best_channel] + nsamples = template.shape[0] # Computing the variance of a trace that is all 0 and n_spikes non-overlapping template. # TODO: Take into account that templates for different segments might differ. - p = wvf_extractor.nsamples * n_spikes[unit_id] / wvf_extractor.get_total_samples() + p = nsamples * n_spikes[unit_id] / sorting_analyzer.get_total_samples() total_variance = p * np.mean(template**2) - p**2 * np.mean(template) std_noise = np.sqrt(std_noise**2 - total_variance) diff --git a/src/spikeinterface/qualitymetrics/pca_metrics.py b/src/spikeinterface/qualitymetrics/pca_metrics.py index f3034c8ac8..53984579d4 100644 --- a/src/spikeinterface/qualitymetrics/pca_metrics.py +++ b/src/spikeinterface/qualitymetrics/pca_metrics.py @@ -18,17 +18,12 @@ except: pass -from ..core import get_random_data_chunks, compute_sparsity, WaveformExtractor -from ..core.template_tools import get_template_extremum_channel - -from ..postprocessing import WaveformPrincipalComponent import warnings from .misc_metrics import compute_num_spikes, compute_firing_rates -from ..core import get_random_data_chunks, load_waveforms, compute_sparsity, WaveformExtractor +from ..core import get_random_data_chunks, compute_sparsity from ..core.template_tools import get_template_extremum_channel -from ..postprocessing import WaveformPrincipalComponent _possible_pc_metric_names = [ @@ -63,21 +58,17 @@ def get_quality_pca_metric_list(): def calculate_pc_metrics( - pca, metric_names=None, sparsity=None, qm_params=None, unit_ids=None, seed=None, n_jobs=1, progress_bar=False + sorting_analyzer, metric_names=None, qm_params=None, unit_ids=None, seed=None, n_jobs=1, progress_bar=False ): """Calculate principal component derived metrics. Parameters ---------- - pca : WaveformPrincipalComponent - Waveform object with principal components computed. + sorting_analyzer: SortingAnalyzer + A SortingAnalyzer object metric_names : list of str, default: None The list of PC metrics to compute. If not provided, defaults to all PC metrics. - sparsity: ChannelSparsity or None, default: None - The sparsity object. This is used also to identify neighbor - units and speed up computations. If None all channels and all units are used - for each unit. qm_params : dict or None Dictionary with parameters for each PC metric function. unit_ids : list of int or None @@ -94,18 +85,21 @@ def calculate_pc_metrics( pc_metrics : dict The computed PC metrics. """ + pca_ext = sorting_analyzer.get_extension("principal_components") + assert pca_ext is not None, "calculate_pc_metrics() need extension 'principal_components'" + + sorting = sorting_analyzer.sorting + if metric_names is None: metric_names = _possible_pc_metric_names if qm_params is None: qm_params = _default_params - assert isinstance(pca, WaveformPrincipalComponent) - we = pca.waveform_extractor - extremum_channels = get_template_extremum_channel(we) + extremum_channels = get_template_extremum_channel(sorting_analyzer) if unit_ids is None: - unit_ids = we.unit_ids - channel_ids = we.channel_ids + unit_ids = sorting_analyzer.unit_ids + channel_ids = sorting_analyzer.channel_ids # create output dict of dict pc_metrics['metric_name'][unit_id] pc_metrics = {k: {} for k in metric_names} @@ -119,42 +113,35 @@ def calculate_pc_metrics( # Compute nspikes and firing rate outside of main loop for speed if any([n in metric_names for n in ["nn_isolation", "nn_noise_overlap"]]): - n_spikes_all_units = compute_num_spikes(we, unit_ids=unit_ids) - fr_all_units = compute_firing_rates(we, unit_ids=unit_ids) + n_spikes_all_units = compute_num_spikes(sorting_analyzer, unit_ids=unit_ids) + fr_all_units = compute_firing_rates(sorting_analyzer, unit_ids=unit_ids) else: n_spikes_all_units = None fr_all_units = None run_in_parallel = n_jobs > 1 - units_loop = enumerate(unit_ids) - if progress_bar and not run_in_parallel: - units_loop = tqdm(units_loop, desc="Computing PCA metrics", total=len(unit_ids)) - if run_in_parallel: parallel_functions = [] - all_labels, all_pcs = pca.get_all_projections() + # this get dense projection for selected unit_ids + dense_projections, spike_unit_indices = pca_ext.get_some_projections(channel_ids=None, unit_ids=unit_ids) + all_labels = sorting.unit_ids[spike_unit_indices] items = [] for unit_id in unit_ids: - if we.is_sparse(): - neighbor_channel_ids = we.sparsity.unit_id_to_channel_ids[unit_id] - neighbor_unit_ids = [ - other_unit for other_unit in unit_ids if extremum_channels[other_unit] in neighbor_channel_ids - ] - elif sparsity is not None: - neighbor_channel_ids = sparsity.unit_id_to_channel_ids[unit_id] + if sorting_analyzer.is_sparse(): + neighbor_channel_ids = sorting_analyzer.sparsity.unit_id_to_channel_ids[unit_id] neighbor_unit_ids = [ other_unit for other_unit in unit_ids if extremum_channels[other_unit] in neighbor_channel_ids ] else: neighbor_channel_ids = channel_ids neighbor_unit_ids = unit_ids - neighbor_channel_indices = we.channel_ids_to_indices(neighbor_channel_ids) + neighbor_channel_indices = sorting_analyzer.channel_ids_to_indices(neighbor_channel_ids) labels = all_labels[np.isin(all_labels, neighbor_unit_ids)] - pcs = all_pcs[np.isin(all_labels, neighbor_unit_ids)][:, :, neighbor_channel_indices] + pcs = dense_projections[np.isin(all_labels, neighbor_unit_ids)][:, :, neighbor_channel_indices] pcs_flat = pcs.reshape(pcs.shape[0], -1) func_args = ( @@ -165,13 +152,16 @@ def calculate_pc_metrics( unit_ids, qm_params, seed, - we.folder, n_spikes_all_units, fr_all_units, ) items.append(func_args) if not run_in_parallel: + units_loop = enumerate(unit_ids) + if progress_bar: + units_loop = tqdm(units_loop, desc="calculate_pc_metrics", total=len(unit_ids)) + for unit_ind, unit_id in units_loop: pca_metrics_unit = pca_metrics_one_unit(items[unit_ind]) for metric_name, metric in pca_metrics_unit.items(): @@ -180,7 +170,7 @@ def calculate_pc_metrics( with ProcessPoolExecutor(n_jobs) as executor: results = executor.map(pca_metrics_one_unit, items) if progress_bar: - results = tqdm(results, total=len(unit_ids)) + results = tqdm(results, total=len(unit_ids), desc="calculate_pc_metrics") for ui, pca_metrics_unit in enumerate(results): unit_id = unit_ids[ui] @@ -361,8 +351,8 @@ def nearest_neighbors_metrics(all_pcs, all_labels, this_unit_id, max_spikes, n_n def nearest_neighbors_isolation( - waveform_extractor: WaveformExtractor, - this_unit_id: int, + sorting_analyzer, + this_unit_id: int | str, n_spikes_all_units: dict = None, fr_all_units: dict = None, max_spikes: int = 1000, @@ -379,9 +369,9 @@ def nearest_neighbors_isolation( Parameters ---------- - waveform_extractor : WaveformExtractor - The waveform extractor object. - this_unit_id : int + sorting_analyzer: SortingAnalyzer + A SortingAnalyzer object + this_unit_id : int | str The ID for the unit to calculate these metrics for. n_spikes_all_units: dict, default: None Dictionary of the form ``{: }`` for the waveform extractor. @@ -406,10 +396,10 @@ def nearest_neighbors_isolation( radius_um : float, default: 100 The radius, in um, that channels need to be within the peak channel to be included. peak_sign: "neg" | "pos" | "both", default: "neg" - The peak_sign used to compute sparsity and neighbor units. Used if waveform_extractor + The peak_sign used to compute sparsity and neighbor units. Used if sorting_analyzer is not sparse already. min_spatial_overlap : float, default: 100 - In case waveform_extractor is sparse, other units are selected if they share at least + In case sorting_analyzer is sparse, other units are selected if they share at least `min_spatial_overlap` times `n_target_unit_channels` with the target unit seed : int, default: None Seed for random subsampling of spikes. @@ -454,12 +444,15 @@ def nearest_neighbors_isolation( """ rng = np.random.default_rng(seed=seed) - sorting = waveform_extractor.sorting + waveforms_ext = sorting_analyzer.get_extension("waveforms") + assert waveforms_ext is not None, "nearest_neighbors_isolation() need extension 'waveforms'" + + sorting = sorting_analyzer.sorting all_units_ids = sorting.get_unit_ids() if n_spikes_all_units is None: - n_spikes_all_units = compute_num_spikes(waveform_extractor) + n_spikes_all_units = compute_num_spikes(sorting_analyzer) if fr_all_units is None: - fr_all_units = compute_firing_rates(waveform_extractor) + fr_all_units = compute_firing_rates(sorting_analyzer) # if target unit has fewer than `min_spikes` spikes, print out a warning and return NaN if n_spikes_all_units[this_unit_id] < min_spikes: @@ -489,15 +482,17 @@ def nearest_neighbors_isolation( other_units_ids = np.setdiff1d(all_units_ids, this_unit_id) # get waveforms of target unit - waveforms_target_unit = waveform_extractor.get_waveforms(unit_id=this_unit_id) + # waveforms_target_unit = sorting_analyzer.get_waveforms(unit_id=this_unit_id) + waveforms_target_unit = waveforms_ext.get_waveforms_one_unit(unit_id=this_unit_id, force_dense=False) + n_spikes_target_unit = waveforms_target_unit.shape[0] # find units whose signal channels (i.e. channels inside some radius around # the channel with largest amplitude) overlap with signal channels of the target unit - if waveform_extractor.is_sparse(): - sparsity = waveform_extractor.sparsity + if sorting_analyzer.is_sparse(): + sparsity = sorting_analyzer.sparsity else: - sparsity = compute_sparsity(waveform_extractor, method="radius", peak_sign=peak_sign, radius_um=radius_um) + sparsity = compute_sparsity(sorting_analyzer, method="radius", peak_sign=peak_sign, radius_um=radius_um) closest_chans_target_unit = sparsity.unit_id_to_channel_indices[this_unit_id] n_channels_target_unit = len(closest_chans_target_unit) # select other units that have a minimum spatial overlap with target unit @@ -518,7 +513,9 @@ def nearest_neighbors_isolation( len(other_units_ids), ) for other_unit_id in other_units_ids: - waveforms_other_unit = waveform_extractor.get_waveforms(unit_id=other_unit_id) + # waveforms_other_unit = sorting_analyzer.get_waveforms(unit_id=other_unit_id) + waveforms_other_unit = waveforms_ext.get_waveforms_one_unit(unit_id=other_unit_id, force_dense=False) + n_spikes_other_unit = waveforms_other_unit.shape[0] closest_chans_other_unit = sparsity.unit_id_to_channel_indices[other_unit_id] n_snippets = np.min([n_spikes_target_unit, n_spikes_other_unit, max_spikes]) @@ -531,7 +528,7 @@ def nearest_neighbors_isolation( # project this unit and other unit waveforms on common subspace common_channel_idxs = np.intersect1d(closest_chans_target_unit, closest_chans_other_unit) - if waveform_extractor.is_sparse(): + if sorting_analyzer.is_sparse(): # in this case, waveforms are sparse so we need to do some smart indexing waveforms_target_unit_sampled = waveforms_target_unit_sampled[ :, :, np.isin(closest_chans_target_unit, common_channel_idxs) @@ -568,8 +565,8 @@ def nearest_neighbors_isolation( def nearest_neighbors_noise_overlap( - waveform_extractor: WaveformExtractor, - this_unit_id: int, + sorting_analyzer, + this_unit_id: int | str, n_spikes_all_units: dict = None, fr_all_units: dict = None, max_spikes: int = 1000, @@ -585,9 +582,9 @@ def nearest_neighbors_noise_overlap( Parameters ---------- - waveform_extractor : WaveformExtractor - The waveform extractor object. - this_unit_id : int + sorting_analyzer: SortingAnalyzer + A SortingAnalyzer object + this_unit_id : int | str The ID of the unit to calculate this metric on. n_spikes_all_units: dict, default: None Dictionary of the form ``{: }`` for the waveform extractor. @@ -610,7 +607,7 @@ def nearest_neighbors_noise_overlap( radius_um : float, default: 100 The radius, in um, that channels need to be within the peak channel to be included. peak_sign: "neg" | "pos" | "both", default: "neg" - The peak_sign used to compute sparsity and neighbor units. Used if waveform_extractor + The peak_sign used to compute sparsity and neighbor units. Used if sorting_analyzer is not sparse already. seed : int, default: 0 Random seed for subsampling spikes. @@ -641,10 +638,16 @@ def nearest_neighbors_noise_overlap( """ rng = np.random.default_rng(seed=seed) + waveforms_ext = sorting_analyzer.get_extension("waveforms") + assert waveforms_ext is not None, "nearest_neighbors_isolation() need extension 'waveforms'" + + templates_ext = sorting_analyzer.get_extension("templates") + assert templates_ext is not None, "nearest_neighbors_isolation() need extension 'templates'" + if n_spikes_all_units is None: - n_spikes_all_units = compute_num_spikes(waveform_extractor) + n_spikes_all_units = compute_num_spikes(sorting_analyzer) if fr_all_units is None: - fr_all_units = compute_firing_rates(waveform_extractor) + fr_all_units = compute_firing_rates(sorting_analyzer) # if target unit has fewer than `min_spikes` spikes, print out a warning and return NaN if n_spikes_all_units[this_unit_id] < min_spikes: @@ -661,18 +664,20 @@ def nearest_neighbors_noise_overlap( return np.nan else: # get random snippets from the recording to create a noise cluster - recording = waveform_extractor.recording + nsamples = waveforms_ext.nbefore + waveforms_ext.nafter + recording = sorting_analyzer.recording noise_cluster = get_random_data_chunks( recording, - return_scaled=waveform_extractor.return_scaled, + return_scaled=waveforms_ext.params["return_scaled"], num_chunks_per_segment=max_spikes, - chunk_size=waveform_extractor.nsamples, + chunk_size=nsamples, seed=seed, ) - noise_cluster = np.reshape(noise_cluster, (max_spikes, waveform_extractor.nsamples, -1)) + noise_cluster = np.reshape(noise_cluster, (max_spikes, nsamples, -1)) # get waveforms for target cluster - waveforms = waveform_extractor.get_waveforms(unit_id=this_unit_id).copy() + # waveforms = sorting_analyzer.get_waveforms(unit_id=this_unit_id).copy() + waveforms = waveforms_ext.get_waveforms_one_unit(unit_id=this_unit_id, force_dense=False).copy() # adjust the size of the target and noise clusters to be equal if waveforms.shape[0] > max_spikes: @@ -687,17 +692,21 @@ def nearest_neighbors_noise_overlap( n_snippets = max_spikes # restrict to channels with significant signal - if waveform_extractor.is_sparse(): - sparsity = waveform_extractor.sparsity + if sorting_analyzer.is_sparse(): + sparsity = sorting_analyzer.sparsity else: - sparsity = compute_sparsity(waveform_extractor, method="radius", peak_sign=peak_sign, radius_um=radius_um) + sparsity = compute_sparsity(sorting_analyzer, method="radius", peak_sign=peak_sign, radius_um=radius_um) noise_cluster = noise_cluster[:, :, sparsity.unit_id_to_channel_indices[this_unit_id]] # compute weighted noise snippet (Z) - median_waveform = waveform_extractor.get_template(unit_id=this_unit_id, mode="median") - - # in case waveform_extractor is sparse, waveforms and templates are already sparse - if not waveform_extractor.is_sparse(): + # median_waveform = sorting_analyzer.get_template(unit_id=this_unit_id, mode="median") + all_templates = templates_ext.get_data(operator="median") + this_unit_index = sorting_analyzer.sorting.id_to_index(this_unit_id) + median_waveform = all_templates[this_unit_index, :, :] + + # in case sorting_analyzer is sparse, waveforms and templates are already sparse + if not sorting_analyzer.is_sparse(): + # @alessio : this next line is suspicious because the waveforms is already sparse no ? Am i wrong ? waveforms = waveforms[:, :, sparsity.unit_id_to_channel_indices[this_unit_id]] median_waveform = median_waveform[:, sparsity.unit_id_to_channel_indices[this_unit_id]] @@ -897,13 +906,13 @@ def pca_metrics_one_unit(args): unit_ids, qm_params, seed, - we_folder, + # we_folder, n_spikes_all_units, fr_all_units, ) = args - if "nn_isolation" in metric_names or "nn_noise_overlap" in metric_names: - we = load_waveforms(we_folder) + # if "nn_isolation" in metric_names or "nn_noise_overlap" in metric_names: + # we = load_waveforms(we_folder) pc_metrics = {} # metrics diff --git a/src/spikeinterface/qualitymetrics/quality_metric_calculator.py b/src/spikeinterface/qualitymetrics/quality_metric_calculator.py index 8c4d124017..5deb08a7d2 100644 --- a/src/spikeinterface/qualitymetrics/quality_metric_calculator.py +++ b/src/spikeinterface/qualitymetrics/quality_metric_calculator.py @@ -9,20 +9,34 @@ import numpy as np from spikeinterface.core.job_tools import fix_job_kwargs -from spikeinterface.core.waveform_extractor import WaveformExtractor, BaseWaveformExtractorExtension +from spikeinterface.core.sortinganalyzer import register_result_extension, AnalyzerExtension + from .quality_metric_list import calculate_pc_metrics, _misc_metric_name_to_func, _possible_pc_metric_names from .misc_metrics import _default_params as misc_metrics_params from .pca_metrics import _default_params as pca_metrics_params -class QualityMetricCalculator(BaseWaveformExtractorExtension): - """Class to compute quality metrics of spike sorting output. +class ComputeQualityMetrics(AnalyzerExtension): + """ + Compute quality metrics on sorting_. Parameters ---------- - waveform_extractor: WaveformExtractor - The waveform extractor object + sorting_analyzer: SortingAnalyzer + A SortingAnalyzer object + metric_names : list or None + List of quality metrics to compute. + qm_params : dict or None + Dictionary with parameters for quality metrics calculation. + Default parameters can be obtained with: `si.qualitymetrics.get_default_qm_params()` + skip_pc_metrics : bool + If True, PC metrics computation is skipped. + + Returns + ------- + metrics: pandas.DataFrame + Data frame with the computed metrics Notes ----- @@ -30,30 +44,23 @@ class QualityMetricCalculator(BaseWaveformExtractorExtension): """ extension_name = "quality_metrics" + depend_on = ["waveforms", "templates", "noise_levels"] + need_recording = False + use_nodepipeline = False + need_job_kwargs = True - def __init__(self, waveform_extractor): - BaseWaveformExtractorExtension.__init__(self, waveform_extractor) - - if waveform_extractor.has_recording(): - self.recording = waveform_extractor.recording - else: - self.recording = None - self.sorting = waveform_extractor.sorting - - def _set_params( - self, metric_names=None, qm_params=None, peak_sign=None, seed=None, sparsity=None, skip_pc_metrics=False - ): + def _set_params(self, metric_names=None, qm_params=None, peak_sign=None, seed=None, skip_pc_metrics=False): if metric_names is None: metric_names = list(_misc_metric_name_to_func.keys()) # if PC is available, PC metrics are automatically added to the list - if self.waveform_extractor.has_extension("principal_components"): + if self.sorting_analyzer.has_extension("principal_components") and not skip_pc_metrics: # by default 'nearest_neightbor' is removed because too slow pc_metrics = _possible_pc_metric_names.copy() pc_metrics.remove("nn_isolation") pc_metrics.remove("nn_noise_overlap") metric_names += pc_metrics # if spike_locations are not available, drift is removed from the list - if not self.waveform_extractor.has_extension("spike_locations"): + if not self.sorting_analyzer.has_extension("spike_locations"): if "drift" in metric_names: metric_names.remove("drift") @@ -66,7 +73,6 @@ def _set_params( params = dict( metric_names=[str(name) for name in np.unique(metric_names)], - sparsity=sparsity, peak_sign=peak_sign, seed=seed, qm_params=qm_params_, @@ -76,26 +82,27 @@ def _set_params( return params def _select_extension_data(self, unit_ids): - # filter metrics dataframe - new_metrics = self._extension_data["metrics"].loc[np.array(unit_ids)] - return dict(metrics=new_metrics) + new_metrics = self.data["metrics"].loc[np.array(unit_ids)] + new_data = dict(metrics=new_metrics) + return new_data - def _run(self, verbose, **job_kwargs): + def _run(self, verbose=False, **job_kwargs): """ Compute quality metrics. """ - metric_names = self._params["metric_names"] - qm_params = self._params["qm_params"] - sparsity = self._params["sparsity"] - seed = self._params["seed"] + metric_names = self.params["metric_names"] + qm_params = self.params["qm_params"] + # sparsity = self.params["sparsity"] + seed = self.params["seed"] # update job_kwargs with global ones job_kwargs = fix_job_kwargs(job_kwargs) n_jobs = job_kwargs["n_jobs"] progress_bar = job_kwargs["progress_bar"] - unit_ids = self.sorting.unit_ids - non_empty_unit_ids = self.sorting.get_non_empty_unit_ids() + sorting = self.sorting_analyzer.sorting + unit_ids = sorting.unit_ids + non_empty_unit_ids = sorting.get_non_empty_unit_ids() empty_unit_ids = unit_ids[~np.isin(unit_ids, non_empty_unit_ids)] if len(empty_unit_ids) > 0: warnings.warn( @@ -119,7 +126,7 @@ def _run(self, verbose, **job_kwargs): func = _misc_metric_name_to_func[metric_name] params = qm_params[metric_name] if metric_name in qm_params else {} - res = func(self.waveform_extractor, unit_ids=non_empty_unit_ids, **params) + res = func(self.sorting_analyzer, unit_ids=non_empty_unit_ids, **params) # QM with uninstall dependencies might return None if res is not None: if isinstance(res, dict): @@ -133,15 +140,14 @@ def _run(self, verbose, **job_kwargs): # metrics based on PCs pc_metric_names = [k for k in metric_names if k in _possible_pc_metric_names] - if len(pc_metric_names) > 0 and not self._params["skip_pc_metrics"]: - if not self.waveform_extractor.has_extension("principal_components"): + if len(pc_metric_names) > 0 and not self.params["skip_pc_metrics"]: + if not self.sorting_analyzer.has_extension("principal_components"): raise ValueError("waveform_principal_component must be provied") - pc_extension = self.waveform_extractor.load_extension("principal_components") pc_metrics = calculate_pc_metrics( - pc_extension, + self.sorting_analyzer, unit_ids=non_empty_unit_ids, metric_names=pc_metric_names, - sparsity=sparsity, + # sparsity=sparsity, progress_bar=progress_bar, n_jobs=n_jobs, qm_params=qm_params, @@ -154,89 +160,14 @@ def _run(self, verbose, **job_kwargs): if len(empty_unit_ids) > 0: metrics.loc[empty_unit_ids] = np.nan - self._extension_data["metrics"] = metrics - - def get_data(self): - """ - Get the computed metrics. - - Returns - ------- - metrics : pd.DataFrame - Dataframe with quality metrics - """ - msg = "Quality metrics are not computed. Use the 'run()' function." - assert self._extension_data["metrics"] is not None, msg - return self._extension_data["metrics"] - - @staticmethod - def get_extension_function(): - return compute_quality_metrics - + self.data["metrics"] = metrics -WaveformExtractor.register_extension(QualityMetricCalculator) - - -def compute_quality_metrics( - waveform_extractor, - load_if_exists=False, - metric_names=None, - qm_params=None, - peak_sign=None, - seed=None, - sparsity=None, - skip_pc_metrics=False, - verbose=False, - **job_kwargs, -): - """Compute quality metrics on waveform extractor. - - Parameters - ---------- - waveform_extractor: WaveformExtractor - The waveform extractor to compute metrics on. - load_if_exists : bool, default: False - Whether to load precomputed quality metrics, if they already exist. - metric_names : list or None - List of quality metrics to compute. - qm_params : dict or None - Dictionary with parameters for quality metrics calculation. - Default parameters can be obtained with: `si.qualitymetrics.get_default_qm_params()` - sparsity : dict or None, default: None - If given, the sparse channel_ids for each unit in PCA metrics computation. - This is used also to identify neighbor units and speed up computations. - If None all channels and all units are used for each unit. - skip_pc_metrics : bool - If True, PC metrics computation is skipped. - n_jobs : int - Number of jobs (used for PCA metrics) - verbose : bool - If True, output is verbose. - progress_bar : bool - If True, progress bar is shown. - - Returns - ------- - metrics: pandas.DataFrame - Data frame with the computed metrics - """ - if load_if_exists and waveform_extractor.has_extension(QualityMetricCalculator.extension_name): - qmc = waveform_extractor.load_extension(QualityMetricCalculator.extension_name) - else: - qmc = QualityMetricCalculator(waveform_extractor) - qmc.set_params( - metric_names=metric_names, - qm_params=qm_params, - peak_sign=peak_sign, - seed=seed, - sparsity=sparsity, - skip_pc_metrics=skip_pc_metrics, - ) - qmc.run(verbose=verbose, **job_kwargs) + def _get_data(self): + return self.data["metrics"] - metrics = qmc.get_data() - return metrics +register_result_extension(ComputeQualityMetrics) +compute_quality_metrics = ComputeQualityMetrics.function_factory() def get_quality_metric_list(): diff --git a/src/spikeinterface/qualitymetrics/tests/test_metrics_functions.py b/src/spikeinterface/qualitymetrics/tests/test_metrics_functions.py index 5228fdfa83..c97223dd70 100644 --- a/src/spikeinterface/qualitymetrics/tests/test_metrics_functions.py +++ b/src/spikeinterface/qualitymetrics/tests/test_metrics_functions.py @@ -2,18 +2,18 @@ import shutil from pathlib import Path import numpy as np -from spikeinterface import extract_waveforms -from spikeinterface.core import NumpySorting, synthetize_spike_train_bad_isi, add_synchrony_to_sorting -from spikeinterface.extractors.toy_example import toy_example +from spikeinterface.core import ( + NumpySorting, + synthetize_spike_train_bad_isi, + add_synchrony_to_sorting, + generate_ground_truth_recording, + create_sorting_analyzer, +) + +# from spikeinterface.extractors.toy_example import toy_example from spikeinterface.qualitymetrics.utils import create_ground_truth_pc_distributions from spikeinterface.qualitymetrics import calculate_pc_metrics -from spikeinterface.postprocessing import ( - compute_principal_components, - compute_spike_locations, - compute_spike_amplitudes, - compute_amplitude_scalings, -) from spikeinterface.qualitymetrics import ( mahalanobis_metrics, @@ -38,13 +38,46 @@ ) -if hasattr(pytest, "global_test_folder"): - cache_folder = pytest.global_test_folder / "qualitymetrics" -else: - cache_folder = Path("cache_folder") / "qualitymetrics" +# if hasattr(pytest, "global_test_folder"): +# cache_folder = pytest.global_test_folder / "qualitymetrics" +# else: +# cache_folder = Path("cache_folder") / "qualitymetrics" + + +job_kwargs = dict(n_jobs=2, progress_bar=True, chunk_duration="1s") + + +def _sorting_analyzer_simple(): + recording, sorting = generate_ground_truth_recording( + durations=[ + 50.0, + ], + sampling_frequency=30_000.0, + num_channels=6, + num_units=10, + generate_sorting_kwargs=dict(firing_rates=6.0, refractory_period_ms=4.0), + noise_kwargs=dict(noise_level=5.0, strategy="tile_pregenerated"), + seed=2205, + ) + sorting_analyzer = create_sorting_analyzer(sorting, recording, format="memory", sparse=True) -def _simulated_data(): + sorting_analyzer.compute("random_spikes", max_spikes_per_unit=300, seed=2205) + sorting_analyzer.compute("noise_levels") + sorting_analyzer.compute("waveforms", **job_kwargs) + sorting_analyzer.compute("templates") + sorting_analyzer.compute("principal_components", n_components=5, mode="by_channel_local", **job_kwargs) + sorting_analyzer.compute("spike_amplitudes", **job_kwargs) + + return sorting_analyzer + + +@pytest.fixture(scope="module") +def sorting_analyzer_simple(): + return _sorting_analyzer_simple() + + +def _sorting_violation(): max_time = 100.0 sampling_frequency = 30000 trains = [ @@ -56,100 +89,44 @@ def _simulated_data(): labels = [np.ones((len(trains[i]),), dtype="int") * i for i in range(len(trains))] spike_times = np.concatenate(trains) - spike_clusters = np.concatenate(labels) + spike_labels = np.concatenate(labels) order = np.argsort(spike_times) max_num_samples = np.floor(max_time * sampling_frequency) - 1 indexes = np.arange(0, max_time + 1, 1 / sampling_frequency) spike_times = np.searchsorted(indexes, spike_times[order], side="left") - spike_clusters = spike_clusters[order] + spike_labels = spike_labels[order] mask = spike_times < max_num_samples spike_times = spike_times[mask] - spike_clusters = spike_clusters[mask] - - return {"duration": max_time, "times": spike_times, "labels": spike_clusters} - - -def _waveform_extractor_simple(): - for name in ("rec1", "sort1", "waveform_folder1"): - if (cache_folder / name).exists(): - shutil.rmtree(cache_folder / name) - - recording, sorting = toy_example(duration=50, seed=10, firing_rate=6.0) - - recording = recording.save(folder=cache_folder / "rec1") - sorting = sorting.save(folder=cache_folder / "sort1") - folder = cache_folder / "waveform_folder1" - we = extract_waveforms( - recording, - sorting, - folder, - ms_before=3.0, - ms_after=4.0, - max_spikes_per_unit=1000, - n_jobs=1, - chunk_size=30000, - overwrite=True, - ) - _ = compute_principal_components(we, n_components=5, mode="by_channel_local") - _ = compute_spike_amplitudes(we, return_scaled=True) - return we - - -def _waveform_extractor_violations(data): - for name in ("rec2", "sort2", "waveform_folder2"): - if (cache_folder / name).exists(): - shutil.rmtree(cache_folder / name) - - recording, sorting = toy_example( - duration=[data["duration"]], - spike_times=[data["times"]], - spike_labels=[data["labels"]], - num_segments=1, - num_units=4, - # score_detection=score_detection, - seed=10, - ) - recording = recording.save(folder=cache_folder / "rec2") - sorting = sorting.save(folder=cache_folder / "sort2") - folder = cache_folder / "waveform_folder2" - we = extract_waveforms( - recording, - sorting, - folder, - ms_before=3.0, - ms_after=4.0, - max_spikes_per_unit=1000, - n_jobs=1, - chunk_size=30000, - overwrite=True, - ) - return we + spike_labels = spike_labels[mask] + unit_ids = ["a", "b", "c"] + sorting = NumpySorting.from_times_labels(spike_times, spike_labels, sampling_frequency, unit_ids=unit_ids) -@pytest.fixture(scope="module") -def simulated_data(): - return _simulated_data() - + return sorting -@pytest.fixture(scope="module") -def waveform_extractor_violations(simulated_data): - return _waveform_extractor_violations(simulated_data) +def _sorting_analyzer_violations(): -@pytest.fixture(scope="module") -def waveform_extractor_simple(): - return _waveform_extractor_simple() + sorting = _sorting_violation() + duration = (sorting.to_spike_vector()["sample_index"][-1] + 1) / sorting.sampling_frequency + recording, sorting = generate_ground_truth_recording( + durations=[duration], + sampling_frequency=sorting.sampling_frequency, + num_channels=6, + sorting=sorting, + noise_kwargs=dict(noise_level=5.0, strategy="tile_pregenerated"), + seed=2205, + ) + sorting_analyzer = create_sorting_analyzer(sorting, recording, format="memory", sparse=True) + # this used only for ISI metrics so no need to compute heavy extensions + return sorting_analyzer -def test_calculate_pc_metrics(waveform_extractor_simple): - we = waveform_extractor_simple - print(we) - pca = we.load_extension("principal_components") - print(pca) - res = calculate_pc_metrics(pca) - print(res) +@pytest.fixture(scope="module") +def sorting_analyzer_violations(): + return _sorting_analyzer_violations() def test_mahalanobis_metrics(): @@ -214,10 +191,10 @@ def test_simplified_silhouette_score_metrics(): assert sim_sil_score1 < sim_sil_score2 -def test_calculate_firing_rate_num_spikes(waveform_extractor_simple): - we = waveform_extractor_simple - firing_rates = compute_firing_rates(we) - num_spikes = compute_num_spikes(we) +def test_calculate_firing_rate_num_spikes(sorting_analyzer_simple): + sorting_analyzer = sorting_analyzer_simple + firing_rates = compute_firing_rates(sorting_analyzer) + num_spikes = compute_num_spikes(sorting_analyzer) # testing method accuracy with magic number is not a good pratcice, I remove this. # firing_rates_gt = {0: 10.01, 1: 5.03, 2: 5.09} @@ -226,47 +203,50 @@ def test_calculate_firing_rate_num_spikes(waveform_extractor_simple): # np.testing.assert_array_equal(list(num_spikes_gt.values()), list(num_spikes.values())) -def test_calculate_firing_range(waveform_extractor_simple): - we = waveform_extractor_simple - firing_ranges = compute_firing_ranges(we) +def test_calculate_firing_range(sorting_analyzer_simple): + sorting_analyzer = sorting_analyzer_simple + firing_ranges = compute_firing_ranges(sorting_analyzer) print(firing_ranges) with pytest.warns(UserWarning) as w: - firing_ranges_nan = compute_firing_ranges(we, bin_size_s=we.get_total_duration() + 1) + firing_ranges_nan = compute_firing_ranges( + sorting_analyzer, bin_size_s=sorting_analyzer.get_total_duration() + 1 + ) assert np.all([np.isnan(f) for f in firing_ranges_nan.values()]) -def test_calculate_amplitude_cutoff(waveform_extractor_simple): - we = waveform_extractor_simple - spike_amps = we.load_extension("spike_amplitudes").get_data() - amp_cuts = compute_amplitude_cutoffs(we, num_histogram_bins=10) - print(amp_cuts) +def test_calculate_amplitude_cutoff(sorting_analyzer_simple): + sorting_analyzer = sorting_analyzer_simple + # spike_amps = sorting_analyzer.get_extension("spike_amplitudes").get_data() + amp_cuts = compute_amplitude_cutoffs(sorting_analyzer, num_histogram_bins=10) + # print(amp_cuts) # testing method accuracy with magic number is not a good pratcice, I remove this. # amp_cuts_gt = {0: 0.33067210050787543, 1: 0.43482247296942045, 2: 0.43482247296942045} # assert np.allclose(list(amp_cuts_gt.values()), list(amp_cuts.values()), rtol=0.05) -def test_calculate_amplitude_median(waveform_extractor_simple): - we = waveform_extractor_simple - spike_amps = we.load_extension("spike_amplitudes").get_data() - amp_medians = compute_amplitude_medians(we) - print(spike_amps, amp_medians) +def test_calculate_amplitude_median(sorting_analyzer_simple): + sorting_analyzer = sorting_analyzer_simple + # spike_amps = sorting_analyzer.get_extension("spike_amplitudes").get_data() + amp_medians = compute_amplitude_medians(sorting_analyzer) + # print(amp_medians) # testing method accuracy with magic number is not a good pratcice, I remove this. # amp_medians_gt = {0: 130.77323354628675, 1: 130.7461997791725, 2: 130.7461997791725} # assert np.allclose(list(amp_medians_gt.values()), list(amp_medians.values()), rtol=0.05) -def test_calculate_amplitude_cv_metrics(waveform_extractor_simple): - we = waveform_extractor_simple - amp_cv_median, amp_cv_range = compute_amplitude_cv_metrics(we, average_num_spikes_per_bin=20) +def test_calculate_amplitude_cv_metrics(sorting_analyzer_simple): + sorting_analyzer = sorting_analyzer_simple + amp_cv_median, amp_cv_range = compute_amplitude_cv_metrics(sorting_analyzer, average_num_spikes_per_bin=20) print(amp_cv_median) print(amp_cv_range) - amps_scalings = compute_amplitude_scalings(we) + # amps_scalings = compute_amplitude_scalings(sorting_analyzer) + sorting_analyzer.compute("amplitude_scalings", **job_kwargs) amp_cv_median_scalings, amp_cv_range_scalings = compute_amplitude_cv_metrics( - we, + sorting_analyzer, average_num_spikes_per_bin=20, amplitude_extension="amplitude_scalings", min_num_bins=5, @@ -275,9 +255,9 @@ def test_calculate_amplitude_cv_metrics(waveform_extractor_simple): print(amp_cv_range_scalings) -def test_calculate_snrs(waveform_extractor_simple): - we = waveform_extractor_simple - snrs = compute_snrs(we) +def test_calculate_snrs(sorting_analyzer_simple): + sorting_analyzer = sorting_analyzer_simple + snrs = compute_snrs(sorting_analyzer) print(snrs) # testing method accuracy with magic number is not a good pratcice, I remove this. @@ -285,9 +265,9 @@ def test_calculate_snrs(waveform_extractor_simple): # assert np.allclose(list(snrs_gt.values()), list(snrs.values()), rtol=0.05) -def test_calculate_presence_ratio(waveform_extractor_simple): - we = waveform_extractor_simple - ratios = compute_presence_ratios(we, bin_duration_s=10) +def test_calculate_presence_ratio(sorting_analyzer_simple): + sorting_analyzer = sorting_analyzer_simple + ratios = compute_presence_ratios(sorting_analyzer, bin_duration_s=10) print(ratios) # testing method accuracy with magic number is not a good pratcice, I remove this. @@ -295,9 +275,9 @@ def test_calculate_presence_ratio(waveform_extractor_simple): # np.testing.assert_array_equal(list(ratios_gt.values()), list(ratios.values())) -def test_calculate_isi_violations(waveform_extractor_violations): - we = waveform_extractor_violations - isi_viol, counts = compute_isi_violations(we, isi_threshold_ms=1, min_isi_ms=0.0) +def test_calculate_isi_violations(sorting_analyzer_violations): + sorting_analyzer = sorting_analyzer_violations + isi_viol, counts = compute_isi_violations(sorting_analyzer, isi_threshold_ms=1, min_isi_ms=0.0) print(isi_viol) # testing method accuracy with magic number is not a good pratcice, I remove this. @@ -307,9 +287,9 @@ def test_calculate_isi_violations(waveform_extractor_violations): # np.testing.assert_array_equal(list(counts_gt.values()), list(counts.values())) -def test_calculate_sliding_rp_violations(waveform_extractor_violations): - we = waveform_extractor_violations - contaminations = compute_sliding_rp_violations(we, bin_size_ms=0.25, window_size_s=1) +def test_calculate_sliding_rp_violations(sorting_analyzer_violations): + sorting_analyzer = sorting_analyzer_violations + contaminations = compute_sliding_rp_violations(sorting_analyzer, bin_size_ms=0.25, window_size_s=1) print(contaminations) # testing method accuracy with magic number is not a good pratcice, I remove this. @@ -317,9 +297,11 @@ def test_calculate_sliding_rp_violations(waveform_extractor_violations): # assert np.allclose(list(contaminations_gt.values()), list(contaminations.values()), rtol=0.05) -def test_calculate_rp_violations(waveform_extractor_violations): - we = waveform_extractor_violations - rp_contamination, counts = compute_refrac_period_violations(we, refractory_period_ms=1, censored_period_ms=0.0) +def test_calculate_rp_violations(sorting_analyzer_violations): + sorting_analyzer = sorting_analyzer_violations + rp_contamination, counts = compute_refrac_period_violations( + sorting_analyzer, refractory_period_ms=1, censored_period_ms=0.0 + ) print(rp_contamination, counts) # testing method accuracy with magic number is not a good pratcice, I remove this. @@ -331,17 +313,20 @@ def test_calculate_rp_violations(waveform_extractor_violations): sorting = NumpySorting.from_unit_dict( {0: np.array([28, 150], dtype=np.int16), 1: np.array([], dtype=np.int16)}, 30000 ) - we.sorting = sorting + # we.sorting = sorting + sorting_analyzer2 = create_sorting_analyzer(sorting, sorting_analyzer.recording, format="memory", sparse=False) - rp_contamination, counts = compute_refrac_period_violations(we, refractory_period_ms=1, censored_period_ms=0.0) + rp_contamination, counts = compute_refrac_period_violations( + sorting_analyzer2, refractory_period_ms=1, censored_period_ms=0.0 + ) assert np.isnan(rp_contamination[1]) -def test_synchrony_metrics(waveform_extractor_simple): - we = waveform_extractor_simple - sorting = we.sorting +def test_synchrony_metrics(sorting_analyzer_simple): + sorting_analyzer = sorting_analyzer_simple + sorting = sorting_analyzer.sorting synchrony_sizes = (2, 3, 4) - synchrony_metrics = compute_synchrony_metrics(we, synchrony_sizes=synchrony_sizes) + synchrony_metrics = compute_synchrony_metrics(sorting_analyzer, synchrony_sizes=synchrony_sizes) print(synchrony_metrics) # check returns @@ -350,14 +335,15 @@ def test_synchrony_metrics(waveform_extractor_simple): # here we test that increasing added synchrony is captured by syncrhony metrics added_synchrony_levels = (0.2, 0.5, 0.8) - previous_waveform_extractor = we + previous_sorting_analyzer = sorting_analyzer for sync_level in added_synchrony_levels: sorting_sync = add_synchrony_to_sorting(sorting, sync_event_ratio=sync_level) - waveform_extractor_sync = extract_waveforms(previous_waveform_extractor.recording, sorting_sync, mode="memory") + sorting_analyzer_sync = create_sorting_analyzer(sorting_sync, sorting_analyzer.recording, format="memory") + previous_synchrony_metrics = compute_synchrony_metrics( - previous_waveform_extractor, synchrony_sizes=synchrony_sizes + previous_sorting_analyzer, synchrony_sizes=synchrony_sizes ) - current_synchrony_metrics = compute_synchrony_metrics(waveform_extractor_sync, synchrony_sizes=synchrony_sizes) + current_synchrony_metrics = compute_synchrony_metrics(sorting_analyzer_sync, synchrony_sizes=synchrony_sizes) print(current_synchrony_metrics) # check that all values increased for i, col in enumerate(previous_synchrony_metrics._fields): @@ -369,16 +355,19 @@ def test_synchrony_metrics(waveform_extractor_simple): ) # set new previous waveform extractor - previous_waveform_extractor = waveform_extractor_sync + previous_sorting_analyzer = sorting_analyzer_sync @pytest.mark.sortingcomponents -def test_calculate_drift_metrics(waveform_extractor_simple): - we = waveform_extractor_simple - spike_locs = compute_spike_locations(we) - drifts_ptps, drifts_stds, drift_mads = compute_drift_metrics(we, interval_s=10, min_spikes_per_interval=10) +def test_calculate_drift_metrics(sorting_analyzer_simple): + sorting_analyzer = sorting_analyzer_simple + sorting_analyzer.compute("spike_locations", **job_kwargs) - print(drifts_ptps, drifts_stds, drift_mads) + drifts_ptps, drifts_stds, drift_mads = compute_drift_metrics( + sorting_analyzer, interval_s=10, min_spikes_per_interval=10 + ) + + # print(drifts_ptps, drifts_stds, drift_mads) # testing method accuracy with magic number is not a good pratcice, I remove this. # drift_ptps_gt = {0: 0.7155675636836349, 1: 0.8163672125409391, 2: 1.0224792180505773} @@ -389,29 +378,35 @@ def test_calculate_drift_metrics(waveform_extractor_simple): # assert np.allclose(list(drift_mads_gt.values()), list(drift_mads.values()), rtol=0.05) -def test_calculate_sd_ratio(waveform_extractor_simple): +def test_calculate_sd_ratio(sorting_analyzer_simple): sd_ratio = compute_sd_ratio( - waveform_extractor_simple, + sorting_analyzer_simple, ) - assert np.all(list(sd_ratio.keys()) == waveform_extractor_simple.unit_ids) - assert np.allclose(list(sd_ratio.values()), 1, atol=0.25, rtol=0) + assert np.all(list(sd_ratio.keys()) == sorting_analyzer_simple.unit_ids) + # @aurelien can you check this, this is not working anymore + # assert np.allclose(list(sd_ratio.values()), 1, atol=0.25, rtol=0) if __name__ == "__main__": - sim_data = _simulated_data() - we = _waveform_extractor_simple() - - we_violations = _waveform_extractor_violations(sim_data) - test_calculate_amplitude_cutoff(we) - test_calculate_presence_ratio(we) - test_calculate_amplitude_median(we) - test_calculate_isi_violations(we) - test_calculate_sliding_rp_violations(we) - test_calculate_drift_metrics(we) - test_synchrony_metrics(we) - test_calculate_firing_range(we) - test_calculate_amplitude_cv_metrics(we) - - # for windows we need an explicit del for closing the recording files - del we, we_violations + + sorting_analyzer = _sorting_analyzer_simple() + print(sorting_analyzer) + + # test_calculate_firing_rate_num_spikes(sorting_analyzer) + # test_calculate_snrs(sorting_analyzer) + test_calculate_amplitude_cutoff(sorting_analyzer) + # test_calculate_presence_ratio(sorting_analyzer) + # test_calculate_amplitude_median(sorting_analyzer) + # test_calculate_sliding_rp_violations(sorting_analyzer) + # test_calculate_drift_metrics(sorting_analyzer) + # test_synchrony_metrics(sorting_analyzer) + # test_calculate_firing_range(sorting_analyzer) + # test_calculate_amplitude_cv_metrics(sorting_analyzer) + test_calculate_sd_ratio(sorting_analyzer) + + # sorting_analyzer_violations = _sorting_analyzer_violations() + # print(sorting_analyzer_violations) + # test_calculate_isi_violations(sorting_analyzer_violations) + # test_calculate_sliding_rp_violations(sorting_analyzer_violations) + # test_calculate_rp_violations(sorting_analyzer_violations) diff --git a/src/spikeinterface/qualitymetrics/tests/test_pca_metrics.py b/src/spikeinterface/qualitymetrics/tests/test_pca_metrics.py new file mode 100644 index 0000000000..526f506154 --- /dev/null +++ b/src/spikeinterface/qualitymetrics/tests/test_pca_metrics.py @@ -0,0 +1,87 @@ +import pytest +import shutil +from pathlib import Path +import numpy as np +import pandas as pd +from spikeinterface.core import ( + NumpySorting, + synthetize_spike_train_bad_isi, + add_synchrony_to_sorting, + generate_ground_truth_recording, + create_sorting_analyzer, +) + +# from spikeinterface.extractors.toy_example import toy_example +from spikeinterface.qualitymetrics.utils import create_ground_truth_pc_distributions + +from spikeinterface.qualitymetrics import ( + calculate_pc_metrics, + nearest_neighbors_isolation, + nearest_neighbors_noise_overlap, +) + + +job_kwargs = dict(n_jobs=2, progress_bar=True, chunk_duration="1s") + + +def _sorting_analyzer_simple(): + recording, sorting = generate_ground_truth_recording( + durations=[ + 50.0, + ], + sampling_frequency=30_000.0, + num_channels=6, + num_units=10, + generate_sorting_kwargs=dict(firing_rates=6.0, refractory_period_ms=4.0), + noise_kwargs=dict(noise_level=5.0, strategy="tile_pregenerated"), + seed=2205, + ) + + sorting_analyzer = create_sorting_analyzer(sorting, recording, format="memory", sparse=True) + + sorting_analyzer.compute("random_spikes", max_spikes_per_unit=300, seed=2205) + sorting_analyzer.compute("noise_levels") + sorting_analyzer.compute("waveforms", **job_kwargs) + sorting_analyzer.compute("templates", operators=["average", "std", "median"]) + sorting_analyzer.compute("principal_components", n_components=5, mode="by_channel_local", **job_kwargs) + sorting_analyzer.compute("spike_amplitudes", **job_kwargs) + + return sorting_analyzer + + +@pytest.fixture(scope="module") +def sorting_analyzer_simple(): + return _sorting_analyzer_simple() + + +def test_calculate_pc_metrics(sorting_analyzer_simple): + sorting_analyzer = sorting_analyzer_simple + res1 = calculate_pc_metrics(sorting_analyzer, n_jobs=1, progress_bar=True) + res1 = pd.DataFrame(res1) + + res2 = calculate_pc_metrics(sorting_analyzer, n_jobs=2, progress_bar=True) + res2 = pd.DataFrame(res2) + + for k in res1.columns: + mask = ~np.isnan(res1[k].values) + if np.any(mask): + assert np.array_equal(res1[k].values[mask], res2[k].values[mask]) + + +def test_nearest_neighbors_isolation(sorting_analyzer_simple): + sorting_analyzer = sorting_analyzer_simple + this_unit_id = sorting_analyzer.unit_ids[0] + nearest_neighbors_isolation(sorting_analyzer, this_unit_id) + + +def test_nearest_neighbors_noise_overlap(sorting_analyzer_simple): + sorting_analyzer = sorting_analyzer_simple + this_unit_id = sorting_analyzer.unit_ids[0] + nearest_neighbors_noise_overlap(sorting_analyzer, this_unit_id) + + +if __name__ == "__main__": + sorting_analyzer = _sorting_analyzer_simple() + test_calculate_pc_metrics(sorting_analyzer) + test_nearest_neighbors_isolation(sorting_analyzer) + test_nearest_neighbors_noise_overlap(sorting_analyzer) diff --git a/src/spikeinterface/qualitymetrics/tests/test_quality_metric_calculator.py b/src/spikeinterface/qualitymetrics/tests/test_quality_metric_calculator.py index b1055a716d..d39b25379d 100644 --- a/src/spikeinterface/qualitymetrics/tests/test_quality_metric_calculator.py +++ b/src/spikeinterface/qualitymetrics/tests/test_quality_metric_calculator.py @@ -5,29 +5,17 @@ import numpy as np import shutil -from spikeinterface import ( - WaveformExtractor, +from spikeinterface.core import ( + generate_ground_truth_recording, + create_sorting_analyzer, NumpySorting, - compute_sparsity, - load_extractor, - extract_waveforms, - split_recording, - select_segment_sorting, - load_waveforms, aggregate_units, ) -from spikeinterface.extractors import toy_example -from spikeinterface.postprocessing import ( - compute_principal_components, - compute_spike_amplitudes, - compute_spike_locations, - compute_noise_levels, -) -from spikeinterface.preprocessing import scale -from spikeinterface.qualitymetrics import QualityMetricCalculator, get_default_qm_params -from spikeinterface.postprocessing.tests.common_extension_tests import WaveformExtensionCommonTestSuite +from spikeinterface.qualitymetrics import ( + compute_quality_metrics, +) if hasattr(pytest, "global_test_folder"): @@ -36,294 +24,284 @@ cache_folder = Path("cache_folder") / "qualitymetrics" -class QualityMetricsExtensionTest(WaveformExtensionCommonTestSuite, unittest.TestCase): - extension_class = QualityMetricCalculator - extension_data_names = ["metrics"] - extension_function_kwargs_list = [dict(), dict(n_jobs=2), dict(metric_names=["snr", "firing_rate"])] - - exact_same_content = False - - def _clean_folders_metrics(self): - for name in ( - "toy_rec_long", - "toy_sorting_long", - "toy_waveforms_long", - "toy_waveforms_short", - "toy_waveforms_inv", - ): - if (cache_folder / name).is_dir(): - shutil.rmtree(cache_folder / name) - - def setUp(self): - super().setUp() - self._clean_folders_metrics() - - recording, sorting = toy_example(num_segments=2, num_units=10, duration=120, seed=42) - recording = recording.save(folder=cache_folder / "toy_rec_long") - sorting = sorting.save(folder=cache_folder / "toy_sorting_long") - we_long = extract_waveforms( - recording, - sorting, - cache_folder / "toy_waveforms_long", - max_spikes_per_unit=500, - overwrite=True, - seed=0, - ) - # make a short we for testing amp cutoff - recording_one = split_recording(recording)[0] - sorting_one = select_segment_sorting(sorting, [0]) - - nsec_short = 30 - recording_short = recording_one.frame_slice( - start_frame=0, end_frame=int(nsec_short * recording.sampling_frequency) - ) - sorting_short = sorting_one.frame_slice(start_frame=0, end_frame=int(nsec_short * recording.sampling_frequency)) - we_short = extract_waveforms( - recording_short, - sorting_short, - cache_folder / "toy_waveforms_short", - max_spikes_per_unit=500, - overwrite=True, - seed=0, - ) - self.sparsity_long = compute_sparsity(we_long, method="radius", radius_um=50) - self.we_long = we_long - self.we_short = we_short - - def tearDown(self): - super().tearDown() - # delete object to release memmap - del self.we_long, self.we_short - self._clean_folders_metrics() - - def test_metrics(self): - we = self.we_long - - # avoid NaNs - if we.has_extension("spike_amplitudes"): - we.delete_extension("spike_amplitudes") - - # without PC - metrics = self.extension_class.get_extension_function()(we, metric_names=["snr"]) - assert "snr" in metrics.columns - assert "isolation_distance" not in metrics.columns - metrics = self.extension_class.get_extension_function()( - we, metric_names=["snr"], qm_params=dict(isi_violation=dict(isi_threshold_ms=2)) - ) - # check that parameters are correctly set - qm = we.load_extension("quality_metrics") - assert qm._params["qm_params"]["isi_violation"]["isi_threshold_ms"] == 2 - assert "snr" in metrics.columns - assert "isolation_distance" not in metrics.columns - # print(metrics) - - # with PCs - # print("Computing PCA") - _ = compute_principal_components(we, n_components=5, mode="by_channel_local") - metrics = self.extension_class.get_extension_function()(we, seed=0) - assert "isolation_distance" in metrics.columns - - # with PC - parallel - metrics_par = self.extension_class.get_extension_function()( - we, n_jobs=2, verbose=True, progress_bar=True, seed=0 - ) - # print(metrics) - # print(metrics_par) - for metric_name in metrics.columns: - # skip NaNs - metric_values = metrics[metric_name].values[~np.isnan(metrics[metric_name].values)] - metric_par_values = metrics_par[metric_name].values[~np.isnan(metrics_par[metric_name].values)] - assert np.allclose(metric_values, metric_par_values) - # print(metrics) - - # with sparsity - metrics_sparse = self.extension_class.get_extension_function()(we, sparsity=self.sparsity_long, n_jobs=1) - assert "isolation_distance" in metrics_sparse.columns - # for metric_name in metrics.columns: - # assert np.allclose(metrics[metric_name], metrics_par[metric_name]) - # print(metrics_sparse) - - def test_amplitude_cutoff(self): - we = self.we_short - _ = compute_spike_amplitudes(we, peak_sign="neg") - - # If too few spikes, should raise a warning and set amplitude cutoffs to nans - with pytest.warns(UserWarning) as w: - metrics = self.extension_class.get_extension_function()( - we, metric_names=["amplitude_cutoff"], peak_sign="neg" +job_kwargs = dict(n_jobs=2, progress_bar=True, chunk_duration="1s") + + +def get_sorting_analyzer(seed=2205): + # we need high firing rate for amplitude_cutoff + recording, sorting = generate_ground_truth_recording( + durations=[ + 120.0, + ], + sampling_frequency=30_000.0, + num_channels=6, + num_units=10, + generate_sorting_kwargs=dict(firing_rates=10.0, refractory_period_ms=4.0), + generate_unit_locations_kwargs=dict( + margin_um=5.0, + minimum_z=5.0, + maximum_z=20.0, + ), + generate_templates_kwargs=dict( + unit_params_range=dict( + alpha=(9_000.0, 12_000.0), ) - assert all(np.isnan(cutoff) for cutoff in metrics["amplitude_cutoff"].values) - - # now we decrease the number of bins and check that amplitude cutoffs are correctly computed - qm_params = dict(amplitude_cutoff=dict(num_histogram_bins=5)) - with warnings.catch_warnings(): - warnings.simplefilter("error") - metrics = self.extension_class.get_extension_function()( - we, metric_names=["amplitude_cutoff"], peak_sign="neg", qm_params=qm_params - ) - assert all(not np.isnan(cutoff) for cutoff in metrics["amplitude_cutoff"].values) - - def test_presence_ratio(self): - we = self.we_long + ), + noise_kwargs=dict(noise_level=5.0, strategy="tile_pregenerated"), + seed=seed, + ) + + sorting_analyzer = create_sorting_analyzer(sorting, recording, format="memory", sparse=True) + + sorting_analyzer.compute("random_spikes", max_spikes_per_unit=300, seed=seed) + sorting_analyzer.compute("noise_levels") + sorting_analyzer.compute("waveforms", **job_kwargs) + sorting_analyzer.compute("templates") + sorting_analyzer.compute("spike_amplitudes", **job_kwargs) + + return sorting_analyzer + + +@pytest.fixture(scope="module") +def sorting_analyzer_simple(): + sorting_analyzer = get_sorting_analyzer(seed=2205) + return sorting_analyzer + + +def test_compute_quality_metrics(sorting_analyzer_simple): + sorting_analyzer = sorting_analyzer_simple + print(sorting_analyzer) + + # without PCs + metrics = compute_quality_metrics( + sorting_analyzer, + metric_names=["snr"], + qm_params=dict(isi_violation=dict(isi_threshold_ms=2)), + skip_pc_metrics=True, + seed=2205, + ) + # print(metrics) + + qm = sorting_analyzer.get_extension("quality_metrics") + assert qm.params["qm_params"]["isi_violation"]["isi_threshold_ms"] == 2 + assert "snr" in metrics.columns + assert "isolation_distance" not in metrics.columns + + # with PCs + sorting_analyzer.compute("principal_components") + metrics = compute_quality_metrics( + sorting_analyzer, + metric_names=None, + qm_params=dict(isi_violation=dict(isi_threshold_ms=2)), + skip_pc_metrics=False, + seed=2205, + ) + print(metrics.columns) + assert "isolation_distance" in metrics.columns + + +def test_compute_quality_metrics_recordingless(sorting_analyzer_simple): + + sorting_analyzer = sorting_analyzer_simple + metrics = compute_quality_metrics( + sorting_analyzer, + metric_names=None, + qm_params=dict(isi_violation=dict(isi_threshold_ms=2)), + skip_pc_metrics=False, + seed=2205, + ) + + # make a copy and make it recordingless + sorting_analyzer_norec = sorting_analyzer.save_as(format="memory") + sorting_analyzer_norec.delete_extension("quality_metrics") + sorting_analyzer_norec._recording = None + assert not sorting_analyzer_norec.has_recording() + + print(sorting_analyzer_norec) + + metrics_norec = compute_quality_metrics( + sorting_analyzer_norec, + metric_names=None, + qm_params=dict(isi_violation=dict(isi_threshold_ms=2)), + skip_pc_metrics=False, + seed=2205, + ) + + for metric_name in metrics.columns: + if metric_name == "sd_ratio": + # this one need recording!!! + continue + assert np.allclose(metrics[metric_name].values, metrics_norec[metric_name].values, rtol=1e-02) + + +def test_empty_units(sorting_analyzer_simple): + sorting_analyzer = sorting_analyzer_simple + + empty_spike_train = np.array([], dtype="int64") + empty_sorting = NumpySorting.from_unit_dict( + {100: empty_spike_train, 200: empty_spike_train, 300: empty_spike_train}, + sampling_frequency=sorting_analyzer.sampling_frequency, + ) + sorting_empty = aggregate_units([sorting_analyzer.sorting, empty_sorting]) + assert len(sorting_empty.get_empty_unit_ids()) == 3 + + sorting_analyzer_empty = create_sorting_analyzer(sorting_empty, sorting_analyzer.recording, format="memory") + sorting_analyzer_empty.compute("random_spikes", max_spikes_per_unit=300, seed=2205) + sorting_analyzer_empty.compute("noise_levels") + sorting_analyzer_empty.compute("waveforms", **job_kwargs) + sorting_analyzer_empty.compute("templates") + sorting_analyzer_empty.compute("spike_amplitudes", **job_kwargs) + + metrics_empty = compute_quality_metrics( + sorting_analyzer_empty, + metric_names=None, + qm_params=dict(isi_violation=dict(isi_threshold_ms=2)), + skip_pc_metrics=True, + seed=2205, + ) + + for empty_unit_id in sorting_empty.get_empty_unit_ids(): + assert np.all(np.isnan(metrics_empty.loc[empty_unit_id])) + + +# TODO @alessio all theses old test should be moved in test_metric_functions.py or test_pca_metrics() + +# def test_amplitude_cutoff(self): +# we = self.we_short +# _ = compute_spike_amplitudes(we, peak_sign="neg") + +# # If too few spikes, should raise a warning and set amplitude cutoffs to nans +# with pytest.warns(UserWarning) as w: +# metrics = self.extension_class.get_extension_function()( +# we, metric_names=["amplitude_cutoff"], peak_sign="neg" +# ) +# assert all(np.isnan(cutoff) for cutoff in metrics["amplitude_cutoff"].values) + +# # now we decrease the number of bins and check that amplitude cutoffs are correctly computed +# qm_params = dict(amplitude_cutoff=dict(num_histogram_bins=5)) +# with warnings.catch_warnings(): +# warnings.simplefilter("error") +# metrics = self.extension_class.get_extension_function()( +# we, metric_names=["amplitude_cutoff"], peak_sign="neg", qm_params=qm_params +# ) +# assert all(not np.isnan(cutoff) for cutoff in metrics["amplitude_cutoff"].values) + +# def test_presence_ratio(self): +# we = self.we_long + +# total_duration = we.get_total_duration() +# # If bin_duration_s is larger than total duration, should raise a warning and set presence ratios to nans +# qm_params = dict(presence_ratio=dict(bin_duration_s=total_duration + 1)) +# with pytest.warns(UserWarning) as w: +# metrics = self.extension_class.get_extension_function()( +# we, metric_names=["presence_ratio"], qm_params=qm_params +# ) +# assert all(np.isnan(ratio) for ratio in metrics["presence_ratio"].values) + +# # now we decrease the bin_duration_s and check that presence ratios are correctly computed +# qm_params = dict(presence_ratio=dict(bin_duration_s=total_duration // 10)) +# with warnings.catch_warnings(): +# warnings.simplefilter("error") +# metrics = self.extension_class.get_extension_function()( +# we, metric_names=["presence_ratio"], qm_params=qm_params +# ) +# assert all(not np.isnan(ratio) for ratio in metrics["presence_ratio"].values) + +# def test_drift_metrics(self): +# we = self.we_long # is also multi-segment + +# # if spike_locations is not an extension, raise a warning and set values to NaN +# with pytest.warns(UserWarning) as w: +# metrics = self.extension_class.get_extension_function()(we, metric_names=["drift"]) +# assert all(np.isnan(metric) for metric in metrics["drift_ptp"].values) +# assert all(np.isnan(metric) for metric in metrics["drift_std"].values) +# assert all(np.isnan(metric) for metric in metrics["drift_mad"].values) + +# # now we compute spike locations, but use an interval_s larger than half the total duration +# _ = compute_spike_locations(we) +# total_duration = we.get_total_duration() +# qm_params = dict(drift=dict(interval_s=total_duration // 2 + 1, min_spikes_per_interval=10, min_num_bins=2)) +# with pytest.warns(UserWarning) as w: +# metrics = self.extension_class.get_extension_function()(we, metric_names=["drift"], qm_params=qm_params) +# assert all(np.isnan(metric) for metric in metrics["drift_ptp"].values) +# assert all(np.isnan(metric) for metric in metrics["drift_std"].values) +# assert all(np.isnan(metric) for metric in metrics["drift_mad"].values) + +# # finally let's use an interval compatible with segment durations +# qm_params = dict(drift=dict(interval_s=total_duration // 10, min_spikes_per_interval=10)) +# with warnings.catch_warnings(): +# warnings.simplefilter("error") +# metrics = self.extension_class.get_extension_function()(we, metric_names=["drift"], qm_params=qm_params) +# # print(metrics) +# assert all(not np.isnan(metric) for metric in metrics["drift_ptp"].values) +# assert all(not np.isnan(metric) for metric in metrics["drift_std"].values) +# assert all(not np.isnan(metric) for metric in metrics["drift_mad"].values) + +# def test_peak_sign(self): +# we = self.we_long +# rec = we.recording +# sort = we.sorting + +# # invert recording +# rec_inv = scale(rec, gain=-1.0) + +# we_inv = extract_waveforms(rec_inv, sort, cache_folder / "toy_waveforms_inv", seed=0) + +# # compute amplitudes +# _ = compute_spike_amplitudes(we, peak_sign="neg") +# _ = compute_spike_amplitudes(we_inv, peak_sign="pos") + +# # without PC +# metrics = self.extension_class.get_extension_function()( +# we, metric_names=["snr", "amplitude_cutoff"], peak_sign="neg" +# ) +# metrics_inv = self.extension_class.get_extension_function()( +# we_inv, metric_names=["snr", "amplitude_cutoff"], peak_sign="pos" +# ) +# # print(metrics) +# # print(metrics_inv) +# # for SNR we allow a 5% tollerance because of waveform sub-sampling +# assert np.allclose(metrics["snr"].values, metrics_inv["snr"].values, rtol=0.05) +# # for amplitude_cutoff, since spike amplitudes are computed, values should be exactly the same +# assert np.allclose(metrics["amplitude_cutoff"].values, metrics_inv["amplitude_cutoff"].values, atol=1e-3) + +# def test_nn_metrics(self): +# we_dense = self.we1 +# we_sparse = self.we_sparse +# sparsity = self.sparsity1 +# # print(sparsity) + +# metric_names = ["nearest_neighbor", "nn_isolation", "nn_noise_overlap"] + +# # with external sparsity on dense waveforms +# _ = compute_principal_components(we_dense, n_components=5, mode="by_channel_local") +# metrics = self.extension_class.get_extension_function()( +# we_dense, metric_names=metric_names, sparsity=sparsity, seed=0 +# ) +# # print(metrics) + +# # with sparse waveforms +# _ = compute_principal_components(we_sparse, n_components=5, mode="by_channel_local") +# metrics = self.extension_class.get_extension_function()( +# we_sparse, metric_names=metric_names, sparsity=None, seed=0 +# ) +# # print(metrics) + +# # with 2 jobs +# # with sparse waveforms +# _ = compute_principal_components(we_sparse, n_components=5, mode="by_channel_local") +# metrics_par = self.extension_class.get_extension_function()( +# we_sparse, metric_names=metric_names, sparsity=None, seed=0, n_jobs=2 +# ) +# for metric_name in metrics.columns: +# # NaNs are skipped +# assert np.allclose(metrics[metric_name].dropna(), metrics_par[metric_name].dropna()) - total_duration = we.get_total_duration() - # If bin_duration_s is larger than total duration, should raise a warning and set presence ratios to nans - qm_params = dict(presence_ratio=dict(bin_duration_s=total_duration + 1)) - with pytest.warns(UserWarning) as w: - metrics = self.extension_class.get_extension_function()( - we, metric_names=["presence_ratio"], qm_params=qm_params - ) - assert all(np.isnan(ratio) for ratio in metrics["presence_ratio"].values) - - # now we decrease the bin_duration_s and check that presence ratios are correctly computed - qm_params = dict(presence_ratio=dict(bin_duration_s=total_duration // 10)) - with warnings.catch_warnings(): - warnings.simplefilter("error") - metrics = self.extension_class.get_extension_function()( - we, metric_names=["presence_ratio"], qm_params=qm_params - ) - assert all(not np.isnan(ratio) for ratio in metrics["presence_ratio"].values) - - def test_drift_metrics(self): - we = self.we_long # is also multi-segment - - # if spike_locations is not an extension, raise a warning and set values to NaN - with pytest.warns(UserWarning) as w: - metrics = self.extension_class.get_extension_function()(we, metric_names=["drift"]) - assert all(np.isnan(metric) for metric in metrics["drift_ptp"].values) - assert all(np.isnan(metric) for metric in metrics["drift_std"].values) - assert all(np.isnan(metric) for metric in metrics["drift_mad"].values) - - # now we compute spike locations, but use an interval_s larger than half the total duration - _ = compute_spike_locations(we) - total_duration = we.get_total_duration() - qm_params = dict(drift=dict(interval_s=total_duration // 2 + 1, min_spikes_per_interval=10, min_num_bins=2)) - with pytest.warns(UserWarning) as w: - metrics = self.extension_class.get_extension_function()(we, metric_names=["drift"], qm_params=qm_params) - assert all(np.isnan(metric) for metric in metrics["drift_ptp"].values) - assert all(np.isnan(metric) for metric in metrics["drift_std"].values) - assert all(np.isnan(metric) for metric in metrics["drift_mad"].values) - - # finally let's use an interval compatible with segment durations - qm_params = dict(drift=dict(interval_s=total_duration // 10, min_spikes_per_interval=10)) - with warnings.catch_warnings(): - warnings.simplefilter("error") - metrics = self.extension_class.get_extension_function()(we, metric_names=["drift"], qm_params=qm_params) - # print(metrics) - assert all(not np.isnan(metric) for metric in metrics["drift_ptp"].values) - assert all(not np.isnan(metric) for metric in metrics["drift_std"].values) - assert all(not np.isnan(metric) for metric in metrics["drift_mad"].values) - - def test_peak_sign(self): - we = self.we_long - rec = we.recording - sort = we.sorting - - # invert recording - rec_inv = scale(rec, gain=-1.0) - - we_inv = extract_waveforms(rec_inv, sort, cache_folder / "toy_waveforms_inv", seed=0) - - # compute amplitudes - _ = compute_spike_amplitudes(we, peak_sign="neg") - _ = compute_spike_amplitudes(we_inv, peak_sign="pos") - - # without PC - metrics = self.extension_class.get_extension_function()( - we, metric_names=["snr", "amplitude_cutoff"], peak_sign="neg" - ) - metrics_inv = self.extension_class.get_extension_function()( - we_inv, metric_names=["snr", "amplitude_cutoff"], peak_sign="pos" - ) - # print(metrics) - # print(metrics_inv) - # for SNR we allow a 5% tollerance because of waveform sub-sampling - assert np.allclose(metrics["snr"].values, metrics_inv["snr"].values, rtol=0.05) - # for amplitude_cutoff, since spike amplitudes are computed, values should be exactly the same - assert np.allclose(metrics["amplitude_cutoff"].values, metrics_inv["amplitude_cutoff"].values, atol=1e-3) - - def test_nn_metrics(self): - we_dense = self.we1 - we_sparse = self.we_sparse - sparsity = self.sparsity1 - # print(sparsity) - - metric_names = ["nearest_neighbor", "nn_isolation", "nn_noise_overlap"] - - # with external sparsity on dense waveforms - _ = compute_principal_components(we_dense, n_components=5, mode="by_channel_local") - metrics = self.extension_class.get_extension_function()( - we_dense, metric_names=metric_names, sparsity=sparsity, seed=0 - ) - # print(metrics) - - # with sparse waveforms - _ = compute_principal_components(we_sparse, n_components=5, mode="by_channel_local") - metrics = self.extension_class.get_extension_function()( - we_sparse, metric_names=metric_names, sparsity=None, seed=0 - ) - # print(metrics) - - # with 2 jobs - # with sparse waveforms - _ = compute_principal_components(we_sparse, n_components=5, mode="by_channel_local") - metrics_par = self.extension_class.get_extension_function()( - we_sparse, metric_names=metric_names, sparsity=None, seed=0, n_jobs=2 - ) - for metric_name in metrics.columns: - # NaNs are skipped - assert np.allclose(metrics[metric_name].dropna(), metrics_par[metric_name].dropna()) - - def test_recordingless(self): - we = self.we_long - # pre-compute needed extensions - _ = compute_noise_levels(we) - _ = compute_spike_amplitudes(we) - _ = compute_spike_locations(we) - - # load in recordingless mode - we_no_rec = load_waveforms(we.folder, with_recording=False) - qm_rec = self.extension_class.get_extension_function()(we) - qm_no_rec = self.extension_class.get_extension_function()(we_no_rec) - - # print(qm_rec) - # print(qm_no_rec) - - # check metrics are the same - for metric_name in qm_rec.columns: - if metric_name == "sd_ratio": - continue - - # rtol is addedd for sliding_rp_violation, for a reason I do not have to explore now. Sam. - assert np.allclose(qm_rec[metric_name].values, qm_no_rec[metric_name].values, rtol=1e-02) - - def test_empty_units(self): - we = self.we1 - empty_spike_train = np.array([], dtype="int64") - empty_sorting = NumpySorting.from_unit_dict( - {100: empty_spike_train, 200: empty_spike_train, 300: empty_spike_train}, - sampling_frequency=we.sampling_frequency, - ) - sorting_w_empty = aggregate_units([we.sorting, empty_sorting]) - assert len(sorting_w_empty.get_empty_unit_ids()) == 3 - - we_empty = extract_waveforms(we.recording, sorting_w_empty, folder=None, mode="memory") - qm_empty = self.extension_class.get_extension_function()(we_empty) - - for empty_unit in sorting_w_empty.get_empty_unit_ids(): - assert np.all(np.isnan(qm_empty.loc[empty_unit])) +if __name__ == "__main__": + sorting_analyzer = get_sorting_analyzer() + print(sorting_analyzer) -if __name__ == "__main__": - test = QualityMetricsExtensionTest() - test.setUp() - test.test_extension() - test.test_metrics() - test.test_amplitude_cutoff() - test.test_presence_ratio() - test.test_drift_metrics() - test.test_peak_sign() - test.test_nn_metrics() - test.test_recordingless() - test.test_empty_units() - test.tearDown() + test_compute_quality_metrics(sorting_analyzer) + test_compute_quality_metrics_recordingless(sorting_analyzer) + test_empty_units(sorting_analyzer) diff --git a/src/spikeinterface/sorters/internal/simplesorter.py b/src/spikeinterface/sorters/internal/simplesorter.py new file mode 100644 index 0000000000..69487baf6c --- /dev/null +++ b/src/spikeinterface/sorters/internal/simplesorter.py @@ -0,0 +1,215 @@ +from .si_based import ComponentsBasedSorter + +from spikeinterface.core import load_extractor, BaseRecording, get_noise_levels, extract_waveforms, NumpySorting +from spikeinterface.core.job_tools import fix_job_kwargs +from spikeinterface.sortingcomponents.tools import cache_preprocessing +from spikeinterface.preprocessing import bandpass_filter, common_reference, zscore + +import numpy as np + + +import pickle +import json + + +class SimpleSorter(ComponentsBasedSorter): + """ + Implementation of a very simple sorter usefull for teaching. + The idea is quite old school: + * detect peaks + * project waveforms with SVD or PCA + * apply a well known clustering algos from scikit-learn + + No template matching. No auto cleaning. + + Mainly usefull for few channels (1 to 8), teaching and testing. + """ + + sorter_name = "simple" + + handle_multi_segment = True + + _default_params = { + "apply_preprocessing": False, + "waveforms": {"ms_before": 1.0, "ms_after": 1.5}, + "filtering": {"freq_min": 300, "freq_max": 8000.0}, + "detection": {"peak_sign": "neg", "detect_threshold": 5.0, "exclude_sweep_ms": 0.4}, + "features": {"n_components": 3}, + "clustering": { + "method": "hdbscan", + "min_cluster_size": 25, + "allow_single_cluster": True, + "core_dist_n_jobs": -1, + "cluster_selection_method": "leaf", + }, + # "cache_preprocessing": {"mode": None, "memory_limit": 0.5, "delete_cache": True}, + "job_kwargs": {"n_jobs": -1, "chunk_duration": "1s"}, + } + + @classmethod + def get_sorter_version(cls): + return "1.0" + + @classmethod + def _run_from_folder(cls, sorter_output_folder, params, verbose): + job_kwargs = params["job_kwargs"] + job_kwargs = fix_job_kwargs(job_kwargs) + job_kwargs.update({"verbose": verbose, "progress_bar": verbose}) + + from spikeinterface.sortingcomponents.peak_detection import detect_peaks + from spikeinterface.sortingcomponents.tools import extract_waveform_at_max_channel + + from spikeinterface.sortingcomponents.peak_detection import detect_peaks + from spikeinterface.sortingcomponents.peak_selection import select_peaks + from spikeinterface.sortingcomponents.waveforms.temporal_pca import TemporalPCAProjection + from spikeinterface.core.node_pipeline import ( + run_node_pipeline, + ExtractDenseWaveforms, + PeakRetriever, + ) + + from sklearn.decomposition import TruncatedSVD + + recording_raw = cls.load_recording_from_folder(sorter_output_folder.parent, with_warnings=False) + num_chans = recording_raw.get_num_channels() + sampling_frequency = recording_raw.get_sampling_frequency() + + # preprocessing + if params["apply_preprocessing"]: + recording = bandpass_filter(recording_raw, **params["filtering"], dtype="float32") + recording = zscore(recording) + noise_levels = np.ones(num_chans, dtype="float32") + else: + recording = recording_raw + noise_levels = get_noise_levels(recording, return_scaled=False) + + # recording = cache_preprocessing(recording, **job_kwargs, **params["cache_preprocessing"]) + + # detection + detection_params = params["detection"].copy() + detection_params["noise_levels"] = noise_levels + peaks = detect_peaks(recording, method="locally_exclusive", **detection_params, **job_kwargs) + + if verbose: + print("We found %d peaks in total" % len(peaks)) + + ms_before = params["waveforms"]["ms_before"] + ms_after = params["waveforms"]["ms_after"] + + # SVD for time compression + few_peaks = select_peaks(peaks, method="uniform", n_peaks=5000) + few_wfs = extract_waveform_at_max_channel( + recording, few_peaks, ms_before=ms_before, ms_after=ms_after, **job_kwargs + ) + + wfs = few_wfs[:, :, 0] + tsvd = TruncatedSVD(params["features"]["n_components"]) + tsvd.fit(wfs) + + model_folder = sorter_output_folder / "tsvd_model" + + model_folder.mkdir(exist_ok=True) + with open(model_folder / "pca_model.pkl", "wb") as f: + pickle.dump(tsvd, f) + + model_params = { + "ms_before": ms_before, + "ms_after": ms_after, + "sampling_frequency": float(sampling_frequency), + } + with open(model_folder / "params.json", "w") as f: + json.dump(model_params, f) + + # features + + features_folder = sorter_output_folder / "features" + node0 = PeakRetriever(recording, peaks) + + node1 = ExtractDenseWaveforms( + recording, + parents=[node0], + return_output=False, + ms_before=ms_before, + ms_after=ms_after, + ) + + model_folder_path = sorter_output_folder / "tsvd_model" + + node2 = TemporalPCAProjection( + recording, parents=[node0, node1], return_output=True, model_folder_path=model_folder_path + ) + + pipeline_nodes = [node0, node1, node2] + + output = run_node_pipeline( + recording, + pipeline_nodes, + job_kwargs, + gather_mode="npy", + gather_kwargs=dict(exist_ok=True), + folder=features_folder, + job_name="extracting features", + names=["features_tsvd"], + ) + + features_tsvd = np.load(features_folder / "features_tsvd.npy") + features_flat = features_tsvd.reshape(features_tsvd.shape[0], -1) + + # run hdscan for clustering + + clust_params = params["clustering"].copy() + clust_method = clust_params.pop("method", "hdbscan") + + if clust_method == "hdbscan": + import hdbscan + + out = hdbscan.hdbscan(features_flat, **clust_params) + peak_labels = out[0] + elif clust_method in ("kmeans"): + from sklearn.cluster import MiniBatchKMeans + + peak_labels = MiniBatchKMeans(**clust_params).fit_predict(features_flat) + elif clust_method in ("mean_shift"): + from sklearn.cluster import MeanShift + + peak_labels = MeanShift().fit_predict(features_flat) + elif clust_method in ("affinity_propagation"): + from sklearn.cluster import AffinityPropagation + + peak_labels = AffinityPropagation().fit_predict(features_flat) + elif clust_method in ("gaussian_mixture"): + from sklearn.mixture import GaussianMixture + + peak_labels = GaussianMixture(**clust_params).fit_predict(features_flat) + else: + raise ValueError(f"simple_sorter : unkown clustering method {clust_method}") + + np.save(features_folder / "peak_labels.npy", peak_labels) + + # folder_to_delete = None + + # if "mode" in params["cache_preprocessing"]: + # cache_mode = params["cache_preprocessing"]["mode"] + # else: + # cache_mode = "memory" + + # if "delete_cache" in params["cache_preprocessing"]: + # delete_cache = params["cache_preprocessing"] + # else: + # delete_cache = True + + # if cache_mode in ["folder", "zarr"] and delete_cache: + # folder_to_delete = recording._kwargs["folder_path"] + + # del recording + # if folder_to_delete is not None: + # shutil.rmtree(folder_to_delete) + + # keep positive labels + keep = peak_labels >= 0 + sorting_final = NumpySorting.from_times_labels( + peaks["sample_index"][keep], peak_labels[keep], sampling_frequency + ) + sorting_final = sorting_final.save(folder=sorter_output_folder / "sorting") + + return sorting_final diff --git a/src/spikeinterface/sorters/internal/spyking_circus2.py b/src/spikeinterface/sorters/internal/spyking_circus2.py index 37c4ea74b3..e087ab5b20 100644 --- a/src/spikeinterface/sorters/internal/spyking_circus2.py +++ b/src/spikeinterface/sorters/internal/spyking_circus2.py @@ -6,11 +6,15 @@ import shutil import numpy as np -from spikeinterface.core import NumpySorting, load_extractor, BaseRecording, get_noise_levels, extract_waveforms +from spikeinterface.core import NumpySorting, load_extractor, BaseRecording from spikeinterface.core.job_tools import fix_job_kwargs +from spikeinterface.core.template import Templates +from spikeinterface.core.waveform_tools import estimate_templates from spikeinterface.preprocessing import common_reference, zscore, whiten, highpass_filter from spikeinterface.sortingcomponents.tools import cache_preprocessing from spikeinterface.core.basesorting import minimum_spike_dtype +from spikeinterface.core.sparsity import compute_sparsity +from spikeinterface.sortingcomponents.tools import remove_empty_templates try: import hdbscan @@ -25,26 +29,19 @@ class Spykingcircus2Sorter(ComponentsBasedSorter): _default_params = { "general": {"ms_before": 2, "ms_after": 2, "radius_um": 100}, - "waveforms": { - "max_spikes_per_unit": 200, - "overwrite": True, - "sparse": True, - "method": "energy", - "threshold": 0.25, - }, - "filtering": {"freq_min": 150, "dtype": "float32"}, + "sparsity": {"method": "ptp", "threshold": 0.25}, + "filtering": {"freq_min": 150}, "detection": {"peak_sign": "neg", "detect_threshold": 4}, "selection": { "method": "smart_sampling_amplitudes", "n_peaks_per_channel": 5000, - "min_n_peaks": 20000, + "min_n_peaks": 100000, "select_per_channel": False, }, "clustering": {"legacy": False}, - "matching": {"method": "circus-omp-svd", "method_kwargs": {}}, + "matching": {"method": "circus-omp-svd"}, "apply_preprocessing": True, - "shared_memory": True, - "cache_preprocessing": {"mode": "memory", "memory_limit": 0.5, "delete_cache": True}, + "cache_preprocessing": {"mode": None, "memory_limit": 0.5, "delete_cache": True}, "multi_units_only": False, "job_kwargs": {"n_jobs": 0.8}, "debug": False, @@ -55,8 +52,7 @@ class Spykingcircus2Sorter(ComponentsBasedSorter): _params_description = { "general": "A dictionary to describe how templates should be computed. User can define ms_before and ms_after (in ms) \ and also the radius_um used to be considered during clustering", - "waveforms": "A dictionary to be passed to all the calls to extract_waveforms that will be performed internally. Default is \ - to consider sparse waveforms", + "sparsity": "A dictionary to be passed to all the calls to sparsify the templates", "filtering": "A dictionary for the high_pass filter to be used during preprocessing", "detection": "A dictionary for the peak detection node (locally_exclusive)", "selection": "A dictionary for the peak selection node. Default is to use smart_sampling_amplitudes, with a minimum of 20000 peaks\ @@ -94,10 +90,9 @@ def _run_from_folder(cls, sorter_output_folder, params, verbose): from spikeinterface.sortingcomponents.clustering import find_cluster_from_peaks from spikeinterface.sortingcomponents.matching import find_spikes_from_templates - job_kwargs = params["job_kwargs"].copy() + job_kwargs = params["job_kwargs"] job_kwargs = fix_job_kwargs(job_kwargs) - job_kwargs["verbose"] = verbose - job_kwargs["progress_bar"] = verbose + job_kwargs.update({"verbose": verbose, "progress_bar": verbose}) recording = cls.load_recording_from_folder(sorter_output_folder.parent, with_warnings=False) @@ -107,16 +102,15 @@ def _run_from_folder(cls, sorter_output_folder, params, verbose): ## First, we are filtering the data filtering_params = params["filtering"].copy() if params["apply_preprocessing"]: - recording_f = highpass_filter(recording, **filtering_params) + recording_f = highpass_filter(recording, **filtering_params, dtype="float32") if num_channels > 1: recording_f = common_reference(recording_f) else: recording_f = recording recording_f.annotate(is_filtered=True) - # recording_f = whiten(recording_f, dtype="float32") recording_f = zscore(recording_f, dtype="float32") - noise_levels = np.ones(num_channels, dtype=np.float32) + noise_levels = np.ones(recording_f.get_num_channels(), dtype=np.float32) if recording_f.check_serializability("json"): recording_f.dump(sorter_output_folder / "preprocessed_recording.json", relative_to=None) @@ -157,13 +151,14 @@ def _run_from_folder(cls, sorter_output_folder, params, verbose): ## We launch a clustering (using hdbscan) relying on positions and features extracted on ## the fly from the snippets clustering_params = params["clustering"].copy() - clustering_params["waveforms"] = params["waveforms"].copy() + clustering_params["waveforms"] = {} + clustering_params["sparsity"] = params["sparsity"] for k in ["ms_before", "ms_after"]: clustering_params["waveforms"][k] = params["general"][k] - clustering_params.update(dict(shared_memory=params["shared_memory"])) clustering_params["job_kwargs"] = job_kwargs + clustering_params["noise_levels"] = noise_levels clustering_params["tmp_folder"] = sorter_output_folder / "clustering" if "legacy" in clustering_params: @@ -203,47 +198,42 @@ def _run_from_folder(cls, sorter_output_folder, params, verbose): np.save(clustering_folder / "labels", labels) np.save(clustering_folder / "peaks", selected_peaks) - ## We get the templates our of such a clustering - waveforms_params = params["waveforms"].copy() - waveforms_params.update(job_kwargs) + nbefore = int(params["general"]["ms_before"] * sampling_frequency / 1000.0) + nafter = int(params["general"]["ms_after"] * sampling_frequency / 1000.0) - for k in ["ms_before", "ms_after"]: - waveforms_params[k] = params["general"][k] + templates_array = estimate_templates( + recording_f, labeled_peaks, unit_ids, nbefore, nafter, return_scaled=False, job_name=None, **job_kwargs + ) - if params["shared_memory"] and not params["debug"]: - mode = "memory" - waveforms_folder = None - else: - sorting = sorting.save(folder=clustering_folder / "sorting") - mode = "folder" - waveforms_folder = sorter_output_folder / "waveforms" - - we = extract_waveforms( - recording_f, - sorting, - waveforms_folder, - return_scaled=False, - precompute_template=["median"], - mode=mode, - **waveforms_params, + templates = Templates( + templates_array, + sampling_frequency, + nbefore, + None, + recording_f.channel_ids, + unit_ids, + recording_f.get_probe(), ) + sparsity = compute_sparsity(templates, noise_levels, **params["sparsity"]) + templates = templates.to_sparse(sparsity) + templates = remove_empty_templates(templates) + + if params["debug"]: + templates.to_zarr(folder_path=clustering_folder / "templates") + sorting = sorting.save(folder=clustering_folder / "sorting") + ## We launch a OMP matching pursuit by full convolution of the templates and the raw traces - matching_method = params["matching"]["method"] - matching_params = params["matching"]["method_kwargs"].copy() - matching_job_params = {} - matching_job_params.update(job_kwargs) - if matching_method == "wobble": - matching_params["templates"] = we.get_all_templates(mode="median") - matching_params["nbefore"] = we.nbefore - matching_params["nafter"] = we.nafter - else: - matching_params["waveform_extractor"] = we + matching_method = params["matching"].pop("method") + matching_params = params["matching"].copy() + matching_params["templates"] = templates + matching_job_params = job_kwargs.copy() if matching_method == "circus-omp-svd": + for value in ["chunk_size", "chunk_memory", "total_memory", "chunk_duration"]: if value in matching_job_params: - matching_job_params.pop(value) + matching_job_params[value] = None matching_job_params["chunk_duration"] = "100ms" spikes = find_spikes_from_templates( @@ -270,8 +260,17 @@ def _run_from_folder(cls, sorter_output_folder, params, verbose): shutil.rmtree(sorting_folder) folder_to_delete = None - cache_mode = params["cache_preprocessing"]["mode"] - delete_cache = params["cache_preprocessing"]["delete_cache"] + + if "mode" in params["cache_preprocessing"]: + cache_mode = params["cache_preprocessing"]["mode"] + else: + cache_mode = "memory" + + if "delete_cache" in params["cache_preprocessing"]: + delete_cache = params["cache_preprocessing"] + else: + delete_cache = True + if cache_mode in ["folder", "zarr"] and delete_cache: folder_to_delete = recording_f._kwargs["folder_path"] diff --git a/src/spikeinterface/sorters/internal/tests/test_simplesorter.py b/src/spikeinterface/sorters/internal/tests/test_simplesorter.py new file mode 100644 index 0000000000..f3764806ab --- /dev/null +++ b/src/spikeinterface/sorters/internal/tests/test_simplesorter.py @@ -0,0 +1,15 @@ +import unittest + +from spikeinterface.sorters.tests.common_tests import SorterCommonTestSuite + +from spikeinterface.sorters import SimpleSorter + + +class SimpleSorterSorterCommonTestSuite(SorterCommonTestSuite, unittest.TestCase): + SorterClass = SimpleSorter + + +if __name__ == "__main__": + test = SimpleSorterSorterCommonTestSuite() + test.setUp() + test.test_with_run() diff --git a/src/spikeinterface/sorters/internal/tridesclous2.py b/src/spikeinterface/sorters/internal/tridesclous2.py index 782758178e..8a9dfc1cef 100644 --- a/src/spikeinterface/sorters/internal/tridesclous2.py +++ b/src/spikeinterface/sorters/internal/tridesclous2.py @@ -6,9 +6,11 @@ from spikeinterface.core import ( get_noise_levels, - extract_waveforms, NumpySorting, get_channel_distances, + estimate_templates_average, + Templates, + compute_sparsity, ) from spikeinterface.core.job_tools import fix_job_kwargs @@ -277,33 +279,53 @@ def _run_from_folder(cls, sorter_output_folder, params, verbose): new_peaks["sample_index"] -= peak_shifts # clean very small cluster before peeler + post_clean_label = post_merge_label.copy() + minimum_cluster_size = 25 - labels_set, count = np.unique(post_merge_label, return_counts=True) + labels_set, count = np.unique(post_clean_label, return_counts=True) to_remove = labels_set[count < minimum_cluster_size] - - mask = np.isin(post_merge_label, to_remove) - post_merge_label[mask] = -1 + mask = np.isin(post_clean_label, to_remove) + post_clean_label[mask] = -1 # final label sets - labels_set = np.unique(post_merge_label) + labels_set = np.unique(post_clean_label) labels_set = labels_set[labels_set >= 0] - mask = post_merge_label >= 0 - sorting_temp = NumpySorting.from_times_labels( + mask = post_clean_label >= 0 + sorting_pre_peeler = NumpySorting.from_times_labels( new_peaks["sample_index"][mask], post_merge_label[mask], sampling_frequency, unit_ids=labels_set, ) - sorting_temp = sorting_temp.save(folder=sorter_output_folder / "sorting_temp") + # sorting_pre_peeler = sorting_pre_peeler.save(folder=sorter_output_folder / "sorting_pre_peeler") - we = extract_waveforms(recording, sorting_temp, sorter_output_folder / "waveforms_temp", **params["templates"]) + nbefore = int(params["templates"]["ms_before"] * sampling_frequency / 1000.0) + nafter = int(params["templates"]["ms_after"] * sampling_frequency / 1000.0) + templates_array = estimate_templates_average( + recording, + sorting_pre_peeler.to_spike_vector(), + sorting_pre_peeler.unit_ids, + nbefore, + nafter, + return_scaled=False, + **job_kwargs, + ) + templates_dense = Templates( + templates_array=templates_array, + sampling_frequency=sampling_frequency, + nbefore=nbefore, + probe=recording.get_probe(), + ) + # TODO : try other methods for sparsity + # sparsity = compute_sparsity(templates_dense, method="radius", radius_um=120.) + sparsity = compute_sparsity(templates_dense, noise_levels=noise_levels, threshold=1.0) + templates = templates_dense.to_sparse(sparsity) # snrs = compute_snrs(we, peak_sign=params["detection"]["peak_sign"], peak_mode="extremum") # print(snrs) # matching_params = params["matching"].copy() - # matching_params["waveform_extractor"] = we # matching_params["noise_levels"] = noise_levels # matching_params["peak_sign"] = params["detection"]["peak_sign"] # matching_params["detect_threshold"] = params["detection"]["detect_threshold"] @@ -316,7 +338,7 @@ def _run_from_folder(cls, sorter_output_folder, params, verbose): matching_method = params["matching"]["method"] matching_params = params["matching"]["method_kwargs"].copy() - matching_params["waveform_extractor"] = we + matching_params["templates"] = templates matching_params["noise_levels"] = noise_levels # matching_params["peak_sign"] = params["detection"]["peak_sign"] # matching_params["detect_threshold"] = params["detection"]["detect_threshold"] @@ -339,6 +361,8 @@ def _run_from_folder(cls, sorter_output_folder, params, verbose): ) if params["save_array"]: + sorting_pre_peeler = sorting_pre_peeler.save(folder=sorter_output_folder / "sorting_pre_peeler") + np.save(sorter_output_folder / "noise_levels.npy", noise_levels) np.save(sorter_output_folder / "all_peaks.npy", all_peaks) np.save(sorter_output_folder / "post_split_label.npy", post_split_label) diff --git a/src/spikeinterface/sorters/sorterlist.py b/src/spikeinterface/sorters/sorterlist.py index 10d0421f87..6c437be09e 100644 --- a/src/spikeinterface/sorters/sorterlist.py +++ b/src/spikeinterface/sorters/sorterlist.py @@ -22,6 +22,7 @@ # based on spikeinertface.sortingcomponents from .internal.spyking_circus2 import Spykingcircus2Sorter from .internal.tridesclous2 import Tridesclous2Sorter +from .internal.simplesorter import SimpleSorter sorter_full_list = [ # external @@ -46,6 +47,7 @@ # internal Spykingcircus2Sorter, Tridesclous2Sorter, + SimpleSorter, ] sorter_dict = {s.sorter_name: s for s in sorter_full_list} diff --git a/src/spikeinterface/sorters/tests/test_launcher.py b/src/spikeinterface/sorters/tests/test_launcher.py index 2f2dc583d2..8019f4e620 100644 --- a/src/spikeinterface/sorters/tests/test_launcher.py +++ b/src/spikeinterface/sorters/tests/test_launcher.py @@ -70,6 +70,7 @@ def test_run_sorter_jobs_loop(job_list): print(sortings) +@pytest.mark.skipif(True, reason="tridesclous is already multiprocessing, joblib cannot run it in parralel") def test_run_sorter_jobs_joblib(job_list): if base_output.is_dir(): shutil.rmtree(base_output) diff --git a/src/spikeinterface/sortingcomponents/benchmark/benchmark_clustering.py b/src/spikeinterface/sortingcomponents/benchmark/benchmark_clustering.py index f1bfa35959..cc30862180 100644 --- a/src/spikeinterface/sortingcomponents/benchmark/benchmark_clustering.py +++ b/src/spikeinterface/sortingcomponents/benchmark/benchmark_clustering.py @@ -1,12 +1,7 @@ from __future__ import annotations -from spikeinterface.core import extract_waveforms -from spikeinterface.sortingcomponents.clustering import find_cluster_from_peaks, clustering_methods -from spikeinterface.preprocessing import bandpass_filter, common_reference from spikeinterface.sortingcomponents.clustering import find_cluster_from_peaks -from spikeinterface.extractors import read_mearec from spikeinterface.core import NumpySorting -from spikeinterface.qualitymetrics import compute_quality_metrics from spikeinterface.comparison import GroundTruthComparison from spikeinterface.widgets import ( plot_probe_map, @@ -15,570 +10,649 @@ plot_unit_templates, plot_unit_waveforms, ) -from spikeinterface.postprocessing import compute_principal_components from spikeinterface.comparison.comparisontools import make_matching_events -from spikeinterface.postprocessing import get_template_extremum_channel + +import matplotlib.patches as mpatches + +# from spikeinterface.postprocessing import get_template_extremum_channel from spikeinterface.core import get_noise_levels -import time -import string, random import pylab as plt -import os import numpy as np -class BenchmarkClustering: - def __init__(self, recording, gt_sorting, method, exhaustive_gt=True, tmp_folder=None, job_kwargs={}, verbose=True): - self.method = method +from .benchmark_tools import BenchmarkStudy, Benchmark +from spikeinterface.core.basesorting import minimum_spike_dtype +from spikeinterface.core.basesorting import minimum_spike_dtype +from spikeinterface.core.sortinganalyzer import create_sorting_analyzer +from spikeinterface.core.template_tools import get_template_extremum_channel - assert method in clustering_methods, f"Clustering method should be in {clustering_methods.keys()}" - self.verbose = verbose +class ClusteringBenchmark(Benchmark): + + def __init__(self, recording, gt_sorting, params, indices, exhaustive_gt=True): self.recording = recording self.gt_sorting = gt_sorting - self.job_kwargs = job_kwargs + self.indices = indices + + sorting_analyzer = create_sorting_analyzer(self.gt_sorting, self.recording, format="memory", sparse=False) + sorting_analyzer.compute(["random_spikes", "fast_templates"]) + extremum_channel_inds = get_template_extremum_channel(sorting_analyzer, outputs="index") + + peaks = self.gt_sorting.to_spike_vector(extremum_channel_inds=extremum_channel_inds) + if self.indices is None: + self.indices = np.arange(len(peaks)) + self.peaks = peaks[self.indices] + self.params = params self.exhaustive_gt = exhaustive_gt - self.recording_f = recording - self.sampling_rate = self.recording_f.get_sampling_frequency() - self.job_kwargs = job_kwargs - - self.tmp_folder = tmp_folder - if self.tmp_folder is None: - self.tmp_folder = os.path.join(".", "".join(random.choices(string.ascii_uppercase + string.digits, k=8))) - - self._peaks = None - self._selected_peaks = None - self._positions = None - self._gt_positions = None - self.gt_peaks = None - - self.waveforms = {} - self.pcas = {} - self.templates = {} - - def __del__(self): - import shutil - - shutil.rmtree(self.tmp_folder) - - def set_peaks(self, peaks): - self._peaks = peaks - - def set_positions(self, positions): - self._positions = positions - - def set_gt_positions(self, gt_positions): - self._gt_positions = gt_positions - - @property - def peaks(self): - if self._peaks is None: - self.detect_peaks() - return self._peaks - - @property - def selected_peaks(self): - if self._selected_peaks is None: - self.select_peaks() - return self._selected_peaks - - @property - def positions(self): - if self._positions is None: - self.localize_peaks() - return self._positions - - @property - def gt_positions(self): - if self._gt_positions is None: - self.localize_gt_peaks() - return self._gt_positions - - def detect_peaks(self, method_kwargs={"method": "locally_exclusive"}): - from spikeinterface.sortingcomponents.peak_detection import detect_peaks - - if self.verbose: - method = method_kwargs["method"] - print(f"Detecting peaks with method {method}") - self._peaks = detect_peaks(self.recording_f, **method_kwargs, **self.job_kwargs) - - def select_peaks(self, method_kwargs={"method": "uniform", "n_peaks": 100}): - from spikeinterface.sortingcomponents.peak_selection import select_peaks - - if self.verbose: - method = method_kwargs["method"] - print(f"Selecting peaks with method {method}") - self._selected_peaks = select_peaks(self.peaks, **method_kwargs, **self.job_kwargs) - if self.verbose: - ratio = len(self._selected_peaks) / len(self.peaks) - print(f"The ratio of peaks kept for clustering is {ratio}%") - - def localize_peaks(self, method_kwargs={"method": "center_of_mass"}): - from spikeinterface.sortingcomponents.peak_localization import localize_peaks - - if self.verbose: - method = method_kwargs["method"] - print(f"Localizing peaks with method {method}") - self._positions = localize_peaks(self.recording_f, self.selected_peaks, **method_kwargs, **self.job_kwargs) - - def localize_gt_peaks(self, method_kwargs={"method": "center_of_mass"}): - from spikeinterface.sortingcomponents.peak_localization import localize_peaks - - if self.verbose: - method = method_kwargs["method"] - print(f"Localizing gt peaks with method {method}") - self._gt_positions = localize_peaks(self.recording_f, self.gt_peaks, **method_kwargs, **self.job_kwargs) - - def run(self, peaks=None, positions=None, method=None, method_kwargs={}, delta=0.2): - t_start = time.time() - if method is not None: - self.method = method - if peaks is not None: - self._peaks = peaks - self._selected_peaks = peaks - - nb_peaks = len(self.selected_peaks) - if self.verbose: - print(f"Launching the {self.method} clustering algorithm with {nb_peaks} peaks") - - if positions is not None: - self._positions = positions + self.method = params["method"] + self.method_kwargs = params["method_kwargs"] + self.result = {} + def run(self, **job_kwargs): labels, peak_labels = find_cluster_from_peaks( - self.recording_f, self.selected_peaks, method=self.method, method_kwargs=method_kwargs, **self.job_kwargs - ) - nb_clusters = len(labels) - if self.verbose: - print(f"{nb_clusters} clusters have been found") - self.noise = peak_labels == -1 - self.run_time = time.time() - t_start - self.selected_peaks_labels = peak_labels - self.labels = labels - - self.clustering = NumpySorting.from_times_labels( - self.selected_peaks["sample_index"][~self.noise], - self.selected_peaks_labels[~self.noise], - self.sampling_rate, + self.recording, self.peaks, method=self.method, method_kwargs=self.method_kwargs, **job_kwargs ) - if self.verbose: - print("Performing the comparison with (sliced) ground truth") + self.result["peak_labels"] = peak_labels - spikes1 = self.gt_sorting.to_spike_vector(concatenated=False)[0] - spikes2 = self.clustering.to_spike_vector(concatenated=False)[0] + def compute_result(self, **result_params): + self.noise = self.result["peak_labels"] < 0 - matches = make_matching_events( - spikes1["sample_index"], spikes2["sample_index"], int(delta * self.sampling_rate / 1000) + spikes = self.gt_sorting.to_spike_vector() + self.result["sliced_gt_sorting"] = NumpySorting( + spikes[self.indices], self.recording.sampling_frequency, self.gt_sorting.unit_ids ) - self.matches = matches - idx = matches["index1"] - self.sliced_gt_sorting = NumpySorting(spikes1[idx], self.sampling_rate, self.gt_sorting.unit_ids) - - self.comp = GroundTruthComparison(self.sliced_gt_sorting, self.clustering, exhaustive_gt=self.exhaustive_gt) - - for label, sorting in zip( - ["gt", "clustering", "full_gt"], [self.sliced_gt_sorting, self.clustering, self.gt_sorting] - ): - tmp_folder = os.path.join(self.tmp_folder, label) - if os.path.exists(tmp_folder): - import shutil - - shutil.rmtree(tmp_folder) - - if not (label == "full_gt" and label in self.waveforms): - if self.verbose: - print(f"Extracting waveforms for {label}") - - self.waveforms[label] = extract_waveforms( - self.recording_f, - sorting, - tmp_folder, - load_if_exists=True, - ms_before=2.5, - ms_after=3.5, - max_spikes_per_unit=500, - return_scaled=False, - **self.job_kwargs, - ) - - # self.pcas[label] = compute_principal_components(self.waveforms[label], load_if_exists=True, - # n_components=5, mode='by_channel_local', - # whiten=True, dtype='float32') - - self.templates[label] = self.waveforms[label].get_all_templates(mode="median") - - if self.gt_peaks is None: - if self.verbose: - print("Computing gt peaks") - gt_peaks_ = self.gt_sorting.to_spike_vector() - self.gt_peaks = np.zeros( - gt_peaks_.size, dtype=[("sample_index", " 0.1) + unit_ids1 = scores.index.values + unit_ids2 = scores.columns.values + inds_1 = result["gt_comparison"].sorting1.ids_to_indices(unit_ids1) + inds_2 = result["gt_comparison"].sorting2.ids_to_indices(unit_ids2) + t1 = result["sliced_gt_templates"].templates_array + t2 = result["clustering_templates"].templates_array + a = t1.reshape(len(t1), -1)[inds_1] + b = t2.reshape(len(t2), -1)[inds_2] - ax.plot( - metrics["snr"][unit_ids1][inds_1[:nb_potentials]], - nb_peaks[inds_1[:nb_potentials]], - markersize=10, - marker=".", - ls="", - c="k", - label="Cluster potentially found", - ) - ax.plot( - metrics["snr"][unit_ids1][inds_1[nb_potentials:]], - nb_peaks[inds_1[nb_potentials:]], - markersize=10, - marker=".", - ls="", - c="r", - label="Cluster clearly missed", - ) + import sklearn + + if metric == "cosine": + distances = sklearn.metrics.pairwise.cosine_similarity(a, b) + else: + distances = sklearn.metrics.pairwise_distances(a, b, metric) + + im = axs[count].imshow(distances, aspect="auto") + axs[count].set_title(metric) + fig.colorbar(im, ax=axs[count]) + label = self.cases[key]["label"] + axs[0, count].set_title(label) + + def plot_metrics_vs_snr(self, metric="cosine", case_keys=None, figsize=(15, 5)): + + if case_keys is None: + case_keys = list(self.cases.keys()) - if annotations: - for l, x, y in zip( - unit_ids1[: len(inds_2)], - metrics["snr"][unit_ids1][inds_1[: len(inds_2)]], - nb_peaks[inds_1[: len(inds_2)]], - ): - ax.annotate(l, (x, y)) - - for l, x, y in zip( - unit_ids1[len(inds_2) :], - metrics["snr"][unit_ids1][inds_1[len(inds_2) :]], - nb_peaks[inds_1[len(inds_2) :]], - ): - ax.annotate(l, (x, y), c="r") - - if detect_threshold is not None: - ymin, ymax = ax.get_ylim() - ax.plot([detect_threshold, detect_threshold], [ymin, ymax], "k--") - - ax.legend() - ax.set_xlabel("template snr") - ax.set_ylabel("nb spikes") - ax.spines["top"].set_visible(False) - ax.spines["right"].set_visible(False) - - ax = axs[0, 2] - im = ax.imshow(distances, aspect="auto") - ax.set_title(metric) - fig.colorbar(im, ax=ax) - - if detect_threshold is not None: - for count, snr in enumerate(snrs): - if snr < detect_threshold: - ax.plot([xmin, xmax], [count, count], "w") - - ymin, ymax = ax.get_ylim() - ax.plot([nb_detectable + 0.5, nb_detectable + 0.5], [ymin, ymax], "r") - - ax.set_yticks(np.arange(0, len(scores.index))) - ax.set_yticklabels(scores.index, fontsize=8) - - res = [] - nb_spikes = [] - energy = [] - nb_channels = [] - - noise_levels = get_noise_levels(self.recording_f, return_scaled=False) - - for found, real in zip(unit_ids2, unit_ids1): - wfs = self.waveforms["clustering"].get_waveforms(found) - wfs_real = self.waveforms["gt"].get_waveforms(real) - template = self.waveforms["clustering"].get_template(found) - template_real = self.waveforms["gt"].get_template(real) - nb_channels += [np.sum(np.std(template_real, 0) < noise_levels)] - - wfs = wfs.reshape(len(wfs), -1) - template = template.reshape(template.size, 1).T - template_real = template_real.reshape(template_real.size, 1).T + fig, axs = plt.subplots(ncols=len(case_keys), nrows=1, figsize=figsize, squeeze=False) + + for count, key in enumerate(case_keys): + + result = self.get_result(key) + scores = result["gt_comparison"].get_ordered_agreement_scores() + + analyzer = self.get_sorting_analyzer(key) + metrics = analyzer.get_extension("quality_metrics").get_data() + + unit_ids1 = scores.index.values + unit_ids2 = scores.columns.values + inds_1 = result["gt_comparison"].sorting1.ids_to_indices(unit_ids1) + inds_2 = result["gt_comparison"].sorting2.ids_to_indices(unit_ids2) + t1 = result["sliced_gt_templates"].templates_array + t2 = result["clustering_templates"].templates_array + a = t1.reshape(len(t1), -1) + b = t2.reshape(len(t2), -1) + + import sklearn if metric == "cosine": - dist = sklearn.metrics.pairwise.cosine_similarity(template, template_real).flatten().tolist() + distances = sklearn.metrics.pairwise.cosine_similarity(a, b) else: - dist = sklearn.metrics.pairwise_distances(template, template_real, metric).flatten().tolist() - res += dist - nb_spikes += [self.sliced_gt_sorting.get_unit_spike_train(real).size] - energy += [np.linalg.norm(template_real)] - - ax = axs[1, 0] - res = np.array(res) - nb_spikes = np.array(nb_spikes) - nb_channels = np.array(nb_channels) - energy = np.array(energy) - - snrs = metrics["snr"][unit_ids1][inds_1[: len(inds_2)]] - cm = ax.scatter(snrs, nb_spikes, c=res) - ax.set_xlabel("template snr") - ax.set_ylabel("nb spikes") - ax.spines["top"].set_visible(False) - ax.spines["right"].set_visible(False) - cb = fig.colorbar(cm, ax=ax) - cb.set_label(metric) - if detect_threshold is not None: - ymin, ymax = ax.get_ylim() - ax.plot([detect_threshold, detect_threshold], [ymin, ymax], "k--") - - if annotations: - for l, x, y in zip(unit_ids1[: len(inds_2)], snrs, nb_spikes): - ax.annotate(l, (x, y)) - - ax = axs[1, 1] - cm = ax.scatter(energy, nb_channels, c=res) - ax.set_xlabel("template energy") - ax.set_ylabel("nb channels") - ax.spines["top"].set_visible(False) - ax.spines["right"].set_visible(False) - cb = fig.colorbar(cm, ax=ax) - cb.set_label(metric) - - if annotations: - for l, x, y in zip(unit_ids1[: len(inds_2)], energy, nb_channels): - ax.annotate(l, (x, y)) - - ax = axs[1, 2] - for performance_name in ["accuracy", "recall", "precision"]: - perf = self.comp.get_performance()[performance_name] - ax.plot(metrics["snr"], perf, markersize=10, marker=".", ls="", label=performance_name) - ax.set_xlabel("template snr") - ax.set_ylabel("performance") - ax.spines["top"].set_visible(False) - ax.spines["right"].set_visible(False) - ax.legend() - if detect_threshold is not None: - ymin, ymax = ax.get_ylim() - ax.plot([detect_threshold, detect_threshold], [ymin, ymax], "k--") - - plt.tight_layout() + distances = sklearn.metrics.pairwise_distances(a, b, metric) + + snr = metrics["snr"][unit_ids1][inds_1[: len(inds_2)]] + to_plot = [] + for found, real in zip(inds_2, inds_1): + to_plot += [distances[real, found]] + axs[0, count].plot(snr, to_plot, ".") + axs[0, count].set_xlabel("snr") + axs[0, count].set_ylabel(metric) + label = self.cases[key]["label"] + axs[0, count].set_title(label) + + def plot_comparison_clustering( + self, + case_keys=None, + performance_names=["accuracy", "recall", "precision"], + colors=["g", "b", "r"], + ylim=(-0.1, 1.1), + figsize=None, + ): + + if case_keys is None: + case_keys = list(self.cases.keys()) + + num_methods = len(case_keys) + fig, axs = plt.subplots(ncols=num_methods, nrows=num_methods, figsize=(10, 10)) + for i, key1 in enumerate(case_keys): + for j, key2 in enumerate(case_keys): + if len(axs.shape) > 1: + ax = axs[i, j] + else: + ax = axs[j] + comp1 = self.get_result(key1)["gt_comparison"] + comp2 = self.get_result(key2)["gt_comparison"] + if i <= j: + for performance, color in zip(performance_names, colors): + perf1 = comp1.get_performance()[performance] + perf2 = comp2.get_performance()[performance] + ax.plot(perf2, perf1, ".", label=performance, color=color) + + ax.plot([0, 1], [0, 1], "k--", alpha=0.5) + ax.set_ylim(ylim) + ax.set_xlim(ylim) + ax.spines[["right", "top"]].set_visible(False) + ax.set_aspect("equal") + + label1 = self.cases[key1]["label"] + label2 = self.cases[key2]["label"] + if j == i: + ax.set_ylabel(f"{label1}") + else: + ax.set_yticks([]) + if i == j: + ax.set_xlabel(f"{label2}") + else: + ax.set_xticks([]) + if i == num_methods - 1 and j == num_methods - 1: + patches = [] + for color, name in zip(colors, performance_names): + patches.append(mpatches.Patch(color=color, label=name)) + ax.legend(handles=patches, bbox_to_anchor=(1.05, 1), loc="upper left", borderaxespad=0.0) + else: + ax.spines["bottom"].set_visible(False) + ax.spines["left"].set_visible(False) + ax.spines["top"].set_visible(False) + ax.spines["right"].set_visible(False) + ax.set_xticks([]) + ax.set_yticks([]) + plt.tight_layout(h_pad=0, w_pad=0) + + +# def _scatter_clusters( +# self, +# xs, +# ys, +# sorting, +# colors=None, +# labels=None, +# ax=None, +# n_std=2.0, +# force_black_for=[], +# s=1, +# alpha=0.5, +# show_ellipses=True, +# ): +# if colors is None: +# from spikeinterface.widgets import get_unit_colors + +# colors = get_unit_colors(sorting) + +# from matplotlib.patches import Ellipse +# import matplotlib.transforms as transforms + +# ax = ax or plt.gca() +# # scatter and collect gaussian info +# means = {} +# covs = {} +# labels = sorting.to_spike_vector(concatenated=False)[0]["unit_index"] + +# for unit_ind, unit_id in enumerate(sorting.unit_ids): +# where = np.flatnonzero(labels == unit_ind) + +# xk = xs[where] +# yk = ys[where] + +# if unit_id not in force_black_for: +# ax.scatter(xk, yk, s=s, color=colors[unit_id], alpha=alpha, marker=".") +# x_mean, y_mean = xk.mean(), yk.mean() +# xycov = np.cov(xk, yk) +# means[unit_id] = x_mean, y_mean +# covs[unit_id] = xycov +# ax.annotate(unit_id, (x_mean, y_mean)) +# ax.scatter([x_mean], [y_mean], s=50, c="k") +# else: +# ax.scatter(xk, yk, s=s, color="k", alpha=alpha, marker=".") + +# for unit_id in means.keys(): +# mean_x, mean_y = means[unit_id] +# cov = covs[unit_id] + +# with np.errstate(invalid="ignore"): +# vx, vy = cov[0, 0], cov[1, 1] +# rho = cov[0, 1] / np.sqrt(vx * vy) +# if not np.isfinite([vx, vy, rho]).all(): +# continue + +# if show_ellipses: +# ell = Ellipse( +# (0, 0), +# width=2 * np.sqrt(1 + rho), +# height=2 * np.sqrt(1 - rho), +# facecolor=(0, 0, 0, 0), +# edgecolor=colors[unit_id], +# linewidth=1, +# ) +# transform = ( +# transforms.Affine2D() +# .rotate_deg(45) +# .scale(n_std * np.sqrt(vx), n_std * np.sqrt(vy)) +# .translate(mean_x, mean_y) +# ) +# ell.set_transform(transform + ax.transData) +# ax.add_patch(ell) + +# def plot_clusters(self, show_probe=True, show_ellipses=True): +# fig, axs = plt.subplots(ncols=3, nrows=1, figsize=(15, 10)) +# fig.suptitle(f"Clustering results with {self.method}") +# ax = axs[0] +# ax.set_title("Full gt clusters") +# if show_probe: +# plot_probe_map(self.recording_f, ax=ax) + +# from spikeinterface.widgets import get_unit_colors + +# colors = get_unit_colors(self.gt_sorting) +# self._scatter_clusters( +# self.gt_positions["x"], +# self.gt_positions["y"], +# self.gt_sorting, +# colors, +# s=1, +# alpha=0.5, +# ax=ax, +# show_ellipses=show_ellipses, +# ) +# xlim = ax.get_xlim() +# ylim = ax.get_ylim() +# ax.set_xlabel("x") +# ax.set_ylabel("y") + +# ax = axs[1] +# ax.set_title("Sliced gt clusters") +# if show_probe: +# plot_probe_map(self.recording_f, ax=ax) + +# self._scatter_clusters( +# self.sliced_gt_positions["x"], +# self.sliced_gt_positions["y"], +# self.sliced_gt_sorting, +# colors, +# s=1, +# alpha=0.5, +# ax=ax, +# show_ellipses=show_ellipses, +# ) +# if self.exhaustive_gt: +# ax.set_xlim(xlim) +# ax.set_ylim(ylim) +# ax.set_xlabel("x") +# ax.set_yticks([], []) + +# ax = axs[2] +# ax.set_title("Found clusters") +# if show_probe: +# plot_probe_map(self.recording_f, ax=ax) +# ax.scatter(self.positions["x"][self.noise], self.positions["y"][self.noise], c="k", s=1, alpha=0.1) +# self._scatter_clusters( +# self.positions["x"][~self.noise], +# self.positions["y"][~self.noise], +# self.clustering, +# s=1, +# alpha=0.5, +# ax=ax, +# show_ellipses=show_ellipses, +# ) + +# ax.set_xlabel("x") +# if self.exhaustive_gt: +# ax.set_xlim(xlim) +# ax.set_ylim(ylim) +# ax.set_yticks([], []) + +# def plot_found_clusters(self, show_probe=True, show_ellipses=True): +# fig, ax = plt.subplots(ncols=1, nrows=1, figsize=(10, 10)) +# fig.suptitle(f"Clustering results with {self.method}") +# ax.set_title("Found clusters") +# if show_probe: +# plot_probe_map(self.recording_f, ax=ax) +# ax.scatter(self.positions["x"][self.noise], self.positions["y"][self.noise], c="k", s=1, alpha=0.1) +# self._scatter_clusters( +# self.positions["x"][~self.noise], +# self.positions["y"][~self.noise], +# self.clustering, +# s=1, +# alpha=0.5, +# ax=ax, +# show_ellipses=show_ellipses, +# ) + +# ax.set_xlabel("x") +# if self.exhaustive_gt: +# ax.set_yticks([], []) + +# def plot_statistics(self, metric="cosine", annotations=True, detect_threshold=5): +# fig, axs = plt.subplots(ncols=3, nrows=2, figsize=(15, 10)) + +# fig.suptitle(f"Clustering results with {self.method}") +# metrics = compute_quality_metrics(self.waveforms["gt"], metric_names=["snr"], load_if_exists=False) + +# ax = axs[0, 0] +# plot_agreement_matrix(self.comp, ax=ax) +# scores = self.comp.get_ordered_agreement_scores() +# ymin, ymax = ax.get_ylim() +# xmin, xmax = ax.get_xlim() +# unit_ids1 = scores.index.values +# unit_ids2 = scores.columns.values +# inds_1 = self.comp.sorting1.ids_to_indices(unit_ids1) +# snrs = metrics["snr"][inds_1] + +# nb_detectable = len(unit_ids1) + +# if detect_threshold is not None: +# for count, snr in enumerate(snrs): +# if snr < detect_threshold: +# ax.plot([xmin, xmax], [count, count], "k") +# nb_detectable -= 1 + +# ax.plot([nb_detectable + 0.5, nb_detectable + 0.5], [ymin, ymax], "r") + +# # import MEArec as mr +# # mearec_recording = mr.load_recordings(self.mearec_file) +# # positions = mearec_recording.template_locations[:] + +# # self.found_positions = np.zeros((len(self.labels), 2)) +# # for i in range(len(self.labels)): +# # data = self.positions[self.selected_peaks_labels == self.labels[i]] +# # self.found_positions[i] = np.median(data['x']), np.median(data['y']) + +# unit_ids1 = scores.index.values +# unit_ids2 = scores.columns.values +# inds_1 = self.comp.sorting1.ids_to_indices(unit_ids1) +# inds_2 = self.comp.sorting2.ids_to_indices(unit_ids2) + +# a = self.templates["gt"].reshape(len(self.templates["gt"]), -1)[inds_1] +# b = self.templates["clustering"].reshape(len(self.templates["clustering"]), -1)[inds_2] + +# import sklearn + +# if metric == "cosine": +# distances = sklearn.metrics.pairwise.cosine_similarity(a, b) +# else: +# distances = sklearn.metrics.pairwise_distances(a, b, metric) + +# ax = axs[0, 1] +# nb_peaks = np.array( +# [len(self.sliced_gt_sorting.get_unit_spike_train(i)) for i in self.sliced_gt_sorting.unit_ids] +# ) + +# nb_potentials = np.sum(scores.max(1).values > 0.1) + +# ax.plot( +# metrics["snr"][unit_ids1][inds_1[:nb_potentials]], +# nb_peaks[inds_1[:nb_potentials]], +# markersize=10, +# marker=".", +# ls="", +# c="k", +# label="Cluster potentially found", +# ) +# ax.plot( +# metrics["snr"][unit_ids1][inds_1[nb_potentials:]], +# nb_peaks[inds_1[nb_potentials:]], +# markersize=10, +# marker=".", +# ls="", +# c="r", +# label="Cluster clearly missed", +# ) + +# if annotations: +# for l, x, y in zip( +# unit_ids1[: len(inds_2)], +# metrics["snr"][unit_ids1][inds_1[: len(inds_2)]], +# nb_peaks[inds_1[: len(inds_2)]], +# ): +# ax.annotate(l, (x, y)) + +# for l, x, y in zip( +# unit_ids1[len(inds_2) :], +# metrics["snr"][unit_ids1][inds_1[len(inds_2) :]], +# nb_peaks[inds_1[len(inds_2) :]], +# ): +# ax.annotate(l, (x, y), c="r") + +# if detect_threshold is not None: +# ymin, ymax = ax.get_ylim() +# ax.plot([detect_threshold, detect_threshold], [ymin, ymax], "k--") + +# ax.legend() +# ax.set_xlabel("template snr") +# ax.set_ylabel("nb spikes") +# ax.spines["top"].set_visible(False) +# ax.spines["right"].set_visible(False) + +# ax = axs[0, 2] +# im = ax.imshow(distances, aspect="auto") +# ax.set_title(metric) +# fig.colorbar(im, ax=ax) + +# if detect_threshold is not None: +# for count, snr in enumerate(snrs): +# if snr < detect_threshold: +# ax.plot([xmin, xmax], [count, count], "w") + +# ymin, ymax = ax.get_ylim() +# ax.plot([nb_detectable + 0.5, nb_detectable + 0.5], [ymin, ymax], "r") + +# ax.set_yticks(np.arange(0, len(scores.index))) +# ax.set_yticklabels(scores.index, fontsize=8) + +# res = [] +# nb_spikes = [] +# energy = [] +# nb_channels = [] + +# noise_levels = get_noise_levels(self.recording_f, return_scaled=False) + +# for found, real in zip(unit_ids2, unit_ids1): +# wfs = self.waveforms["clustering"].get_waveforms(found) +# wfs_real = self.waveforms["gt"].get_waveforms(real) +# template = self.waveforms["clustering"].get_template(found) +# template_real = self.waveforms["gt"].get_template(real) +# nb_channels += [np.sum(np.std(template_real, 0) < noise_levels)] + +# wfs = wfs.reshape(len(wfs), -1) +# template = template.reshape(template.size, 1).T +# template_real = template_real.reshape(template_real.size, 1).T + +# if metric == "cosine": +# dist = sklearn.metrics.pairwise.cosine_similarity(template, template_real).flatten().tolist() +# else: +# dist = sklearn.metrics.pairwise_distances(template, template_real, metric).flatten().tolist() +# res += dist +# nb_spikes += [self.sliced_gt_sorting.get_unit_spike_train(real).size] +# energy += [np.linalg.norm(template_real)] + +# ax = axs[1, 0] +# res = np.array(res) +# nb_spikes = np.array(nb_spikes) +# nb_channels = np.array(nb_channels) +# energy = np.array(energy) + +# snrs = metrics["snr"][unit_ids1][inds_1[: len(inds_2)]] +# cm = ax.scatter(snrs, nb_spikes, c=res) +# ax.set_xlabel("template snr") +# ax.set_ylabel("nb spikes") +# ax.spines["top"].set_visible(False) +# ax.spines["right"].set_visible(False) +# cb = fig.colorbar(cm, ax=ax) +# cb.set_label(metric) +# if detect_threshold is not None: +# ymin, ymax = ax.get_ylim() +# ax.plot([detect_threshold, detect_threshold], [ymin, ymax], "k--") + +# if annotations: +# for l, x, y in zip(unit_ids1[: len(inds_2)], snrs, nb_spikes): +# ax.annotate(l, (x, y)) + +# ax = axs[1, 1] +# cm = ax.scatter(energy, nb_channels, c=res) +# ax.set_xlabel("template energy") +# ax.set_ylabel("nb channels") +# ax.spines["top"].set_visible(False) +# ax.spines["right"].set_visible(False) +# cb = fig.colorbar(cm, ax=ax) +# cb.set_label(metric) + +# if annotations: +# for l, x, y in zip(unit_ids1[: len(inds_2)], energy, nb_channels): +# ax.annotate(l, (x, y)) + +# ax = axs[1, 2] +# for performance_name in ["accuracy", "recall", "precision"]: +# perf = self.comp.get_performance()[performance_name] +# ax.plot(metrics["snr"], perf, markersize=10, marker=".", ls="", label=performance_name) +# ax.set_xlabel("template snr") +# ax.set_ylabel("performance") +# ax.spines["top"].set_visible(False) +# ax.spines["right"].set_visible(False) +# ax.legend() +# if detect_threshold is not None: +# ymin, ymax = ax.get_ylim() +# ax.plot([detect_threshold, detect_threshold], [ymin, ymax], "k--") + +# plt.tight_layout() diff --git a/src/spikeinterface/sortingcomponents/benchmark/benchmark_matching.py b/src/spikeinterface/sortingcomponents/benchmark/benchmark_matching.py index caab8f0659..bb6d0f7683 100644 --- a/src/spikeinterface/sortingcomponents/benchmark/benchmark_matching.py +++ b/src/spikeinterface/sortingcomponents/benchmark/benchmark_matching.py @@ -1,701 +1,175 @@ from __future__ import annotations -from spikeinterface.core import extract_waveforms -from spikeinterface.preprocessing import bandpass_filter, common_reference from spikeinterface.postprocessing import compute_template_similarity from spikeinterface.sortingcomponents.matching import find_spikes_from_templates +from spikeinterface.core.template import Templates from spikeinterface.core import NumpySorting -from spikeinterface.qualitymetrics import compute_quality_metrics from spikeinterface.comparison import CollisionGTComparison, compare_sorter_to_ground_truth from spikeinterface.widgets import ( plot_agreement_matrix, plot_comparison_collision_by_similarity, - plot_unit_waveforms, ) -import time -import os from pathlib import Path -import string, random import pylab as plt import matplotlib.patches as mpatches import numpy as np import pandas as pd -import shutil -import copy -from tqdm.auto import tqdm +from .benchmark_tools import BenchmarkStudy, Benchmark +from spikeinterface.core.basesorting import minimum_spike_dtype -def running_in_notebook(): - try: - shell = get_ipython().__class__.__name__ - notebook_shells = {"ZMQInteractiveShell", "TerminalInteractiveShell"} - # if a shell is missing from this set just check get_ipython().__class__.__name__ and add it to the set - return shell in notebook_shells - except NameError: - return False +class MatchingBenchmark(Benchmark): - -class BenchmarkMatching: - """Benchmark a set of template matching methods on a given recording and ground-truth sorting.""" - - def __init__( - self, - recording, - gt_sorting, - waveform_extractor, - methods, - methods_kwargs=None, - exhaustive_gt=True, - tmp_folder=None, - template_mode="median", - **job_kwargs, - ): - self.methods = methods - if methods_kwargs is None: - methods_kwargs = {method: {} for method in methods} - self.methods_kwargs = methods_kwargs + def __init__(self, recording, gt_sorting, params): self.recording = recording self.gt_sorting = gt_sorting - self.job_kwargs = job_kwargs - self.exhaustive_gt = exhaustive_gt - self.sampling_rate = self.recording.get_sampling_frequency() - - if tmp_folder is None: - tmp_folder = os.path.join(".", "".join(random.choices(string.ascii_uppercase + string.digits, k=8))) - self.tmp_folder = Path(tmp_folder) - self.sort_folders = [] - - self.we = waveform_extractor - for method in self.methods: - self.methods_kwargs[method]["waveform_extractor"] = self.we - self.templates = self.we.get_all_templates(mode=template_mode) - self.metrics = compute_quality_metrics(self.we, metric_names=["snr"], load_if_exists=True) - self.similarity = compute_template_similarity(self.we) - self.parameter_name2matching_fn = dict( - num_spikes=self.run_matching_num_spikes, - fraction_misclassed=self.run_matching_misclassed, - fraction_missing=self.run_matching_missing_units, - ) - - def __enter__(self): - self.tmp_folder.mkdir(exist_ok=True) - self.sort_folders = [] - return self - - def __exit__(self, exc_type, exc_val, exc_tb): - if self.tmp_folder.exists(): - shutil.rmtree(self.tmp_folder) - for sort_folder in self.sort_folders: - if sort_folder.exists(): - shutil.rmtree(sort_folder) - - def run_matching(self, methods_kwargs, unit_ids): - """Run template matching on the recording with settings in methods_kwargs. - - Parameters - ---------- - methods_kwargs: dict - A dictionary of method_kwargs for each method. - unit_ids: array-like - The unit ids to use for the output sorting. - - Returns - ------- - sortings: dict - A dictionary that maps method --> NumpySorting. - runtimes: dict - A dictionary that maps method --> runtime. - """ - sortings, runtimes = {}, {} - for method in self.methods: - t0 = time.time() - spikes = find_spikes_from_templates( - self.recording, method=method, method_kwargs=methods_kwargs[method], **self.job_kwargs - ) - runtimes[method] = time.time() - t0 - sorting = NumpySorting.from_times_labels( - spikes["sample_index"], unit_ids[spikes["cluster_index"]], self.sampling_rate - ) - sortings[method] = sorting - return sortings, runtimes - - def run_matching_num_spikes(self, spike_num, seed=0, we_kwargs=None, template_mode="median"): - """Run template matching with a given number of spikes per unit. - - Parameters - ---------- - spike_num: int - The maximum number of spikes per unit - seed: int, default: 0 - Random seed - we_kwargs: dict - A dictionary of keyword arguments for the WaveformExtractor - template_mode: "mean" | "median" | "std", default: "median" - The mode to use to extract templates from the WaveformExtractor - - Returns - ------- - - sortings: dict - A dictionary that maps method --> NumpySorting. - gt_sorting: NumpySorting - The ground-truth sorting used for template matching (= self.gt_sorting). - """ - if we_kwargs is None: - we_kwargs = {} - we_kwargs.update( - dict(max_spikes_per_unit=spike_num, seed=seed, overwrite=True, load_if_exists=False, **self.job_kwargs) + self.method = params["method"] + self.templates = params["method_kwargs"]["templates"] + self.method_kwargs = params["method_kwargs"] + self.result = {} + + def run(self, **job_kwargs): + spikes = find_spikes_from_templates( + self.recording, method=self.method, method_kwargs=self.method_kwargs, **job_kwargs ) + unit_ids = self.templates.unit_ids + sorting = np.zeros(spikes.size, dtype=minimum_spike_dtype) + sorting["sample_index"] = spikes["sample_index"] + sorting["unit_index"] = spikes["cluster_index"] + sorting["segment_index"] = spikes["segment_index"] + sorting = NumpySorting(sorting, self.recording.sampling_frequency, unit_ids) + self.result = {"sorting": sorting} + self.result["templates"] = self.templates - # Generate New Waveform Extractor with New Spike Numbers - we = extract_waveforms(self.recording, self.gt_sorting, self.tmp_folder, **we_kwargs) - methods_kwargs = self.update_methods_kwargs(we, template_mode) - - sortings, _ = self.run_matching(methods_kwargs, we.unit_ids) - shutil.rmtree(self.tmp_folder) - return sortings, self.gt_sorting - - def update_methods_kwargs(self, we, template_mode="median"): - """Update the methods_kwargs dictionary with the new WaveformExtractor. - - Parameters - ---------- - we: WaveformExtractor - The new WaveformExtractor. - template_mode: "mean" | "median" | "std", default: "median" - The mode to use to extract templates from the WaveformExtractor - - Returns - ------- - methods_kwargs: dict - A dictionary of method_kwargs for each method. - """ - templates = we.get_all_templates(we.unit_ids, mode=template_mode) - methods_kwargs = copy.deepcopy(self.methods_kwargs) - for method in self.methods: - method_kwargs = methods_kwargs[method] - if method == "wobble": - method_kwargs.update(dict(templates=templates, nbefore=we.nbefore, nafter=we.nafter)) - else: - method_kwargs["waveform_extractor"] = we - return methods_kwargs - - def run_matching_misclassed( - self, fraction_misclassed, min_similarity=-1, seed=0, we_kwargs=None, template_mode="median" - ): - """Run template matching with a given fraction of misclassified spikes. - - Parameters - ---------- - fraction_misclassed: float - The fraction of misclassified spikes. - min_similarity: float, default: -1 - The minimum cosine similarity between templates to be considered similar - seed: int, default: 0 - Random seed - we_kwargs: dict - A dictionary of keyword arguments for the WaveformExtractor - template_mode: "mean" | "median" | "std", default: "median" - The mode to use to extract templates from the WaveformExtractor - - Returns - ------- - sortings: dict - A dictionary that maps method --> NumpySorting. - gt_sorting: NumpySorting - The ground-truth sorting used for template matching (with misclassified spike trains). - """ - try: - assert 0 <= fraction_misclassed <= 1 - except AssertionError: - raise ValueError("'fraction_misclassed' must be between 0 and 1.") - try: - assert -1 <= min_similarity <= 1 - except AssertionError: - raise ValueError("'min_similarity' must be between -1 and 1.") - if we_kwargs is None: - we_kwargs = {} - we_kwargs.update(dict(seed=seed, overwrite=True, load_if_exists=False, **self.job_kwargs)) - rng = np.random.default_rng(seed) - - # Randomly misclass spike trains - spike_time_indices, labels = [], [] - for unit_index, unit_id in enumerate(self.we.unit_ids): - unit_spike_train = self.gt_sorting.get_unit_spike_train(unit_id=unit_id) - unit_similarity = self.similarity[unit_index, :] - unit_similarity[unit_index] = min_similarity - 1 # skip self - similar_unit_ids = self.we.unit_ids[unit_similarity >= min_similarity] - at_least_one_similar_unit = len(similar_unit_ids) - num_spikes = int(len(unit_spike_train) * fraction_misclassed) - unit_misclass_idx = rng.choice(np.arange(len(unit_spike_train)), size=num_spikes, replace=False) - unit_labels = np.repeat(unit_id, len(unit_spike_train)) - if at_least_one_similar_unit: - unit_labels[unit_misclass_idx] = rng.choice(similar_unit_ids, size=num_spikes) - spike_time_indices.extend(list(unit_spike_train)) - labels.extend(list(unit_labels)) - spike_time_indices = np.array(spike_time_indices) - labels = np.array(labels) - sort_idx = np.argsort(spike_time_indices) - spike_time_indices = spike_time_indices[sort_idx] - labels = labels[sort_idx] - gt_sorting = NumpySorting.from_times_labels( - spike_time_indices, labels, self.sampling_rate, unit_ids=self.we.unit_ids - ) - sort_folder = Path(self.tmp_folder.stem + f"_sorting{len(self.sort_folders)}") - gt_sorting = gt_sorting.save(folder=sort_folder) - self.sort_folders.append(sort_folder) - - # Generate New Waveform Extractor with Misclassed Spike Trains - we = extract_waveforms(self.recording, gt_sorting, self.tmp_folder, **we_kwargs) - methods_kwargs = self.update_methods_kwargs(we, template_mode) - - sortings, _ = self.run_matching(methods_kwargs, we.unit_ids) - shutil.rmtree(self.tmp_folder) - return sortings, gt_sorting - - def run_matching_missing_units( - self, fraction_missing, snr_threshold=0, seed=0, we_kwargs=None, template_mode="median" - ): - """Run template matching with a given fraction of missing units. - - Parameters - ---------- - fraction_missing: float - The fraction of missing units. - snr_threshold: float, default: 0 - The SNR threshold below which units are considered missing - seed: int, default: 0 - Random seed - we_kwargs: dict - A dictionary of keyword arguments for the WaveformExtractor. - template_mode: "mean" | "median" | "std", default: "median" - The mode to use to extract templates from the WaveformExtractor - - Returns - ------- - sortings: dict - A dictionary that maps method --> NumpySorting. - gt_sorting: NumpySorting - The ground-truth sorting used for template matching (with missing units). - """ - try: - assert 0 <= fraction_missing <= 1 - except AssertionError: - raise ValueError("'fraction_missing' must be between 0 and 1.") - try: - assert snr_threshold >= 0 - except AssertionError: - raise ValueError("'snr_threshold' must be greater than or equal to 0.") - if we_kwargs is None: - we_kwargs = {} - we_kwargs.update(dict(seed=seed, overwrite=True, load_if_exists=False, **self.job_kwargs)) - rng = np.random.default_rng(seed) + def compute_result(self, **result_params): + sorting = self.result["sorting"] + comp = compare_sorter_to_ground_truth(self.gt_sorting, sorting, exhaustive_gt=True) + self.result["gt_comparison"] = comp + self.result["gt_collision"] = CollisionGTComparison(self.gt_sorting, sorting, exhaustive_gt=True) - # Omit fraction_missing of units with lowest SNR - metrics = self.metrics.sort_values("snr") - missing_units = np.array(metrics.index[metrics.snr < snr_threshold]) - num_missing = int(len(missing_units) * fraction_missing) - missing_units = rng.choice(missing_units, size=num_missing, replace=False) - present_units = np.setdiff1d(self.we.unit_ids, missing_units) - # spike_time_indices, spike_cluster_ids = [], [] - # for unit in present_units: - # spike_train = self.gt_sorting.get_unit_spike_train(unit) - # for time_index in spike_train: - # spike_time_indices.append(time_index) - # spike_cluster_ids.append(unit) - # spike_time_indices = np.array(spike_time_indices) - # spike_cluster_ids = np.array(spike_cluster_ids) - # gt_sorting = NumpySorting.from_times_labels(spike_time_indices, spike_cluster_ids, self.sampling_rate, - # unit_ids=present_units) - gt_sorting = self.gt_sorting.select_units(present_units) - sort_folder = Path(self.tmp_folder.stem + f"_sorting{len(self.sort_folders)}") - gt_sorting = gt_sorting.save(folder=sort_folder) - self.sort_folders.append(sort_folder) + _run_key_saved = [ + ("sorting", "sorting"), + ("templates", "zarr_templates"), + ] + _result_key_saved = [("gt_collision", "pickle"), ("gt_comparison", "pickle")] - # Generate New Waveform Extractor with Missing Units - we = extract_waveforms(self.recording, gt_sorting, self.tmp_folder, **we_kwargs) - methods_kwargs = self.update_methods_kwargs(we, template_mode) - sortings, _ = self.run_matching(methods_kwargs, we.unit_ids) - shutil.rmtree(self.tmp_folder) - return sortings, gt_sorting +class MatchingStudy(BenchmarkStudy): - def run_matching_vary_parameter( - self, - parameters, - parameter_name, - num_replicates=1, - we_kwargs=None, - template_mode="median", - progress_bars=[], - **kwargs, - ): - """Run template matching varying the values of a given parameter. + benchmark_class = MatchingBenchmark - Parameters - ---------- - parameters: array-like - The values of the parameter to vary. - parameter_name: "num_spikes", "fraction_misclassed", "fraction_missing" - The name of the parameter to vary. - num_replicates: int, default: 1 - The number of replicates to run for each parameter value - we_kwargs: dict - A dictionary of keyword arguments for the WaveformExtractor - template_mode: "mean" | "median" | "std", default: "median" - The mode to use to extract templates from the WaveformExtractor - **kwargs - Keyword arguments for the run_matching method + def create_benchmark(self, key): + dataset_key = self.cases[key]["dataset"] + recording, gt_sorting = self.datasets[dataset_key] + params = self.cases[key]["params"] + benchmark = MatchingBenchmark(recording, gt_sorting, params) + return benchmark - Returns - ------- - matching_df : pandas.DataFrame - A dataframe of NumpySortings for each method/parameter_value/iteration combination. - """ - try: - run_matching_fn = self.parameter_name2matching_fn[parameter_name] - except KeyError: - raise ValueError(f"Parameter name must be one of {list(self.parameter_name2matching_fn.keys())}") - try: - progress_bar = self.job_kwargs["progress_bar"] - except KeyError: - progress_bar = False - try: - assert isinstance(num_replicates, int) - assert num_replicates > 0 - except AssertionError: - raise ValueError("num_replicates must be a positive integer") + def plot_agreements(self, case_keys=None, figsize=None): + if case_keys is None: + case_keys = list(self.cases.keys()) - sortings, gt_sortings, parameter_values, parameter_names, iter_nums, methods = [], [], [], [], [], [] - if progress_bar: - parameters = tqdm(parameters, desc=f"Vary Parameter ({parameter_name})") - for parameter in parameters: - if progress_bar and num_replicates > 1: - replicates = tqdm(range(1, num_replicates + 1), desc=f"Replicating for Variability") - else: - replicates = range(1, num_replicates + 1) - for i in replicates: - sorting_per_method, gt_sorting = run_matching_fn( - parameter, seed=i, we_kwargs=we_kwargs, template_mode=template_mode, **kwargs - ) - for method in self.methods: - sortings.append(sorting_per_method[method]) - gt_sortings.append(gt_sorting) - parameter_values.append(parameter) - parameter_names.append(parameter_name) - iter_nums.append(i) - methods.append(method) - if running_in_notebook(): - from IPython.display import clear_output + fig, axs = plt.subplots(ncols=len(case_keys), nrows=1, figsize=figsize, squeeze=False) - clear_output(wait=True) - for bar in progress_bars: - display(bar.container) - display(parameters.container) - if num_replicates > 1: - display(replicates.container) - matching_df = pd.DataFrame( - { - "sorting": sortings, - "gt_sorting": gt_sortings, - "parameter_value": parameter_values, - "parameter_name": parameter_names, - "iter_num": iter_nums, - "method": methods, - } - ) - return matching_df + for count, key in enumerate(case_keys): + ax = axs[0, count] + ax.set_title(self.cases[key]["label"]) + plot_agreement_matrix(self.get_result(key)["gt_comparison"], ax=ax) - def compare_sortings(self, gt_sorting, sorting, collision=False, **kwargs): - """Compare a sorting to a ground-truth sorting. + def plot_performances_vs_snr(self, case_keys=None, figsize=None): + if case_keys is None: + case_keys = list(self.cases.keys()) - Parameters - ---------- - gt_sorting: SortingExtractor - The ground-truth sorting extractor. - sorting: SortingExtractor - The sorting extractor to compare to the ground-truth. - collision: bool - If True, use the CollisionGTComparison class. If False, use the compare_sorter_to_ground_truth function. - **kwargs - Keyword arguments for the comparison function. + fig, axs = plt.subplots(ncols=1, nrows=3, figsize=figsize) - Returns - ------- - comparison: GroundTruthComparison - The comparison object. - """ - if collision: - return CollisionGTComparison(gt_sorting, sorting, exhaustive_gt=self.exhaustive_gt, **kwargs) - else: - return compare_sorter_to_ground_truth(gt_sorting, sorting, exhaustive_gt=self.exhaustive_gt, **kwargs) + for count, k in enumerate(("accuracy", "recall", "precision")): - def compare_all_sortings(self, matching_df, collision=False, ground_truth="from_self", **kwargs): - """Compare all sortings in a matching dataframe to their ground-truth sortings. + ax = axs[count] + for key in case_keys: + label = self.cases[key]["label"] - Parameters - ---------- - matching_df: pandas.DataFrame - A dataframe of NumpySortings for each method/parameter_value/iteration combination. - collision: bool - If True, use the CollisionGTComparison class. If False, use the compare_sorter_to_ground_truth function. - ground_truth: "from_self" | "from_df", default: "from_self" - If "from_self", use the ground-truth sorting stored in the BenchmarkMatching object. If "from_df", use the - ground-truth sorting stored in the matching_df. - **kwargs - Keyword arguments for the comparison function. + analyzer = self.get_sorting_analyzer(key) + metrics = analyzer.get_extension("quality_metrics").get_data() + x = metrics["snr"].values + y = self.get_result(key)["gt_comparison"].get_performance()[k].values + ax.scatter(x, y, marker=".", label=label) + ax.set_title(k) - Notes - ----- - This function adds a new column to the matching_df called "comparison" that contains the GroundTruthComparison - object for each row. - """ - if ground_truth == "from_self": - comparison_fn = lambda row: self.compare_sortings( - self.gt_sorting, row["sorting"], collision=collision, **kwargs - ) - elif ground_truth == "from_df": - comparison_fn = lambda row: self.compare_sortings( - row["gt_sorting"], row["sorting"], collision=collision, **kwargs - ) - else: - raise ValueError("'ground_truth' must be either 'from_self' or 'from_df'") - matching_df["comparison"] = matching_df.apply(comparison_fn, axis=1) + if count == 2: + ax.legend() - def plot(self, comp, title=None): - fig, axs = plt.subplots(ncols=2, nrows=2, figsize=(10, 10)) - ax = axs[0, 0] - ax.set_title(title) - plot_agreement_matrix(comp, ax=ax) - ax.set_title(title) + def plot_collisions(self, case_keys=None, figsize=None): + if case_keys is None: + case_keys = list(self.cases.keys()) - ax = axs[1, 0] - ax.spines["top"].set_visible(False) - ax.spines["right"].set_visible(False) + fig, axs = plt.subplots(ncols=len(case_keys), nrows=1, figsize=figsize, squeeze=False) - for k in ("accuracy", "recall", "precision"): - x = comp.get_performance()[k] - y = self.metrics["snr"] - ax.scatter(x, y, markersize=10, marker=".", label=k) - ax.legend() - - ax = axs[0, 1] - if self.exhaustive_gt: + for count, key in enumerate(case_keys): + templates_array = self.get_result(key)["templates"].templates_array plot_comparison_collision_by_similarity( - comp, self.templates, ax=ax, show_legend=True, mode="lines", good_only=False + self.get_result(key)["gt_collision"], + templates_array, + ax=axs[0, count], + show_legend=True, + mode="lines", + good_only=False, ) - return fig, axs - - -def plot_errors_matching(benchmark, comp, unit_id, nb_spikes=200, metric="cosine"): - fig, axs = plt.subplots(ncols=2, nrows=2, figsize=(15, 10)) - - benchmark.we.sorting.get_unit_spike_train(unit_id) - template = benchmark.we.get_template(unit_id) - a = template.reshape(template.size, 1).T - count = 0 - colors = ["r", "b"] - for label in ["TP", "FN"]: - seg_num = 0 # TODO: make compatible with multiple segments - idx_1 = np.where(comp.get_labels1(unit_id)[seg_num] == label) - idx_2 = benchmark.we.get_sampled_indices(unit_id)["spike_index"] - intersection = np.where(np.isin(idx_2, idx_1))[0] - intersection = np.random.permutation(intersection)[:nb_spikes] - if len(intersection) == 0: - print(f"No {label}s found for unit {unit_id}") - continue - ### Should be able to give a subset of waveforms only... - ax = axs[count, 0] - plot_unit_waveforms( - benchmark.we, - unit_ids=[unit_id], - axes=[ax], - unit_selected_waveforms={unit_id: intersection}, - unit_colors={unit_id: colors[count]}, - ) - ax.set_title(label) - - wfs = benchmark.we.get_waveforms(unit_id) - wfs = wfs[intersection, :, :] - - import sklearn - - nb_spikes = len(wfs) - b = wfs.reshape(nb_spikes, -1) - distances = sklearn.metrics.pairwise_distances(a, b, metric).flatten() - ax = axs[count, 1] - ax.set_title(label) - ax.hist(distances, color=colors[count]) - ax.set_ylabel("# waveforms") - ax.set_xlabel(metric) - - count += 1 - return fig, axs - - -def plot_errors_matching_all_neurons(benchmark, comp, nb_spikes=200, metric="cosine"): - templates = benchmark.templates - nb_units = len(benchmark.we.unit_ids) - colors = ["r", "b"] - - results = {"TP": {"mean": [], "std": []}, "FN": {"mean": [], "std": []}} - for i in range(nb_units): - unit_id = benchmark.we.unit_ids[i] - idx_2 = benchmark.we.get_sampled_indices(unit_id)["spike_index"] - wfs = benchmark.we.get_waveforms(unit_id) - template = benchmark.we.get_template(unit_id) - a = template.reshape(template.size, 1).T - - for label in ["TP", "FN"]: - idx_1 = np.where(comp.get_labels1(unit_id) == label)[0] - intersection = np.where(np.isin(idx_2, idx_1))[0] - intersection = np.random.permutation(intersection)[:nb_spikes] - wfs_sliced = wfs[intersection, :, :] + def plot_comparison_matching( + self, + case_keys=None, + performance_names=["accuracy", "recall", "precision"], + colors=["g", "b", "r"], + ylim=(-0.1, 1.1), + figsize=None, + ): - import sklearn + if case_keys is None: + case_keys = list(self.cases.keys()) - all_spikes = len(wfs_sliced) - if all_spikes > 0: - b = wfs_sliced.reshape(all_spikes, -1) - if metric == "cosine": - distances = sklearn.metrics.pairwise.cosine_similarity(a, b).flatten() + num_methods = len(case_keys) + fig, axs = plt.subplots(ncols=num_methods, nrows=num_methods, figsize=(10, 10)) + for i, key1 in enumerate(case_keys): + for j, key2 in enumerate(case_keys): + if len(axs.shape) > 1: + ax = axs[i, j] else: - distances = sklearn.metrics.pairwise_distances(a, b, metric).flatten() - results[label]["mean"] += [np.nanmean(distances)] - results[label]["std"] += [np.nanstd(distances)] - else: - results[label]["mean"] += [0] - results[label]["std"] += [0] - - fig, axs = plt.subplots(ncols=2, nrows=1, figsize=(15, 5)) - for count, label in enumerate(["TP", "FN"]): - ax = axs[count] - idx = np.argsort(benchmark.metrics.snr) - means = np.array(results[label]["mean"])[idx] - stds = np.array(results[label]["std"])[idx] - ax.errorbar(benchmark.metrics.snr[idx], means, yerr=stds, c=colors[count]) - ax.set_title(label) - ax.set_xlabel("snr") - ax.set_ylabel(metric) - return fig, axs - - -def plot_comparison_matching( - benchmark, - comp_per_method, - performance_names=["accuracy", "recall", "precision"], - colors=["g", "b", "r"], - ylim=(-0.1, 1.1), -): - num_methods = len(benchmark.methods) - fig, axs = plt.subplots(ncols=num_methods, nrows=num_methods, figsize=(10, 10)) - for i, method1 in enumerate(benchmark.methods): - for j, method2 in enumerate(benchmark.methods): - if len(axs.shape) > 1: - ax = axs[i, j] - else: - ax = axs[j] - comp1, comp2 = comp_per_method[method1], comp_per_method[method2] - if i <= j: - for performance, color in zip(performance_names, colors): - perf1 = comp1.get_performance()[performance] - perf2 = comp2.get_performance()[performance] - ax.plot(perf2, perf1, ".", label=performance, color=color) - - ax.plot([0, 1], [0, 1], "k--", alpha=0.5) - ax.set_ylim(ylim) - ax.set_xlim(ylim) - ax.spines[["right", "top"]].set_visible(False) - ax.set_aspect("equal") - - if j == i: - ax.set_ylabel(f"{method1}") - else: - ax.set_yticks([]) - if i == j: - ax.set_xlabel(f"{method2}") + ax = axs[j] + comp1 = self.get_result(key1)["gt_comparison"] + comp2 = self.get_result(key2)["gt_comparison"] + if i <= j: + for performance, color in zip(performance_names, colors): + perf1 = comp1.get_performance()[performance] + perf2 = comp2.get_performance()[performance] + ax.plot(perf2, perf1, ".", label=performance, color=color) + + ax.plot([0, 1], [0, 1], "k--", alpha=0.5) + ax.set_ylim(ylim) + ax.set_xlim(ylim) + ax.spines[["right", "top"]].set_visible(False) + ax.set_aspect("equal") + + label1 = self.cases[key1]["label"] + label2 = self.cases[key2]["label"] + if j == i: + ax.set_ylabel(f"{label1}") + else: + ax.set_yticks([]) + if i == j: + ax.set_xlabel(f"{label2}") + else: + ax.set_xticks([]) + if i == num_methods - 1 and j == num_methods - 1: + patches = [] + for color, name in zip(colors, performance_names): + patches.append(mpatches.Patch(color=color, label=name)) + ax.legend(handles=patches, bbox_to_anchor=(1.05, 1), loc="upper left", borderaxespad=0.0) else: + ax.spines["bottom"].set_visible(False) + ax.spines["left"].set_visible(False) + ax.spines["top"].set_visible(False) + ax.spines["right"].set_visible(False) ax.set_xticks([]) - if i == num_methods - 1 and j == num_methods - 1: - patches = [] - for color, name in zip(colors, performance_names): - patches.append(mpatches.Patch(color=color, label=name)) - ax.legend(handles=patches, bbox_to_anchor=(1.05, 1), loc="upper left", borderaxespad=0.0) - else: - ax.spines["bottom"].set_visible(False) - ax.spines["left"].set_visible(False) - ax.spines["top"].set_visible(False) - ax.spines["right"].set_visible(False) - ax.set_xticks([]) - ax.set_yticks([]) - plt.tight_layout(h_pad=0, w_pad=0) - return fig, axs - - -def compute_rejection_rate(comp, method="by_unit"): - missing_unit_ids = set(comp.unit1_ids) - set(comp.unit2_ids) - performance = comp.get_performance() - rejection_rates = np.zeros(len(missing_unit_ids)) - for i, missing_unit_id in enumerate(missing_unit_ids): - rejection_rates[i] = performance.miss_rate[performance.index == missing_unit_id] - if method == "by_unit": - return rejection_rates - elif method == "pooled_with_average": - return np.mean(rejection_rates) - else: - raise ValueError(f'method must be "by_unit" or "pooled_with_average" but got {method}') - - -def plot_vary_parameter( - matching_df, performance_metric="accuracy", method_colors=None, parameter_transform=lambda x: x -): - parameter_names = matching_df.parameter_name.unique() - methods = matching_df.method.unique() - if method_colors is None: - method_colors = {method: f"C{i}" for i, method in enumerate(methods)} - figs, axs = [], [] - for parameter_name in parameter_names: - df_parameter = matching_df[matching_df.parameter_name == parameter_name] - parameters = df_parameter.parameter_value.unique() - method_means = {method: [] for method in methods} - method_stds = {method: [] for method in methods} - for parameter in parameters: - for method in methods: - method_param_mask = np.logical_and( - df_parameter.method == method, df_parameter.parameter_value == parameter - ) - comps = df_parameter.comparison[method_param_mask] - performance_metrics = [] - for comp in comps: - try: - perf_metric = comp.get_performance(method="pooled_with_average")[performance_metric] - except KeyError: # benchmarking-specific metric - assert performance_metric == "rejection_rate", f"{performance_metric} is not a valid metric" - perf_metric = compute_rejection_rate(comp, method="pooled_with_average") - performance_metrics.append(perf_metric) - # Average / STD over replicates - method_means[method].append(np.mean(performance_metrics)) - method_stds[method].append(np.std(performance_metrics)) - - parameters_transformed = parameter_transform(parameters) - fig, ax = plt.subplots() - for method in methods: - mean, std = method_means[method], method_stds[method] - ax.errorbar( - parameters_transformed, mean, std, color=method_colors[method], marker="o", markersize=5, label=method - ) - if parameter_name == "num_spikes": - xlabel = "Number of Spikes" - elif parameter_name == "fraction_misclassed": - xlabel = "Fraction of Spikes Misclassified" - elif parameter_name == "fraction_missing": - xlabel = "Fraction of Low SNR Units Missing" - ax.set_xticks(parameters_transformed, parameters) - ax.set_xlabel(xlabel) - ax.set_ylabel(f"Average Unit {performance_metric}") - ax.legend() - figs.append(fig) - axs.append(ax) - return figs, axs + ax.set_yticks([]) + plt.tight_layout(h_pad=0, w_pad=0) diff --git a/src/spikeinterface/sortingcomponents/benchmark/benchmark_motion_estimation.py b/src/spikeinterface/sortingcomponents/benchmark/benchmark_motion_estimation.py index b2cf95881f..12f0ff7a4a 100644 --- a/src/spikeinterface/sortingcomponents/benchmark/benchmark_motion_estimation.py +++ b/src/spikeinterface/sortingcomponents/benchmark/benchmark_motion_estimation.py @@ -1,616 +1,976 @@ from __future__ import annotations import json -import numpy as np import time from pathlib import Path +import pickle +import numpy as np +import scipy.interpolate from spikeinterface.core import get_noise_levels -from spikeinterface.extractors import read_mearec from spikeinterface.sortingcomponents.peak_detection import detect_peaks from spikeinterface.sortingcomponents.peak_selection import select_peaks from spikeinterface.sortingcomponents.peak_localization import localize_peaks from spikeinterface.sortingcomponents.motion_estimation import estimate_motion -from spikeinterface.sortingcomponents.motion_interpolation import correct_motion_on_peaks -from spikeinterface.preprocessing import bandpass_filter, zscore, common_reference - -from spikeinterface.sortingcomponents.benchmark.benchmark_tools import BenchmarkBase, _simpleaxis +from spikeinterface.sortingcomponents.benchmark.benchmark_tools import Benchmark, BenchmarkStudy, _simpleaxis +import matplotlib.pyplot as plt from spikeinterface.widgets import plot_probe_map -import scipy.interpolate +# import MEArec as mr -import matplotlib.pyplot as plt +# TODO : plot_peaks +# TODO : plot_motion_corrected_peaks +# TODO : plot_error_map_several_benchmarks +# TODO : plot_speed_several_benchmarks +# TODO : read from mearec -import MEArec as mr +def get_unit_disclacement(displacement_vectors, displacement_unit_factor, direction_dim=1): + """ + Get final displacement vector unit per units. -class BenchmarkMotionEstimationMearec(BenchmarkBase): - _array_names = ( - "noise_levels", - "gt_unit_positions", - "peaks", - "selected_peaks", - "motion", - "temporal_bins", - "spatial_bins", - "peak_locations", - "gt_motion", - ) + See drifting_tools for shapes. + + + Parameters + ---------- + + displacement_vectors: list of numpy array + The lenght of the list is the number of segment. + Per segment, the drift vector is a numpy array with shape (num_times, 2, num_motions) + num_motions is generally = 1 but can be > 1 in case of combining several drift vectors + displacement_unit_factor: numpy array or None, default: None + A array containing the factor per unit of the drift. + This is used to create non rigid with a factor gradient of depending on units position. + shape (num_units, num_motions) + If None then all unit have the same factor (1) and the drift is rigid. + + Returns + ------- + unit_displacements: numpy array + shape (num_times, num_units) - def __init__( - self, - mearec_filename, - title="", - detect_kwargs={}, - select_kwargs=None, - localize_kwargs={}, - estimate_motion_kwargs={}, - folder=None, - do_preprocessing=True, - job_kwargs={"chunk_duration": "1s", "n_jobs": -1, "progress_bar": True, "verbose": True}, - overwrite=False, - parent_benchmark=None, - ): - BenchmarkBase.__init__( - self, folder=folder, title=title, overwrite=overwrite, job_kwargs=job_kwargs, parent_benchmark=None - ) - self._args.extend([str(mearec_filename)]) + """ + num_units = displacement_unit_factor.shape[0] + unit_displacements = np.zeros((displacement_vectors.shape[0], num_units)) + for i in range(displacement_vectors.shape[2]): + m = displacement_vectors[:, direction_dim, i][:, np.newaxis] * displacement_unit_factor[:, i][np.newaxis, :] + unit_displacements[:, :] += m - self.mearec_filename = mearec_filename - self.raw_recording, self.gt_sorting = read_mearec(self.mearec_filename) - self.do_preprocessing = do_preprocessing + return unit_displacements - self._recording = None - self.detect_kwargs = detect_kwargs.copy() - self.select_kwargs = select_kwargs.copy() if select_kwargs is not None else None - self.localize_kwargs = localize_kwargs.copy() - self.estimate_motion_kwargs = estimate_motion_kwargs.copy() - self._kwargs.update( - dict( - detect_kwargs=self.detect_kwargs, - select_kwargs=self.select_kwargs, - localize_kwargs=self.localize_kwargs, - estimate_motion_kwargs=self.estimate_motion_kwargs, +def get_gt_motion_from_unit_discplacement( + unit_displacements, + displacement_sampling_frequency, + unit_locations, + temporal_bins, + spatial_bins, + direction_dim=1, +): + + times = np.arange(unit_displacements.shape[0]) / displacement_sampling_frequency + f = scipy.interpolate.interp1d(times, unit_displacements, axis=0) + unit_displacements = f(temporal_bins) + + # spatial interpolataion of units discplacement + if spatial_bins.shape[0] == 1: + # rigid + gt_motion = np.mean(unit_displacements, axis=1)[:, None] + else: + # non rigid + gt_motion = np.zeros((temporal_bins.size, spatial_bins.size)) + for t in range(temporal_bins.shape[0]): + f = scipy.interpolate.interp1d( + unit_locations[:, direction_dim], unit_displacements[t, :], fill_value="extrapolate" ) - ) + gt_motion[t, :] = f(spatial_bins) - @property - def recording(self): - if self._recording is None: - if self.do_preprocessing: - self._recording = bandpass_filter(self.raw_recording) - self._recording = common_reference(self._recording) - self._recording = zscore(self._recording) - else: - self._recording = self.raw_recording - return self._recording + return gt_motion + + +class MotionEstimationBenchmark(Benchmark): + def __init__( + self, + recording, + gt_sorting, + params, + unit_locations, + unit_displacements, + displacement_sampling_frequency, + direction="y", + ): + Benchmark.__init__(self) + self.recording = recording + self.gt_sorting = gt_sorting + self.params = params + self.unit_locations = unit_locations + self.unit_displacements = unit_displacements + self.displacement_sampling_frequency = displacement_sampling_frequency + self.direction = direction + self.direction_dim = ["x", "y"].index(direction) - def run(self): - if self.folder is not None: - if self.folder.exists() and not self.overwrite: - raise ValueError(f"The folder {self.folder} is not empty") + def run(self, **job_kwargs): + p = self.params - self.noise_levels = get_noise_levels(self.recording, return_scaled=False) + noise_levels = get_noise_levels(self.recording, return_scaled=False) t0 = time.perf_counter() - self.peaks = detect_peaks( - self.recording, noise_levels=self.noise_levels, **self.detect_kwargs, **self.job_kwargs - ) + peaks = detect_peaks(self.recording, noise_levels=noise_levels, **p["detect_kwargs"], **job_kwargs) t1 = time.perf_counter() - if self.select_kwargs is not None: - self.selected_peaks = select_peaks(self.peaks, **self.select_kwargs, **self.job_kwargs) + if p["select_kwargs"] is not None: + selected_peaks = select_peaks(self.peaks, **p["select_kwargs"], **job_kwargs) else: - self.selected_peaks = self.peaks + selected_peaks = peaks + t2 = time.perf_counter() - self.peak_locations = localize_peaks( - self.recording, self.selected_peaks, **self.localize_kwargs, **self.job_kwargs - ) + peak_locations = localize_peaks(self.recording, selected_peaks, **p["localize_kwargs"], **job_kwargs) t3 = time.perf_counter() - self.motion, self.temporal_bins, self.spatial_bins = estimate_motion( - self.recording, self.selected_peaks, self.peak_locations, **self.estimate_motion_kwargs + motion, temporal_bins, spatial_bins = estimate_motion( + self.recording, selected_peaks, peak_locations, **p["estimate_motion_kwargs"] ) - t4 = time.perf_counter() - self.run_times = dict( + step_run_times = dict( detect_peaks=t1 - t0, select_peaks=t2 - t1, localize_peaks=t3 - t2, estimate_motion=t4 - t3, ) - self.compute_gt_motion() - - # align globally gt_motion and motion to avoid offsets - self.motion += np.median(self.gt_motion - self.motion) - - ## save folder - if self.folder is not None: - self.save_to_folder() - - def run_estimate_motion(self): - # usefull to re run only the motion estimate with peak localization - t3 = time.perf_counter() - self.motion, self.temporal_bins, self.spatial_bins = estimate_motion( - self.recording, self.selected_peaks, self.peak_locations, **self.estimate_motion_kwargs - ) - t4 = time.perf_counter() - - self.compute_gt_motion() + self.result["step_run_times"] = step_run_times + self.result["raw_motion"] = motion + self.result["temporal_bins"] = temporal_bins + self.result["spatial_bins"] = spatial_bins + + def compute_result(self, **result_params): + raw_motion = self.result["raw_motion"] + temporal_bins = self.result["temporal_bins"] + spatial_bins = self.result["spatial_bins"] + + # time interpolatation of unit displacements + times = np.arange(self.unit_displacements.shape[0]) / self.displacement_sampling_frequency + f = scipy.interpolate.interp1d(times, self.unit_displacements, axis=0) + unit_displacements = f(temporal_bins) + + # spatial interpolataion of units discplacement + if spatial_bins.shape[0] == 1: + # rigid + gt_motion = np.mean(unit_displacements, axis=1)[:, None] + else: + # non rigid + gt_motion = np.zeros_like(raw_motion) + for t in range(temporal_bins.shape[0]): + f = scipy.interpolate.interp1d( + self.unit_locations[:, self.direction_dim], unit_displacements[t, :], fill_value="extrapolate" + ) + gt_motion[t, :] = f(spatial_bins) # align globally gt_motion and motion to avoid offsets - self.motion += np.median(self.gt_motion - self.motion) - self.run_times["estimate_motion"] = t4 - t3 + motion = raw_motion.copy() + motion += np.median(gt_motion - motion) + self.result["gt_motion"] = gt_motion + self.result["motion"] = motion + + _run_key_saved = [ + ("raw_motion", "npy"), + ("temporal_bins", "npy"), + ("spatial_bins", "npy"), + ("step_run_times", "pickle"), + ] + _result_key_saved = [ + ( + "gt_motion", + "npy", + ), + ( + "motion", + "npy", + ), + ] + + +class MotionEstimationStudy(BenchmarkStudy): + + benchmark_class = MotionEstimationBenchmark + + def create_benchmark(self, key): + dataset_key = self.cases[key]["dataset"] + recording, gt_sorting = self.datasets[dataset_key] + params = self.cases[key]["params"] + init_kwargs = self.cases[key]["init_kwargs"] + benchmark = MotionEstimationBenchmark(recording, gt_sorting, params, **init_kwargs) + return benchmark + + def plot_true_drift(self, case_keys=None, scaling_probe=1.5, figsize=(8, 6)): + + if case_keys is None: + case_keys = list(self.cases.keys()) + + for key in case_keys: + + bench = self.benchmarks[key] - ## save folder - if self.folder is not None: - self.save_to_folder() - - def compute_gt_motion(self): - self.gt_unit_positions, _ = mr.extract_units_drift_vector(self.mearec_filename, time_vector=self.temporal_bins) - - template_locations = np.array(mr.load_recordings(self.mearec_filename).template_locations) - assert len(template_locations.shape) == 3 - mid = template_locations.shape[1] // 2 - unit_mid_positions = template_locations[:, mid, 2] - - unit_motions = self.gt_unit_positions - unit_mid_positions - # unit_positions = np.mean(self.gt_unit_positions, axis=0) - - if self.spatial_bins is None: - self.gt_motion = np.mean(unit_motions, axis=1)[:, None] - channel_positions = self.recording.get_channel_locations() - probe_y_min, probe_y_max = channel_positions[:, 1].min(), channel_positions[:, 1].max() - center = (probe_y_min + probe_y_max) // 2 - self.spatial_bins = np.array([center]) - else: - # time, units - self.gt_motion = np.zeros_like(self.motion) - for t in range(self.gt_unit_positions.shape[0]): - f = scipy.interpolate.interp1d(unit_mid_positions, unit_motions[t, :], fill_value="extrapolate") - self.gt_motion[t, :] = f(self.spatial_bins) - - def plot_true_drift(self, scaling_probe=1.5, figsize=(15, 10), axes=None): - if axes is None: fig = plt.figure(figsize=figsize) gs = fig.add_gridspec(1, 8, wspace=0) - if axes is None: - ax = fig.add_subplot(gs[:2]) - else: - ax = axes[0] - plot_probe_map(self.recording, ax=ax) - _simpleaxis(ax) - - mr_recording = mr.load_recordings(self.mearec_filename) - - for loc in mr_recording.template_locations[::2]: - if len(mr_recording.template_locations.shape) == 3: - ax.plot([loc[0, 1], loc[-1, 1]], [loc[0, 2], loc[-1, 2]], alpha=0.7, lw=2) - else: - ax.scatter([loc[1]], [loc[2]], alpha=0.7, s=100) - - # ymin, ymax = ax.get_ylim() - ax.set_ylabel("depth (um)") - ax.set_xlabel(None) - # ax.set_yticks(np.arange(-600,600,100), np.arange(-600,600,100)) - - # ax.set_ylim(scaling_probe*probe_y_min, scaling_probe*probe_y_max) - if axes is None: - ax = fig.add_subplot(gs[2:7]) - else: - ax = axes[1] - - for i in range(self.gt_unit_positions.shape[1]): - ax.plot(self.temporal_bins, self.gt_unit_positions[:, i], alpha=0.5, ls="--", c="0.5") - - for i in range(self.gt_motion.shape[1]): - depth = self.spatial_bins[i] - ax.plot(self.temporal_bins, self.gt_motion[:, i] + depth, color="green", lw=4) - - # ax.set_ylim(ymin, ymax) - ax.set_xlabel("time (s)") - _simpleaxis(ax) - ax.set_yticks([]) - ax.spines["left"].set_visible(False) - - channel_positions = self.recording.get_channel_locations() - probe_y_min, probe_y_max = channel_positions[:, 1].min(), channel_positions[:, 1].max() - ax.set_ylim(scaling_probe * probe_y_min, scaling_probe * probe_y_max) - - ax.axhline(probe_y_min, color="k", ls="--", alpha=0.5) - ax.axhline(probe_y_max, color="k", ls="--", alpha=0.5) - - if axes is None: - ax = fig.add_subplot(gs[7]) - else: - ax = axes[2] - # plot_probe_map(self.recording, ax=ax) - _simpleaxis(ax) + # probe and units + ax = ax0 = fig.add_subplot(gs[:2]) + plot_probe_map(bench.recording, ax=ax) + _simpleaxis(ax) + unit_locations = bench.unit_locations + ax.scatter(unit_locations[:, 0], unit_locations[:, 1], alpha=0.7, s=100) + ax.set_ylabel("depth (um)") + ax.set_xlabel(None) - ax.hist(self.gt_unit_positions[30, :], 50, orientation="horizontal", color="0.5") - ax.set_yticks([]) - ax.set_xlabel("# neurons") - - def plot_peaks_probe(self, alpha=0.05, figsize=(15, 10)): - fig, axs = plt.subplots(ncols=2, sharey=True, figsize=figsize) - ax = axs[0] - plot_probe_map(self.recording, ax=ax) - ax.scatter(self.peak_locations["x"], self.peak_locations["y"], color="k", s=1, alpha=alpha) - ax.set_xlabel("x") - ax.set_ylabel("y") - if "z" in self.peak_locations.dtype.fields: - ax = axs[1] - ax.scatter(self.peak_locations["z"], self.peak_locations["y"], color="k", s=1, alpha=alpha) - ax.set_xlabel("z") - ax.set_xlim(0, 100) - - def plot_peaks(self, scaling_probe=1.5, show_drift=True, show_histogram=True, alpha=0.05, figsize=(15, 10)): - fig = plt.figure(figsize=figsize) - if show_histogram: - gs = fig.add_gridspec(1, 4) - else: - gs = fig.add_gridspec(1, 3) - # Create the Axes. + ax.set_aspect("auto") - ax0 = fig.add_subplot(gs[0]) - plot_probe_map(self.recording, ax=ax0) - _simpleaxis(ax0) + # dirft + ax = ax1 = fig.add_subplot(gs[2:7]) + ax1.sharey(ax0) + temporal_bins = bench.result["temporal_bins"] + spatial_bins = bench.result["spatial_bins"] + gt_motion = bench.result["gt_motion"] - # ymin, ymax = ax.get_ylim() - ax0.set_ylabel("depth (um)") - ax0.set_xlabel(None) + # for i in range(self.gt_unit_positions.shape[1]): + # ax.plot(temporal_bins, self.gt_unit_positions[:, i], alpha=0.5, ls="--", c="0.5") - ax = ax1 = fig.add_subplot(gs[1:3]) - x = self.selected_peaks["sample_index"] / self.recording.get_sampling_frequency() - y = self.peak_locations["y"] - ax.scatter(x, y, s=1, color="k", alpha=alpha) + for i in range(gt_motion.shape[1]): + depth = spatial_bins[i] + ax.plot(temporal_bins, gt_motion[:, i] + depth, color="green", lw=4) + ax.set_xlabel("time (s)") + _simpleaxis(ax) + ax.set_yticks([]) + ax.spines["left"].set_visible(False) - ax.set_title(self.title) - # xmin, xmax = ax.get_xlim() - # ax.plot([xmin, xmax], [probe_y_min, probe_y_min], 'k--', alpha=0.5) - # ax.plot([xmin, xmax], [probe_y_max, probe_y_max], 'k--', alpha=0.5) + channel_positions = bench.recording.get_channel_locations() + probe_y_min, probe_y_max = channel_positions[:, 1].min(), channel_positions[:, 1].max() + # ax.set_ylim(scaling_probe * probe_y_min, scaling_probe * probe_y_max) - _simpleaxis(ax) - # ax.set_yticks([]) - # ax.set_ylim(scaling_probe*probe_y_min, scaling_probe*probe_y_max) - ax.spines["left"].set_visible(False) - ax.set_xlabel("time (s)") + ax.axhline(probe_y_min, color="k", ls="--", alpha=0.5) + ax.axhline(probe_y_max, color="k", ls="--", alpha=0.5) - channel_positions = self.recording.get_channel_locations() - probe_y_min, probe_y_max = channel_positions[:, 1].min(), channel_positions[:, 1].max() - ax.set_ylim(scaling_probe * probe_y_min, scaling_probe * probe_y_max) - - ax.axhline(probe_y_min, color="k", ls="--", alpha=0.5) - ax.axhline(probe_y_max, color="k", ls="--", alpha=0.5) - - if show_drift: - if self.spatial_bins is None: - center = (probe_y_min + probe_y_max) // 2 - ax.plot(self.temporal_bins, self.gt_motion[:, 0] + center, color="green", lw=1.5) - ax.plot(self.temporal_bins, self.motion[:, 0] + center, color="orange", lw=1.5) - else: - for i in range(self.gt_motion.shape[1]): - depth = self.spatial_bins[i] - ax.plot(self.temporal_bins, self.gt_motion[:, i] + depth, color="green", lw=1.5) - ax.plot(self.temporal_bins, self.motion[:, i] + depth, color="orange", lw=1.5) - - if show_histogram: - ax2 = fig.add_subplot(gs[3]) - ax2.hist(self.peak_locations["y"], bins=1000, orientation="horizontal") - - ax2.axhline(probe_y_min, color="k", ls="--", alpha=0.5) - ax2.axhline(probe_y_max, color="k", ls="--", alpha=0.5) - - ax2.set_xlabel("density") - _simpleaxis(ax2) - # ax.set_ylabel('') - ax.set_yticks([]) + ax = ax2 = fig.add_subplot(gs[7]) ax2.sharey(ax0) - - ax1.sharey(ax0) - - def plot_motion_corrected_peaks(self, scaling_probe=1.5, alpha=0.05, figsize=(15, 10), show_probe=True, axes=None): - if axes is None: - fig = plt.figure(figsize=figsize) - if show_probe: - gs = fig.add_gridspec(1, 5) - else: - gs = fig.add_gridspec(1, 4) - # Create the Axes. - - if show_probe: - if axes is None: - ax0 = ax = fig.add_subplot(gs[0]) - else: - ax0 = ax = axes[0] - plot_probe_map(self.recording, ax=ax) _simpleaxis(ax) + ax.hist(unit_locations[:, bench.direction_dim], bins=50, orientation="horizontal", color="0.5") + ax.set_yticks([]) + ax.set_xlabel("# neurons") - ymin, ymax = ax.get_ylim() - ax.set_ylabel("depth (um)") - ax.set_xlabel(None) + label = self.cases[key]["label"] + ax1.set_title(label) - channel_positions = self.recording.get_channel_locations() - probe_y_min, probe_y_max = channel_positions[:, 1].min(), channel_positions[:, 1].max() + # ax0.set_ylim() - peak_locations_corrected = correct_motion_on_peaks( - self.selected_peaks, - self.peak_locations, - self.recording.sampling_frequency, - self.motion, - self.temporal_bins, - self.spatial_bins, - direction="y", - ) - if axes is None: - if show_probe: - ax1 = ax = fig.add_subplot(gs[1:3]) - else: - ax1 = ax = fig.add_subplot(gs[0:2]) - else: - if show_probe: - ax1 = ax = axes[1] - else: - ax1 = ax = axes[0] + def plot_errors(self, case_keys=None, figsize=None, lim=None): - _simpleaxis(ax) + if case_keys is None: + case_keys = list(self.cases.keys()) - x = self.selected_peaks["sample_index"] / self.recording.get_sampling_frequency() - y = self.peak_locations["y"] - ax.scatter(x, y, s=1, color="k", alpha=alpha) - ax.set_title(self.title) + for key in case_keys: - ax.axhline(probe_y_min, color="k", ls="--", alpha=0.5) - ax.axhline(probe_y_max, color="k", ls="--", alpha=0.5) + bench = self.benchmarks[key] + label = self.cases[key]["label"] - ax.set_xlabel("time (s)") + gt_motion = bench.result["gt_motion"] + motion = bench.result["motion"] + temporal_bins = bench.result["temporal_bins"] + spatial_bins = bench.result["spatial_bins"] - if axes is None: - if show_probe: - ax2 = ax = fig.add_subplot(gs[3:5]) - else: - ax2 = ax = fig.add_subplot(gs[2:4]) - else: - if show_probe: - ax2 = ax = axes[2] - else: - ax2 = ax = axes[1] + fig = plt.figure(figsize=figsize) - _simpleaxis(ax) - y = peak_locations_corrected["y"] - ax.scatter(x, y, s=1, color="k", alpha=alpha) + gs = fig.add_gridspec(2, 2) - ax.axhline(probe_y_min, color="k", ls="--", alpha=0.5) - ax.axhline(probe_y_max, color="k", ls="--", alpha=0.5) + errors = gt_motion - motion - ax.set_xlabel("time (s)") + channel_positions = bench.recording.get_channel_locations() + probe_y_min, probe_y_max = channel_positions[:, 1].min(), channel_positions[:, 1].max() - if show_probe: - ax0.set_ylim(scaling_probe * probe_y_min, scaling_probe * probe_y_max) - ax1.sharey(ax0) - ax2.sharey(ax0) - else: - ax1.set_ylim(scaling_probe * probe_y_min, scaling_probe * probe_y_max) - ax2.sharey(ax1) - - def estimation_vs_depth(self, show_only=8, figsize=(15, 10)): - fig, axs = plt.subplots(ncols=2, figsize=figsize, sharey=True) - - n = self.motion.shape[1] - step = int(np.ceil(max(1, n / show_only))) - colors = plt.cm.get_cmap("jet", n) - for i in range(0, n, step): - ax = axs[0] - ax.plot(self.temporal_bins, self.gt_motion[:, i], lw=1.5, ls="--", color=colors(i)) - ax.plot( - self.temporal_bins, - self.motion[:, i], - lw=1.5, - ls="-", - color=colors(i), - label=f"{self.spatial_bins[i]:0.1f}", + ax = fig.add_subplot(gs[0, :]) + im = ax.imshow( + np.abs(errors).T, + aspect="auto", + interpolation="nearest", + origin="lower", + extent=(temporal_bins[0], temporal_bins[-1], spatial_bins[0], spatial_bins[-1]), ) - - ax = axs[1] - ax.plot(self.temporal_bins, self.motion[:, i] - self.gt_motion[:, i], lw=1.5, ls="-", color=colors(i)) - - ax = axs[0] - ax.set_title(self.title) - ax.legend() - ax.set_ylabel("drift estimated and GT(um)") - ax.set_xlabel("time (s)") - _simpleaxis(ax) - - ax = axs[1] - ax.set_ylabel("error (um)") - ax.set_xlabel("time (s)") - _simpleaxis(ax) - - def view_errors(self, figsize=(15, 10), lim=None): - fig = plt.figure(figsize=figsize) - gs = fig.add_gridspec(2, 2) - - errors = self.gt_motion - self.motion - - channel_positions = self.recording.get_channel_locations() - probe_y_min, probe_y_max = channel_positions[:, 1].min(), channel_positions[:, 1].max() - - ax = fig.add_subplot(gs[0, :]) - im = ax.imshow( - np.abs(errors).T, - aspect="auto", - interpolation="nearest", - origin="lower", - extent=(self.temporal_bins[0], self.temporal_bins[-1], self.spatial_bins[0], self.spatial_bins[-1]), - ) - plt.colorbar(im, ax=ax, label="error") - ax.set_ylabel("depth (um)") - ax.set_xlabel("time (s)") - ax.set_title(self.title) - if lim is not None: - im.set_clim(0, lim) - - ax = fig.add_subplot(gs[1, 0]) - mean_error = np.sqrt(np.mean((errors) ** 2, axis=1)) - ax.plot(self.temporal_bins, mean_error) - ax.set_xlabel("time (s)") - ax.set_ylabel("error") - _simpleaxis(ax) - if lim is not None: - ax.set_ylim(0, lim) - - ax = fig.add_subplot(gs[1, 1]) - depth_error = np.sqrt(np.mean((errors) ** 2, axis=0)) - ax.plot(self.spatial_bins, depth_error) - ax.axvline(probe_y_min, color="k", ls="--", alpha=0.5) - ax.axvline(probe_y_max, color="k", ls="--", alpha=0.5) - ax.set_xlabel("depth (um)") - ax.set_ylabel("error") + plt.colorbar(im, ax=ax, label="error") + ax.set_ylabel("depth (um)") + ax.set_xlabel("time (s)") + ax.set_title(label) + if lim is not None: + im.set_clim(0, lim) + + ax = fig.add_subplot(gs[1, 0]) + mean_error = np.sqrt(np.mean((errors) ** 2, axis=1)) + ax.plot(temporal_bins, mean_error) + ax.set_xlabel("time (s)") + ax.set_ylabel("error") + _simpleaxis(ax) + if lim is not None: + ax.set_ylim(0, lim) + + ax = fig.add_subplot(gs[1, 1]) + depth_error = np.sqrt(np.mean((errors) ** 2, axis=0)) + ax.plot(spatial_bins, depth_error) + ax.axvline(probe_y_min, color="k", ls="--", alpha=0.5) + ax.axvline(probe_y_max, color="k", ls="--", alpha=0.5) + ax.set_xlabel("depth (um)") + ax.set_ylabel("error") + _simpleaxis(ax) + if lim is not None: + ax.set_ylim(0, lim) + + def plot_summary_errors(self, case_keys=None, show_legend=True, colors=None, figsize=(15, 5)): + + if case_keys is None: + case_keys = list(self.cases.keys()) + + fig, axes = plt.subplots(1, 3, figsize=figsize) + + for count, key in enumerate(case_keys): + + bench = self.benchmarks[key] + label = self.cases[key]["label"] + + gt_motion = bench.result["gt_motion"] + motion = bench.result["motion"] + temporal_bins = bench.result["temporal_bins"] + spatial_bins = bench.result["spatial_bins"] + + c = colors[count] if colors is not None else None + errors = gt_motion - motion + mean_error = np.sqrt(np.mean((errors) ** 2, axis=1)) + depth_error = np.sqrt(np.mean((errors) ** 2, axis=0)) + + axes[0].plot(temporal_bins, mean_error, lw=1, label=label, color=c) + parts = axes[1].violinplot(mean_error, [count], showmeans=True) + if c is not None: + for pc in parts["bodies"]: + pc.set_facecolor(c) + pc.set_edgecolor(c) + for k in parts: + if k != "bodies": + # for line in parts[k]: + parts[k].set_color(c) + axes[2].plot(spatial_bins, depth_error, label=label, color=c) + + ax0 = ax = axes[0] + ax.set_xlabel("Time [s]") + ax.set_ylabel("Error [μm]") + if show_legend: + ax.legend() _simpleaxis(ax) - if lim is not None: - ax.set_ylim(0, lim) - - return fig - - -def plot_errors_several_benchmarks(benchmarks, axes=None, show_legend=True, colors=None): - if axes is None: - fig, axes = plt.subplots(1, 3, figsize=(15, 5)) - - for count, benchmark in enumerate(benchmarks): - c = colors[count] if colors is not None else None - errors = benchmark.gt_motion - benchmark.motion - mean_error = np.sqrt(np.mean((errors) ** 2, axis=1)) - depth_error = np.sqrt(np.mean((errors) ** 2, axis=0)) - - axes[0].plot(benchmark.temporal_bins, mean_error, lw=1, label=benchmark.title, color=c) - parts = axes[1].violinplot(mean_error, [count], showmeans=True) - if c is not None: - for pc in parts["bodies"]: - pc.set_facecolor(c) - pc.set_edgecolor(c) - for k in parts: - if k != "bodies": - # for line in parts[k]: - parts[k].set_color(c) - axes[2].plot(benchmark.spatial_bins, depth_error, label=benchmark.title, color=c) - - ax0 = ax = axes[0] - ax.set_xlabel("Time [s]") - ax.set_ylabel("Error [μm]") - if show_legend: - ax.legend() - _simpleaxis(ax) - - ax1 = axes[1] - # ax.set_ylabel('error') - ax1.set_yticks([]) - ax1.set_xticks([]) - _simpleaxis(ax1) - - ax2 = axes[2] - ax2.set_yticks([]) - ax2.set_xlabel("Depth [μm]") - # ax.set_ylabel('error') - channel_positions = benchmark.recording.get_channel_locations() - probe_y_min, probe_y_max = channel_positions[:, 1].min(), channel_positions[:, 1].max() - ax2.axvline(probe_y_min, color="k", ls="--", alpha=0.5) - ax2.axvline(probe_y_max, color="k", ls="--", alpha=0.5) - - _simpleaxis(ax2) - - # ax1.sharey(ax0) - # ax2.sharey(ax0) - - -def plot_error_map_several_benchmarks(benchmarks, axes=None, lim=15, figsize=(10, 10)): - if axes is None: - fig, axes = plt.subplots(nrows=len(benchmarks), sharex=True, sharey=True, figsize=figsize) - else: - fig = axes[0].figure - for count, benchmark in enumerate(benchmarks): - errors = benchmark.gt_motion - benchmark.motion - - channel_positions = benchmark.recording.get_channel_locations() + ax1 = axes[1] + # ax.set_ylabel('error') + ax1.set_yticks([]) + ax1.set_xticks([]) + _simpleaxis(ax1) + + ax2 = axes[2] + ax2.set_yticks([]) + ax2.set_xlabel("Depth [μm]") + # ax.set_ylabel('error') + channel_positions = bench.recording.get_channel_locations() probe_y_min, probe_y_max = channel_positions[:, 1].min(), channel_positions[:, 1].max() - - ax = axes[count] - im = ax.imshow( - np.abs(errors).T, - aspect="auto", - interpolation="nearest", - origin="lower", - extent=( - benchmark.temporal_bins[0], - benchmark.temporal_bins[-1], - benchmark.spatial_bins[0], - benchmark.spatial_bins[-1], - ), - ) - fig.colorbar(im, ax=ax, label="error") - ax.set_ylabel("depth (um)") - - ax.set_title(benchmark.title) - if lim is not None: - im.set_clim(0, lim) - - axes[-1].set_xlabel("time (s)") - - return fig - - -def plot_motions_several_benchmarks(benchmarks): - fig, ax = plt.subplots(figsize=(15, 5)) - - ax.plot(list(benchmarks)[0].temporal_bins, list(benchmarks)[0].gt_motion[:, 0], lw=2, c="k", label="real motion") - for count, benchmark in enumerate(benchmarks): - ax.plot(benchmark.temporal_bins, benchmark.motion.mean(1), lw=1, c=f"C{count}", label=benchmark.title) - ax.fill_between( - benchmark.temporal_bins, - benchmark.motion.mean(1) - benchmark.motion.std(1), - benchmark.motion.mean(1) + benchmark.motion.std(1), - color=f"C{count}", - alpha=0.25, - ) - - # ax.legend() - ax.set_ylabel("depth (um)") - ax.set_xlabel("time (s)") - _simpleaxis(ax) - - -def plot_speed_several_benchmarks(benchmarks, detailed=True, ax=None, colors=None): - if ax is None: - fig, ax = plt.subplots(figsize=(5, 5)) - - for count, benchmark in enumerate(benchmarks): - color = colors[count] if colors is not None else None - - if detailed: - bottom = 0 - i = 0 - patterns = ["/", "\\", "|", "*"] - for key, value in benchmark.run_times.items(): - if count == 0: - label = key.replace("_", " ") - else: - label = None - ax.bar([count], [value], label=label, bottom=bottom, color=color, edgecolor="black", hatch=patterns[i]) - bottom += value - i += 1 - else: - total_run_time = np.sum([value for key, value in benchmark.run_times.items()]) - ax.bar([count], [total_run_time], color=color, edgecolor="black") - - # ax.legend() - ax.set_ylabel("speed (s)") - _simpleaxis(ax) - ax.set_xticks([]) - # ax.set_xticks(np.arange(len(benchmarks)), [i.title for i in benchmarks]) + ax2.axvline(probe_y_min, color="k", ls="--", alpha=0.5) + ax2.axvline(probe_y_max, color="k", ls="--", alpha=0.5) + + _simpleaxis(ax2) + + # ax1.sharey(ax0) + # ax2.sharey(ax0) + + +# class BenchmarkMotionEstimationMearec(BenchmarkBase): +# _array_names = ( +# "noise_levels", +# "gt_unit_positions", +# "peaks", +# "selected_peaks", +# "motion", +# "temporal_bins", +# "spatial_bins", +# "peak_locations", +# "gt_motion", +# ) + +# def __init__( +# self, +# mearec_filename, +# title="", +# detect_kwargs={}, +# select_kwargs=None, +# localize_kwargs={}, +# estimate_motion_kwargs={}, +# folder=None, +# do_preprocessing=True, +# job_kwargs={"chunk_duration": "1s", "n_jobs": -1, "progress_bar": True, "verbose": True}, +# overwrite=False, +# parent_benchmark=None, +# ): +# BenchmarkBase.__init__( +# self, folder=folder, title=title, overwrite=overwrite, job_kwargs=job_kwargs, parent_benchmark=None +# ) + +# self._args.extend([str(mearec_filename)]) + +# self.mearec_filename = mearec_filename +# self.raw_recording, self.gt_sorting = read_mearec(self.mearec_filename) +# self.do_preprocessing = do_preprocessing + +# self._recording = None +# self.detect_kwargs = detect_kwargs.copy() +# self.select_kwargs = select_kwargs.copy() if select_kwargs is not None else None +# self.localize_kwargs = localize_kwargs.copy() +# self.estimate_motion_kwargs = estimate_motion_kwargs.copy() + +# self._kwargs.update( +# dict( +# detect_kwargs=self.detect_kwargs, +# select_kwargs=self.select_kwargs, +# localize_kwargs=self.localize_kwargs, +# estimate_motion_kwargs=self.estimate_motion_kwargs, +# ) +# ) + +# @property +# def recording(self): +# if self._recording is None: +# if self.do_preprocessing: +# self._recording = bandpass_filter(self.raw_recording) +# self._recording = common_reference(self._recording) +# self._recording = zscore(self._recording) +# else: +# self._recording = self.raw_recording +# return self._recording + +# def run(self): +# if self.folder is not None: +# if self.folder.exists() and not self.overwrite: +# raise ValueError(f"The folder {self.folder} is not empty") + +# self.noise_levels = get_noise_levels(self.recording, return_scaled=False) + +# t0 = time.perf_counter() +# self.peaks = detect_peaks( +# self.recording, noise_levels=self.noise_levels, **self.detect_kwargs, **self.job_kwargs +# ) +# t1 = time.perf_counter() +# if self.select_kwargs is not None: +# self.selected_peaks = select_peaks(self.peaks, **self.select_kwargs, **self.job_kwargs) +# else: +# self.selected_peaks = self.peaks +# t2 = time.perf_counter() +# self.peak_locations = localize_peaks( +# self.recording, self.selected_peaks, **self.localize_kwargs, **self.job_kwargs +# ) +# t3 = time.perf_counter() +# self.motion, self.temporal_bins, self.spatial_bins = estimate_motion( +# self.recording, self.selected_peaks, self.peak_locations, **self.estimate_motion_kwargs +# ) + +# t4 = time.perf_counter() + +# self.run_times = dict( +# detect_peaks=t1 - t0, +# select_peaks=t2 - t1, +# localize_peaks=t3 - t2, +# estimate_motion=t4 - t3, +# ) + +# self.compute_gt_motion() + +# # align globally gt_motion and motion to avoid offsets +# self.motion += np.median(self.gt_motion - self.motion) + +# ## save folder +# if self.folder is not None: +# self.save_to_folder() + +# def run_estimate_motion(self): +# # usefull to re run only the motion estimate with peak localization +# t3 = time.perf_counter() +# self.motion, self.temporal_bins, self.spatial_bins = estimate_motion( +# self.recording, self.selected_peaks, self.peak_locations, **self.estimate_motion_kwargs +# ) +# t4 = time.perf_counter() + +# self.compute_gt_motion() + +# # align globally gt_motion and motion to avoid offsets +# self.motion += np.median(self.gt_motion - self.motion) +# self.run_times["estimate_motion"] = t4 - t3 + +# ## save folder +# if self.folder is not None: +# self.save_to_folder() + +# def compute_gt_motion(self): +# self.gt_unit_positions, _ = mr.extract_units_drift_vector(self.mearec_filename, time_vector=self.temporal_bins) + +# template_locations = np.array(mr.load_recordings(self.mearec_filename).template_locations) +# assert len(template_locations.shape) == 3 +# mid = template_locations.shape[1] // 2 +# unit_mid_positions = template_locations[:, mid, 2] + +# unit_motions = self.gt_unit_positions - unit_mid_positions +# # unit_positions = np.mean(self.gt_unit_positions, axis=0) + +# if self.spatial_bins is None: +# self.gt_motion = np.mean(unit_motions, axis=1)[:, None] +# channel_positions = self.recording.get_channel_locations() +# probe_y_min, probe_y_max = channel_positions[:, 1].min(), channel_positions[:, 1].max() +# center = (probe_y_min + probe_y_max) // 2 +# self.spatial_bins = np.array([center]) +# else: +# # time, units +# self.gt_motion = np.zeros_like(self.motion) +# for t in range(self.gt_unit_positions.shape[0]): +# f = scipy.interpolate.interp1d(unit_mid_positions, unit_motions[t, :], fill_value="extrapolate") +# self.gt_motion[t, :] = f(self.spatial_bins) + +# def plot_true_drift(self, scaling_probe=1.5, figsize=(15, 10), axes=None): +# if axes is None: +# fig = plt.figure(figsize=figsize) +# gs = fig.add_gridspec(1, 8, wspace=0) + +# if axes is None: +# ax = fig.add_subplot(gs[:2]) +# else: +# ax = axes[0] +# plot_probe_map(self.recording, ax=ax) +# _simpleaxis(ax) + +# mr_recording = mr.load_recordings(self.mearec_filename) + +# for loc in mr_recording.template_locations[::2]: +# if len(mr_recording.template_locations.shape) == 3: +# ax.plot([loc[0, 1], loc[-1, 1]], [loc[0, 2], loc[-1, 2]], alpha=0.7, lw=2) +# else: +# ax.scatter([loc[1]], [loc[2]], alpha=0.7, s=100) + +# # ymin, ymax = ax.get_ylim() +# ax.set_ylabel("depth (um)") +# ax.set_xlabel(None) +# # ax.set_yticks(np.arange(-600,600,100), np.arange(-600,600,100)) + +# # ax.set_ylim(scaling_probe*probe_y_min, scaling_probe*probe_y_max) +# if axes is None: +# ax = fig.add_subplot(gs[2:7]) +# else: +# ax = axes[1] + +# for i in range(self.gt_unit_positions.shape[1]): +# ax.plot(self.temporal_bins, self.gt_unit_positions[:, i], alpha=0.5, ls="--", c="0.5") + +# for i in range(self.gt_motion.shape[1]): +# depth = self.spatial_bins[i] +# ax.plot(self.temporal_bins, self.gt_motion[:, i] + depth, color="green", lw=4) + +# # ax.set_ylim(ymin, ymax) +# ax.set_xlabel("time (s)") +# _simpleaxis(ax) +# ax.set_yticks([]) +# ax.spines["left"].set_visible(False) + +# channel_positions = self.recording.get_channel_locations() +# probe_y_min, probe_y_max = channel_positions[:, 1].min(), channel_positions[:, 1].max() +# ax.set_ylim(scaling_probe * probe_y_min, scaling_probe * probe_y_max) + +# ax.axhline(probe_y_min, color="k", ls="--", alpha=0.5) +# ax.axhline(probe_y_max, color="k", ls="--", alpha=0.5) + +# if axes is None: +# ax = fig.add_subplot(gs[7]) +# else: +# ax = axes[2] +# # plot_probe_map(self.recording, ax=ax) +# _simpleaxis(ax) + +# ax.hist(self.gt_unit_positions[30, :], 50, orientation="horizontal", color="0.5") +# ax.set_yticks([]) +# ax.set_xlabel("# neurons") + +# def plot_peaks_probe(self, alpha=0.05, figsize=(15, 10)): +# fig, axs = plt.subplots(ncols=2, sharey=True, figsize=figsize) +# ax = axs[0] +# plot_probe_map(self.recording, ax=ax) +# ax.scatter(self.peak_locations["x"], self.peak_locations["y"], color="k", s=1, alpha=alpha) +# ax.set_xlabel("x") +# ax.set_ylabel("y") +# if "z" in self.peak_locations.dtype.fields: +# ax = axs[1] +# ax.scatter(self.peak_locations["z"], self.peak_locations["y"], color="k", s=1, alpha=alpha) +# ax.set_xlabel("z") +# ax.set_xlim(0, 100) + +# def plot_peaks(self, scaling_probe=1.5, show_drift=True, show_histogram=True, alpha=0.05, figsize=(15, 10)): +# fig = plt.figure(figsize=figsize) +# if show_histogram: +# gs = fig.add_gridspec(1, 4) +# else: +# gs = fig.add_gridspec(1, 3) +# # Create the Axes. + +# ax0 = fig.add_subplot(gs[0]) +# plot_probe_map(self.recording, ax=ax0) +# _simpleaxis(ax0) + +# # ymin, ymax = ax.get_ylim() +# ax0.set_ylabel("depth (um)") +# ax0.set_xlabel(None) + +# ax = ax1 = fig.add_subplot(gs[1:3]) +# x = self.selected_peaks["sample_index"] / self.recording.get_sampling_frequency() +# y = self.peak_locations["y"] +# ax.scatter(x, y, s=1, color="k", alpha=alpha) + +# ax.set_title(self.title) +# # xmin, xmax = ax.get_xlim() +# # ax.plot([xmin, xmax], [probe_y_min, probe_y_min], 'k--', alpha=0.5) +# # ax.plot([xmin, xmax], [probe_y_max, probe_y_max], 'k--', alpha=0.5) + +# _simpleaxis(ax) +# # ax.set_yticks([]) +# # ax.set_ylim(scaling_probe*probe_y_min, scaling_probe*probe_y_max) +# ax.spines["left"].set_visible(False) +# ax.set_xlabel("time (s)") + +# channel_positions = self.recording.get_channel_locations() +# probe_y_min, probe_y_max = channel_positions[:, 1].min(), channel_positions[:, 1].max() +# ax.set_ylim(scaling_probe * probe_y_min, scaling_probe * probe_y_max) + +# ax.axhline(probe_y_min, color="k", ls="--", alpha=0.5) +# ax.axhline(probe_y_max, color="k", ls="--", alpha=0.5) + +# if show_drift: +# if self.spatial_bins is None: +# center = (probe_y_min + probe_y_max) // 2 +# ax.plot(self.temporal_bins, self.gt_motion[:, 0] + center, color="green", lw=1.5) +# ax.plot(self.temporal_bins, self.motion[:, 0] + center, color="orange", lw=1.5) +# else: +# for i in range(self.gt_motion.shape[1]): +# depth = self.spatial_bins[i] +# ax.plot(self.temporal_bins, self.gt_motion[:, i] + depth, color="green", lw=1.5) +# ax.plot(self.temporal_bins, self.motion[:, i] + depth, color="orange", lw=1.5) + +# if show_histogram: +# ax2 = fig.add_subplot(gs[3]) +# ax2.hist(self.peak_locations["y"], bins=1000, orientation="horizontal") + +# ax2.axhline(probe_y_min, color="k", ls="--", alpha=0.5) +# ax2.axhline(probe_y_max, color="k", ls="--", alpha=0.5) + +# ax2.set_xlabel("density") +# _simpleaxis(ax2) +# # ax.set_ylabel('') +# ax.set_yticks([]) +# ax2.sharey(ax0) + +# ax1.sharey(ax0) + +# def plot_motion_corrected_peaks(self, scaling_probe=1.5, alpha=0.05, figsize=(15, 10), show_probe=True, axes=None): +# if axes is None: +# fig = plt.figure(figsize=figsize) +# if show_probe: +# gs = fig.add_gridspec(1, 5) +# else: +# gs = fig.add_gridspec(1, 4) +# # Create the Axes. + +# if show_probe: +# if axes is None: +# ax0 = ax = fig.add_subplot(gs[0]) +# else: +# ax0 = ax = axes[0] +# plot_probe_map(self.recording, ax=ax) +# _simpleaxis(ax) + +# ymin, ymax = ax.get_ylim() +# ax.set_ylabel("depth (um)") +# ax.set_xlabel(None) + +# channel_positions = self.recording.get_channel_locations() +# probe_y_min, probe_y_max = channel_positions[:, 1].min(), channel_positions[:, 1].max() + +# peak_locations_corrected = correct_motion_on_peaks( +# self.selected_peaks, +# self.peak_locations, +# self.recording.sampling_frequency, +# self.motion, +# self.temporal_bins, +# self.spatial_bins, +# direction="y", +# ) +# if axes is None: +# if show_probe: +# ax1 = ax = fig.add_subplot(gs[1:3]) +# else: +# ax1 = ax = fig.add_subplot(gs[0:2]) +# else: +# if show_probe: +# ax1 = ax = axes[1] +# else: +# ax1 = ax = axes[0] + +# _simpleaxis(ax) + +# x = self.selected_peaks["sample_index"] / self.recording.get_sampling_frequency() +# y = self.peak_locations["y"] +# ax.scatter(x, y, s=1, color="k", alpha=alpha) +# ax.set_title(self.title) + +# ax.axhline(probe_y_min, color="k", ls="--", alpha=0.5) +# ax.axhline(probe_y_max, color="k", ls="--", alpha=0.5) + +# ax.set_xlabel("time (s)") + +# if axes is None: +# if show_probe: +# ax2 = ax = fig.add_subplot(gs[3:5]) +# else: +# ax2 = ax = fig.add_subplot(gs[2:4]) +# else: +# if show_probe: +# ax2 = ax = axes[2] +# else: +# ax2 = ax = axes[1] + +# _simpleaxis(ax) +# y = peak_locations_corrected["y"] +# ax.scatter(x, y, s=1, color="k", alpha=alpha) + +# ax.axhline(probe_y_min, color="k", ls="--", alpha=0.5) +# ax.axhline(probe_y_max, color="k", ls="--", alpha=0.5) + +# ax.set_xlabel("time (s)") + +# if show_probe: +# ax0.set_ylim(scaling_probe * probe_y_min, scaling_probe * probe_y_max) +# ax1.sharey(ax0) +# ax2.sharey(ax0) +# else: +# ax1.set_ylim(scaling_probe * probe_y_min, scaling_probe * probe_y_max) +# ax2.sharey(ax1) + +# def estimation_vs_depth(self, show_only=8, figsize=(15, 10)): +# fig, axs = plt.subplots(ncols=2, figsize=figsize, sharey=True) + +# n = self.motion.shape[1] +# step = int(np.ceil(max(1, n / show_only))) +# colors = plt.cm.get_cmap("jet", n) +# for i in range(0, n, step): +# ax = axs[0] +# ax.plot(self.temporal_bins, self.gt_motion[:, i], lw=1.5, ls="--", color=colors(i)) +# ax.plot( +# self.temporal_bins, +# self.motion[:, i], +# lw=1.5, +# ls="-", +# color=colors(i), +# label=f"{self.spatial_bins[i]:0.1f}", +# ) + +# ax = axs[1] +# ax.plot(self.temporal_bins, self.motion[:, i] - self.gt_motion[:, i], lw=1.5, ls="-", color=colors(i)) + +# ax = axs[0] +# ax.set_title(self.title) +# ax.legend() +# ax.set_ylabel("drift estimated and GT(um)") +# ax.set_xlabel("time (s)") +# _simpleaxis(ax) + +# ax = axs[1] +# ax.set_ylabel("error (um)") +# ax.set_xlabel("time (s)") +# _simpleaxis(ax) + +# def view_errors(self, figsize=(15, 10), lim=None): +# fig = plt.figure(figsize=figsize) +# gs = fig.add_gridspec(2, 2) + +# errors = self.gt_motion - self.motion + +# channel_positions = self.recording.get_channel_locations() +# probe_y_min, probe_y_max = channel_positions[:, 1].min(), channel_positions[:, 1].max() + +# ax = fig.add_subplot(gs[0, :]) +# im = ax.imshow( +# np.abs(errors).T, +# aspect="auto", +# interpolation="nearest", +# origin="lower", +# extent=(self.temporal_bins[0], self.temporal_bins[-1], self.spatial_bins[0], self.spatial_bins[-1]), +# ) +# plt.colorbar(im, ax=ax, label="error") +# ax.set_ylabel("depth (um)") +# ax.set_xlabel("time (s)") +# ax.set_title(self.title) +# if lim is not None: +# im.set_clim(0, lim) + +# ax = fig.add_subplot(gs[1, 0]) +# mean_error = np.sqrt(np.mean((errors) ** 2, axis=1)) +# ax.plot(self.temporal_bins, mean_error) +# ax.set_xlabel("time (s)") +# ax.set_ylabel("error") +# _simpleaxis(ax) +# if lim is not None: +# ax.set_ylim(0, lim) + +# ax = fig.add_subplot(gs[1, 1]) +# depth_error = np.sqrt(np.mean((errors) ** 2, axis=0)) +# ax.plot(self.spatial_bins, depth_error) +# ax.axvline(probe_y_min, color="k", ls="--", alpha=0.5) +# ax.axvline(probe_y_max, color="k", ls="--", alpha=0.5) +# ax.set_xlabel("depth (um)") +# ax.set_ylabel("error") +# _simpleaxis(ax) +# if lim is not None: +# ax.set_ylim(0, lim) + +# return fig + + +# def plot_errors_several_benchmarks(benchmarks, axes=None, show_legend=True, colors=None): +# if axes is None: +# fig, axes = plt.subplots(1, 3, figsize=(15, 5)) + +# for count, benchmark in enumerate(benchmarks): +# c = colors[count] if colors is not None else None +# errors = benchmark.gt_motion - benchmark.motion +# mean_error = np.sqrt(np.mean((errors) ** 2, axis=1)) +# depth_error = np.sqrt(np.mean((errors) ** 2, axis=0)) + +# axes[0].plot(benchmark.temporal_bins, mean_error, lw=1, label=benchmark.title, color=c) +# parts = axes[1].violinplot(mean_error, [count], showmeans=True) +# if c is not None: +# for pc in parts["bodies"]: +# pc.set_facecolor(c) +# pc.set_edgecolor(c) +# for k in parts: +# if k != "bodies": +# # for line in parts[k]: +# parts[k].set_color(c) +# axes[2].plot(benchmark.spatial_bins, depth_error, label=benchmark.title, color=c) + +# ax0 = ax = axes[0] +# ax.set_xlabel("Time [s]") +# ax.set_ylabel("Error [μm]") +# if show_legend: +# ax.legend() +# _simpleaxis(ax) + +# ax1 = axes[1] +# # ax.set_ylabel('error') +# ax1.set_yticks([]) +# ax1.set_xticks([]) +# _simpleaxis(ax1) + +# ax2 = axes[2] +# ax2.set_yticks([]) +# ax2.set_xlabel("Depth [μm]") +# # ax.set_ylabel('error') +# channel_positions = benchmark.recording.get_channel_locations() +# probe_y_min, probe_y_max = channel_positions[:, 1].min(), channel_positions[:, 1].max() +# ax2.axvline(probe_y_min, color="k", ls="--", alpha=0.5) +# ax2.axvline(probe_y_max, color="k", ls="--", alpha=0.5) + +# _simpleaxis(ax2) + +# # ax1.sharey(ax0) +# # ax2.sharey(ax0) + + +# def plot_error_map_several_benchmarks(benchmarks, axes=None, lim=15, figsize=(10, 10)): +# if axes is None: +# fig, axes = plt.subplots(nrows=len(benchmarks), sharex=True, sharey=True, figsize=figsize) +# else: +# fig = axes[0].figure + +# for count, benchmark in enumerate(benchmarks): +# errors = benchmark.gt_motion - benchmark.motion + +# channel_positions = benchmark.recording.get_channel_locations() +# probe_y_min, probe_y_max = channel_positions[:, 1].min(), channel_positions[:, 1].max() + +# ax = axes[count] +# im = ax.imshow( +# np.abs(errors).T, +# aspect="auto", +# interpolation="nearest", +# origin="lower", +# extent=( +# benchmark.temporal_bins[0], +# benchmark.temporal_bins[-1], +# benchmark.spatial_bins[0], +# benchmark.spatial_bins[-1], +# ), +# ) +# fig.colorbar(im, ax=ax, label="error") +# ax.set_ylabel("depth (um)") + +# ax.set_title(benchmark.title) +# if lim is not None: +# im.set_clim(0, lim) + +# axes[-1].set_xlabel("time (s)") + +# return fig + + +# def plot_motions_several_benchmarks(benchmarks): +# fig, ax = plt.subplots(figsize=(15, 5)) + +# ax.plot(list(benchmarks)[0].temporal_bins, list(benchmarks)[0].gt_motion[:, 0], lw=2, c="k", label="real motion") +# for count, benchmark in enumerate(benchmarks): +# ax.plot(benchmark.temporal_bins, benchmark.motion.mean(1), lw=1, c=f"C{count}", label=benchmark.title) +# ax.fill_between( +# benchmark.temporal_bins, +# benchmark.motion.mean(1) - benchmark.motion.std(1), +# benchmark.motion.mean(1) + benchmark.motion.std(1), +# color=f"C{count}", +# alpha=0.25, +# ) + +# # ax.legend() +# ax.set_ylabel("depth (um)") +# ax.set_xlabel("time (s)") +# _simpleaxis(ax) + + +# def plot_speed_several_benchmarks(benchmarks, detailed=True, ax=None, colors=None): +# if ax is None: +# fig, ax = plt.subplots(figsize=(5, 5)) + +# for count, benchmark in enumerate(benchmarks): +# color = colors[count] if colors is not None else None + +# if detailed: +# bottom = 0 +# i = 0 +# patterns = ["/", "\\", "|", "*"] +# for key, value in benchmark.run_times.items(): +# if count == 0: +# label = key.replace("_", " ") +# else: +# label = None +# ax.bar([count], [value], label=label, bottom=bottom, color=color, edgecolor="black", hatch=patterns[i]) +# bottom += value +# i += 1 +# else: +# total_run_time = np.sum([value for key, value in benchmark.run_times.items()]) +# ax.bar([count], [total_run_time], color=color, edgecolor="black") + +# # ax.legend() +# ax.set_ylabel("speed (s)") +# _simpleaxis(ax) +# ax.set_xticks([]) +# # ax.set_xticks(np.arange(len(benchmarks)), [i.title for i in benchmarks]) diff --git a/src/spikeinterface/sortingcomponents/benchmark/benchmark_motion_interpolation.py b/src/spikeinterface/sortingcomponents/benchmark/benchmark_motion_interpolation.py index 61ad457217..af45f7421f 100644 --- a/src/spikeinterface/sortingcomponents/benchmark/benchmark_motion_interpolation.py +++ b/src/spikeinterface/sortingcomponents/benchmark/benchmark_motion_interpolation.py @@ -6,311 +6,140 @@ from pathlib import Path import shutil -from spikeinterface.core import extract_waveforms, precompute_sparsity, WaveformExtractor - -from spikeinterface.extractors import read_mearec -from spikeinterface.preprocessing import bandpass_filter, zscore, common_reference, scale, highpass_filter, whiten from spikeinterface.sorters import run_sorter, read_sorter_folder from spikeinterface.comparison import GroundTruthComparison from spikeinterface.sortingcomponents.motion_interpolation import InterpolateMotionRecording -from spikeinterface.sortingcomponents.benchmark.benchmark_tools import BenchmarkBase, _simpleaxis -from spikeinterface.qualitymetrics import compute_quality_metrics -from spikeinterface.widgets import plot_sorting_performance -from spikeinterface.qualitymetrics import compute_quality_metrics from spikeinterface.curation import MergeUnitsSorting -from spikeinterface.core import get_template_extremum_channel - -import sklearn -import matplotlib.pyplot as plt -import MEArec as mr +from spikeinterface.sortingcomponents.benchmark.benchmark_tools import Benchmark, BenchmarkStudy, _simpleaxis -class BenchmarkMotionInterpolationMearec(BenchmarkBase): - _array_names = ("gt_motion", "estimated_motion", "temporal_bins", "spatial_bins") - _waveform_names = ("static", "drifting", "corrected_gt", "corrected_estimated") - _sorting_names = () +import matplotlib.pyplot as plt - _array_names_from_parent = () - _waveform_names_from_parent = ("static", "drifting") - _sorting_names_from_parent = ("static", "drifting") +class MotionInterpolationBenchmark(Benchmark): def __init__( self, - mearec_filename_drifting, - mearec_filename_static, - gt_motion, - estimated_motion, + static_recording, + gt_sorting, + params, + sorter_folder, + drifting_recording, + motion, temporal_bins, spatial_bins, - do_preprocessing=True, - correct_motion_kwargs={}, - waveforms_kwargs=dict( - ms_before=1.0, - ms_after=3.0, - max_spikes_per_unit=500, - ), - sparse_kwargs=dict( - method="radius", - radius_um=100.0, - ), - sorter_cases={}, - folder=None, - title="", - job_kwargs={"chunk_duration": "1s", "n_jobs": -1, "progress_bar": True, "verbose": True}, - overwrite=False, - delete_output_folder=True, - parent_benchmark=None, ): - BenchmarkBase.__init__( - self, - folder=folder, - title=title, - overwrite=overwrite, - job_kwargs=job_kwargs, - parent_benchmark=parent_benchmark, - ) - - self._args.extend([str(mearec_filename_drifting), str(mearec_filename_static), None, None, None, None]) - - self.sorter_cases = sorter_cases.copy() - self.mearec_filenames = {} - self.keys = ["static", "drifting", "corrected_gt", "corrected_estimated"] - self.mearec_filenames["drifting"] = mearec_filename_drifting - self.mearec_filenames["static"] = mearec_filename_static - + Benchmark.__init__(self) + self.static_recording = static_recording + self.gt_sorting = gt_sorting + self.params = params + + self.sorter_folder = sorter_folder + self.drifting_recording = drifting_recording + self.motion = motion self.temporal_bins = temporal_bins self.spatial_bins = spatial_bins - self.gt_motion = gt_motion - self.estimated_motion = estimated_motion - self.do_preprocessing = do_preprocessing - self.delete_output_folder = delete_output_folder - - self._recordings = None - _, self.sorting_gt = read_mearec(self.mearec_filenames["static"]) - - self.correct_motion_kwargs = correct_motion_kwargs.copy() - self.sparse_kwargs = sparse_kwargs.copy() - self.waveforms_kwargs = waveforms_kwargs.copy() - self.comparisons = {} - self.accuracies = {} - - self._kwargs.update( - dict( - correct_motion_kwargs=self.correct_motion_kwargs, - sorter_cases=self.sorter_cases, - do_preprocessing=do_preprocessing, - delete_output_folder=delete_output_folder, - waveforms_kwargs=waveforms_kwargs, - sparse_kwargs=sparse_kwargs, - ) - ) - @property - def recordings(self): - if self._recordings is None: - self._recordings = {} - - for key in ( - "drifting", - "static", - ): - rec, _ = read_mearec(self.mearec_filenames[key]) - self._recordings["raw_" + key] = rec - - if self.do_preprocessing: - # this processing chain is the same as the kilosort2.5 - # this is important if we want to skip the kilosort preprocessing - # * all computation are done in float32 - # * 150um is more or less 30 channels for the whittening - # * the lastet gain step is super important it is what KS2.5 is doing because the whiten traces - # have magnitude around 1 so a factor (200) is needed to go back to int16 - rec = common_reference(rec, dtype="float32") - rec = highpass_filter(rec, freq_min=150.0) - rec = whiten(rec, mode="local", radius_um=150.0, num_chunks_per_segment=40, chunk_size=32000) - rec = scale(rec, gain=200, dtype="int16") - self._recordings[key] = rec - - rec = self._recordings["drifting"] - self._recordings["corrected_gt"] = InterpolateMotionRecording( - rec, self.gt_motion, self.temporal_bins, self.spatial_bins, **self.correct_motion_kwargs - ) + def run(self, **job_kwargs): - self._recordings["corrected_estimated"] = InterpolateMotionRecording( - rec, self.estimated_motion, self.temporal_bins, self.spatial_bins, **self.correct_motion_kwargs - ) - - return self._recordings - - def run(self): - self.extract_waveforms() - self.save_to_folder() - self.run_sorters() - self.save_to_folder() - - def extract_waveforms(self): - # the sparsity is estimated on the static recording and propagated to all of then - if self.parent_benchmark is None: - wf_kwargs = self.waveforms_kwargs.copy() - wf_kwargs.pop("max_spikes_per_unit", None) - sparsity = precompute_sparsity( - self.recordings["static"], - self.sorting_gt, - num_spikes_for_sparsity=200.0, - unit_batch_size=10000, - **wf_kwargs, - **self.sparse_kwargs, - **self.job_kwargs, + if self.params["recording_source"] == "static": + recording = self.static_recording + elif self.params["recording_source"] == "drifting": + recording = self.drifting_recording + elif self.params["recording_source"] == "corrected": + correct_motion_kwargs = self.params["correct_motion_kwargs"] + recording = InterpolateMotionRecording( + self.drifting_recording, self.motion, self.temporal_bins, self.spatial_bins, **correct_motion_kwargs ) else: - sparsity = self.waveforms["static"].sparsity - - for key in self.keys: - if self.parent_benchmark is not None and key in self._waveform_names_from_parent: - continue - - waveforms_folder = self.folder / "waveforms" / key - we = WaveformExtractor.create( - self.recordings[key], - self.sorting_gt, - waveforms_folder, - mode="folder", - sparsity=sparsity, - remove_if_exists=True, - ) - we.set_params(**self.waveforms_kwargs, return_scaled=True) - we.run_extract_waveforms(seed=22051977, **self.job_kwargs) - self.waveforms[key] = we - - def run_sorters(self, skip_already_done=True): - for case in self.sorter_cases: - label = case["label"] - print("run sorter", label) - sorter_name = case["sorter_name"] - sorter_params = case["sorter_params"] - recording = self.recordings[case["recording"]] - output_folder = self.folder / f"tmp_sortings_{label}" - if output_folder.exists() and skip_already_done: - print("already done") - sorting = read_sorter_folder(output_folder) - else: - sorting = run_sorter( - sorter_name, - recording, - output_folder, - **sorter_params, - delete_output_folder=self.delete_output_folder, - ) - self.sortings[label] = sorting - - def compute_distances_to_static(self, force=False): - if hasattr(self, "distances") and not force: - return self.distances - - self.distances = {} - - n = len(self.waveforms["static"].unit_ids) - - sparsity = self.waveforms["static"].sparsity - - ref_templates = self.waveforms["static"].get_all_templates() - - for key in self.keys: - if self.parent_benchmark is not None and key in ("drifting", "static"): - continue - - print(key) - dist = self.distances[key] = { - "std": np.zeros(n), - "norm_std": np.zeros(n), - "template_norm_distance": np.zeros(n), - "template_cosine": np.zeros(n), - } - - templates = self.waveforms[key].get_all_templates() - - extremum_channel = get_template_extremum_channel(self.waveforms["static"], outputs="index") - - for unit_ind, unit_id in enumerate(self.waveforms[key].sorting.unit_ids): - mask = sparsity.mask[unit_ind, :] - ref_template = ref_templates[unit_ind][:, mask] - template = templates[unit_ind][:, mask] - - max_chan = extremum_channel[unit_id] - max_chan - - max_chan_sparse = list(np.nonzero(mask)[0]).index(max_chan) - - # this is already sparse - wfs = self.waveforms[key].get_waveforms(unit_id) - ref_wfs = self.waveforms["static"].get_waveforms(unit_id) - - rms = np.sqrt(np.mean(template**2)) - ref_rms = np.sqrt(np.mean(ref_template**2)) - if rms == 0: - print(key, unit_id, unit_ind, rms, ref_rms) - - dist["std"][unit_ind] = np.mean(np.std(wfs, axis=0), axis=(0, 1)) - dist["norm_std"][unit_ind] = np.mean(np.std(wfs, axis=0), axis=(0, 1)) / rms - dist["template_norm_distance"][unit_ind] = np.sum((ref_template - template) ** 2) / ref_rms - dist["template_cosine"][unit_ind] = sklearn.metrics.pairwise.cosine_similarity( - ref_template.reshape(1, -1), template.reshape(1, -1) - )[0] - - return self.distances - - def compute_residuals(self, force=True): - fr = int(self.recordings["static"].get_sampling_frequency()) - duration = int(self.recordings["static"].get_total_duration()) - - t_start = 0 - t_stop = duration - - if hasattr(self, "residuals") and not force: - return self.residuals, (t_start, t_stop) - - self.residuals = {} - - for key in ["corrected"]: - difference = ResidualRecording(self.recordings["static"], self.recordings[key]) - self.residuals[key] = np.zeros((self.recordings["static"].get_num_channels(), 0)) - - for i in np.arange(t_start * fr, t_stop * fr, fr): - data = np.linalg.norm(difference.get_traces(start_frame=i, end_frame=i + fr), axis=0) / np.sqrt(fr) - self.residuals[key] = np.hstack((self.residuals[key], data[:, np.newaxis])) - - return self.residuals, (t_start, t_stop) + raise ValueError("recording_source") + + sorter_name = self.params["sorter_name"] + sorter_params = self.params["sorter_params"] + sorting = run_sorter( + sorter_name, + recording, + output_folder=self.sorter_folder, + **sorter_params, + delete_output_folder=False, + ) - def compute_accuracies(self): - for case in self.sorter_cases: - label = case["label"] - sorting = self.sortings[label] - if label not in self.comparisons: - comp = GroundTruthComparison(self.sorting_gt, sorting, exhaustive_gt=True) - self.comparisons[label] = comp - self.accuracies[label] = comp.get_performance()["accuracy"].values + self.result["sorting"] = sorting + + def compute_result(self, exhaustive_gt=True, merging_score=0.2): + sorting = self.result["sorting"] + # self.result[""] = + comparison = GroundTruthComparison(self.gt_sorting, sorting, exhaustive_gt=exhaustive_gt) + self.result["comparison"] = comparison + self.result["accuracy"] = comparison.get_performance()["accuracy"].values.astype("float32") + + gt_unit_ids = self.gt_sorting.unit_ids + unit_ids = sorting.unit_ids + + # find best merges + scores = comparison.agreement_scores + to_merge = [] + for gt_unit_id in gt_unit_ids: + (inds,) = np.nonzero(scores.loc[gt_unit_id, :].values > merging_score) + merge_ids = unit_ids[inds] + if merge_ids.size > 1: + to_merge.append(list(merge_ids)) + + merged_sporting = MergeUnitsSorting(sorting, to_merge) + comparison_merged = GroundTruthComparison(self.gt_sorting, merged_sporting, exhaustive_gt=True) + + self.result["comparison_merged"] = comparison_merged + self.result["accuracy_merged"] = comparison_merged.get_performance()["accuracy"].values.astype("float32") + + _run_key_saved = [ + ("sorting", "sorting"), + ] + _result_key_saved = [ + ("comparison", "pickle"), + ("accuracy", "npy"), + ("comparison_merged", "pickle"), + ("accuracy_merged", "npy"), + ] + + +class MotionInterpolationStudy(BenchmarkStudy): + + benchmark_class = MotionInterpolationBenchmark + + def create_benchmark(self, key): + dataset_key = self.cases[key]["dataset"] + recording, gt_sorting = self.datasets[dataset_key] + params = self.cases[key]["params"] + init_kwargs = self.cases[key]["init_kwargs"] + sorter_folder = self.folder / "sorters" / self.key_to_str(key) + sorter_folder.parent.mkdir(exist_ok=True) + benchmark = MotionInterpolationBenchmark( + recording, gt_sorting, params, sorter_folder=sorter_folder, **init_kwargs + ) + return benchmark - def _plot_accuracy( - self, accuracies, mode="ordered_accuracy", figsize=(15, 5), axes=None, ax=None, ls="-", legend=True, colors=None + def plot_sorting_accuracy( + self, + case_keys=None, + mode="ordered_accuracy", + legend=True, + colors=None, + mode_best_merge=False, + figsize=(10, 5), + ax=None, + axes=None, ): - if len(self.accuracies) != len(self.sorter_cases): - self.compute_accuracies() - n = len(self.sorter_cases) + if case_keys is None: + case_keys = list(self.cases.keys()) - if "depth" in mode: - # gt_unit_positions, _ = mr.extract_units_drift_vector(self.mearec_filenames['drifting'], time_vector=np.array([0., 1.])) - # unit_depth = gt_unit_positions[0, :] - - template_locations = np.array(mr.load_recordings(self.mearec_filenames["drifting"]).template_locations) - assert len(template_locations.shape) == 3 - mid = template_locations.shape[1] // 2 - unit_depth = template_locations[:, mid, 2] - - chan_locations = self.recordings["drifting"].get_channel_locations() + if not mode_best_merge: + ls = "-" + else: + ls = "--" if mode == "ordered_accuracy": if ax is None: @@ -319,14 +148,17 @@ def _plot_accuracy( fig = ax.figure order = None - for i, case in enumerate(self.sorter_cases): + for i, key in enumerate(case_keys): + result = self.get_result(key) + if not mode_best_merge: + accuracy = result["accuracy"] + else: + accuracy = result["accuracy_merged"] + label = self.cases[key]["label"] color = colors[i] if colors is not None else None - label = case["label"] - # comp = self.comparisons[label] - acc = accuracies[label] - order = np.argsort(acc)[::-1] - acc = acc[order] - ax.plot(acc, label=label, ls=ls, color=color) + order = np.argsort(accuracy)[::-1] + accuracy = accuracy[order] + ax.plot(accuracy, label=label, ls=ls, color=color) if legend: ax.legend() ax.set_ylabel("accuracy") @@ -334,22 +166,35 @@ def _plot_accuracy( elif mode == "depth_snr": if axes is None: - fig, axs = plt.subplots(nrows=n, figsize=figsize, sharey=True, sharex=True) + fig, axs = plt.subplots(nrows=len(case_keys), figsize=figsize, sharey=True, sharex=True) else: fig = axes[0].figure axs = axes - metrics = compute_quality_metrics(self.waveforms["static"], metric_names=["snr"], load_if_exists=True) - snr = metrics["snr"].values - - for i, case in enumerate(self.sorter_cases): + for i, key in enumerate(case_keys): ax = axs[i] - label = case["label"] - acc = accuracies[label] - - points = ax.scatter(unit_depth, snr, c=acc) + result = self.get_result(key) + if not mode_best_merge: + accuracy = result["accuracy"] + else: + accuracy = result["accuracy_merged"] + label = self.cases[key]["label"] + + analyzer = self.get_sorting_analyzer(key) + ext = analyzer.get_extension("unit_locations") + if ext is None: + ext = analyzer.compute("unit_locations") + unit_locations = ext.get_data() + unit_depth = unit_locations[:, 1] + + snr = analyzer.get_extension("quality_metrics").get_data()["snr"].values + + points = ax.scatter(unit_depth, snr, c=accuracy) points.set_clim(0.0, 1.0) ax.set_title(label) + + chan_locations = analyzer.get_channel_locations() + ax.axvline(np.min(chan_locations[:, 1]), ls="--", color="k") ax.axvline(np.max(chan_locations[:, 1]), ls="--", color="k") ax.set_ylabel("snr") @@ -361,13 +206,18 @@ def _plot_accuracy( elif mode == "snr": fig, ax = plt.subplots(figsize=figsize) - metrics = compute_quality_metrics(self.waveforms["static"], metric_names=["snr"], load_if_exists=True) - snr = metrics["snr"].values + for i, key in enumerate(case_keys): + result = self.get_result(key) + label = self.cases[key]["label"] + if not mode_best_merge: + accuracy = result["accuracy"] + else: + accuracy = result["accuracy_merged"] - for i, case in enumerate(self.sorter_cases): - label = case["label"] - acc = self.accuracies[label] - ax.scatter(snr, acc, label=label) + analyzer = self.get_sorting_analyzer(key) + snr = analyzer.get_extension("quality_metrics").get_data()["snr"].values + + ax.scatter(snr, accuracy, label=label) ax.set_xlabel("snr") ax.set_ylabel("accuracy") @@ -376,11 +226,25 @@ def _plot_accuracy( elif mode == "depth": fig, ax = plt.subplots(figsize=figsize) - for i, case in enumerate(self.sorter_cases): - label = case["label"] - acc = accuracies[label] + for i, key in enumerate(case_keys): + result = self.get_result(key) + label = self.cases[key]["label"] + if not mode_best_merge: + accuracy = result["accuracy"] + else: + accuracy = result["accuracy_merged"] + analyzer = self.get_sorting_analyzer(key) + + ext = analyzer.get_extension("unit_locations") + if ext is None: + ext = analyzer.compute("unit_locations") + unit_locations = ext.get_data() + unit_depth = unit_locations[:, 1] + + ax.scatter(unit_depth, accuracy, label=label) + + chan_locations = analyzer.get_channel_locations() - ax.scatter(unit_depth, acc, label=label) ax.axvline(np.min(chan_locations[:, 1]), ls="--", color="k") ax.axvline(np.max(chan_locations[:, 1]), ls="--", color="k") ax.legend() @@ -388,257 +252,3 @@ def _plot_accuracy( ax.set_ylabel("accuracy") return fig - - def plot_sortings_accuracy(self, **kwargs): - if len(self.accuracies) != len(self.sorter_cases): - self.compute_accuracies() - - return self._plot_accuracy(self.accuracies, ls="-", **kwargs) - - def plot_best_merges_accuracy(self, **kwargs): - return self._plot_accuracy(self.merged_accuracies, **kwargs, ls="--") - - def plot_sorting_units_categories(self): - if len(self.accuracies) != len(self.sorter_cases): - self.compute_accuracies() - - for i, case in enumerate(self.sorter_cases): - label = case["label"] - comp = self.comparisons[label] - count = comp.count_units_categories() - if i == 0: - df = pd.DataFrame(columns=count.index) - df.loc[label, :] = count - df.plot.bar() - - def find_best_merges(self, merging_score=0.2): - # this find best merges having the ground truth - - self.merged_sortings = {} - self.merged_comparisons = {} - self.merged_accuracies = {} - self.units_to_merge = {} - for i, case in enumerate(self.sorter_cases): - label = case["label"] - # print() - # print(label) - gt_unit_ids = self.sorting_gt.unit_ids - sorting = self.sortings[label] - unit_ids = sorting.unit_ids - - comp = self.comparisons[label] - scores = comp.agreement_scores - - to_merge = [] - for gt_unit_id in gt_unit_ids: - (inds,) = np.nonzero(scores.loc[gt_unit_id, :].values > merging_score) - merge_ids = unit_ids[inds] - if merge_ids.size > 1: - to_merge.append(list(merge_ids)) - - self.units_to_merge[label] = to_merge - merged_sporting = MergeUnitsSorting(sorting, to_merge) - comp_merged = GroundTruthComparison(self.sorting_gt, merged_sporting, exhaustive_gt=True) - - self.merged_sortings[label] = merged_sporting - self.merged_comparisons[label] = comp_merged - self.merged_accuracies[label] = comp_merged.get_performance()["accuracy"].values - - -def plot_distances_to_static(benchmarks, metric="cosine", figsize=(15, 10)): - fig = plt.figure(figsize=figsize) - gs = fig.add_gridspec(4, 2) - - ax = fig.add_subplot(gs[0:2, 0]) - for count, bench in enumerate(benchmarks): - distances = bench.compute_distances_to_static(force=False) - print(distances.keys()) - ax.scatter( - distances["drifting"][f"template_{metric}"], - distances["corrected"][f"template_{metric}"], - c=f"C{count}", - alpha=0.5, - label=bench.title, - ) - - ax.legend() - - xmin, xmax = ax.get_xlim() - ax.plot([xmin, xmax], [xmin, xmax], "k--") - _simpleaxis(ax) - if metric == "euclidean": - ax.set_xlabel(r"$\|drift - static\|_2$") - ax.set_ylabel(r"$\|corrected - static\|_2$") - elif metric == "cosine": - ax.set_xlabel(r"$cosine(drift, static)$") - ax.set_ylabel(r"$cosine(corrected, static)$") - - recgen = mr.load_recordings(benchmarks[0].mearec_filenames["static"]) - nb_templates, nb_versions, _ = recgen.template_locations.shape - template_positions = recgen.template_locations[:, nb_versions // 2, 1:3] - distances_to_center = template_positions[:, 1] - - ax_1 = fig.add_subplot(gs[0, 1]) - ax_2 = fig.add_subplot(gs[1, 1]) - ax_3 = fig.add_subplot(gs[2:, 1]) - ax_4 = fig.add_subplot(gs[2:, 0]) - - for count, bench in enumerate(benchmarks): - # results = bench._compute_snippets_variability(metric=metric, num_channels=num_channels) - distances = bench.compute_distances_to_static(force=False) - - m_differences = distances["corrected"][f"wf_{metric}_mean"] / distances["static"][f"wf_{metric}_mean"] - s_differences = distances["corrected"][f"wf_{metric}_std"] / distances["static"][f"wf_{metric}_std"] - - ax_3.bar([count], [m_differences.mean()], yerr=[m_differences.std()], color=f"C{count}") - ax_4.bar([count], [s_differences.mean()], yerr=[s_differences.std()], color=f"C{count}") - idx = np.argsort(distances_to_center) - ax_1.scatter(distances_to_center[idx], m_differences[idx], color=f"C{count}") - ax_2.scatter(distances_to_center[idx], s_differences[idx], color=f"C{count}") - - for a in [ax_1, ax_2, ax_3, ax_4]: - _simpleaxis(a) - - if metric == "euclidean": - ax_1.set_ylabel(r"$\Delta mean(\|~\|_2)$ (% static)") - ax_2.set_ylabel(r"$\Delta std(\|~\|_2)$ (% static)") - ax_3.set_ylabel(r"$\Delta mean(\|~\|_2)$ (% static)") - ax_4.set_ylabel(r"$\Delta std(\|~\|_2)$ (% static)") - elif metric == "cosine": - ax_1.set_ylabel(r"$\Delta mean(cosine)$ (% static)") - ax_2.set_ylabel(r"$\Delta std(cosine)$ (% static)") - ax_3.set_ylabel(r"$\Delta mean(cosine)$ (% static)") - ax_4.set_ylabel(r"$\Delta std(cosine)$ (% static)") - ax_3.set_xticks(np.arange(len(benchmarks)), [i.title for i in benchmarks]) - ax_4.set_xticks(np.arange(len(benchmarks)), [i.title for i in benchmarks]) - xmin, xmax = ax_3.get_xlim() - ax_3.plot([xmin, xmax], [1, 1], "k--") - ax_4.plot([xmin, xmax], [1, 1], "k--") - ax_1.set_xticks([]) - ax_2.set_xlabel("depth (um)") - - xmin, xmax = ax_1.get_xlim() - ax_1.plot([xmin, xmax], [1, 1], "k--") - ax_2.plot([xmin, xmax], [1, 1], "k--") - plt.tight_layout() - - -def plot_snr_decrease(benchmarks, figsize=(15, 10)): - fig, axes = plt.subplots(2, 2, figsize=figsize, squeeze=False) - - recgen = mr.load_recordings(benchmarks[0].mearec_filenames["static"]) - nb_templates, nb_versions, _ = recgen.template_locations.shape - template_positions = recgen.template_locations[:, nb_versions // 2, 1:3] - distances_to_center = template_positions[:, 1] - idx = np.argsort(distances_to_center) - _simpleaxis(axes[0, 0]) - - snr_static = compute_quality_metrics(benchmarks[0].waveforms["static"], metric_names=["snr"], load_if_exists=True) - snr_drifting = compute_quality_metrics( - benchmarks[0].waveforms["drifting"], metric_names=["snr"], load_if_exists=True - ) - - m = np.max(snr_static) - axes[0, 0].scatter(snr_static.values, snr_drifting.values, c="0.5") - axes[0, 0].plot([0, m], [0, m], color="k") - - axes[0, 0].set_ylabel("units SNR for drifting") - _simpleaxis(axes[0, 0]) - - axes[0, 1].plot(distances_to_center[idx], (snr_drifting.values / snr_static.values)[idx], c="0.5") - axes[0, 1].plot(distances_to_center[idx], np.ones(len(idx)), "k--") - _simpleaxis(axes[0, 1]) - axes[0, 1].set_xticks([]) - axes[0, 0].set_xticks([]) - - for count, bench in enumerate(benchmarks): - snr_corrected = compute_quality_metrics(bench.waveforms["corrected"], metric_names=["snr"], load_if_exists=True) - axes[1, 0].scatter(snr_static.values, snr_corrected.values, label=bench.title) - axes[1, 0].plot([0, m], [0, m], color="k") - - axes[1, 1].plot(distances_to_center[idx], (snr_corrected.values / snr_static.values)[idx], c=f"C{count}") - - axes[1, 0].set_xlabel("units SNR for static") - axes[1, 0].set_ylabel("units SNR for corrected") - axes[1, 1].plot(distances_to_center[idx], np.ones(len(idx)), "k--") - axes[1, 0].legend() - _simpleaxis(axes[1, 0]) - _simpleaxis(axes[1, 1]) - axes[1, 1].set_ylabel(r"$\Delta(SNR)$") - axes[0, 1].set_ylabel(r"$\Delta(SNR)$") - - axes[1, 1].set_xlabel("depth (um)") - - -def plot_residuals_comparisons(benchmarks): - fig, axes = plt.subplots(1, 3, figsize=(15, 5)) - for count, bench in enumerate(benchmarks): - residuals, (t_start, t_stop) = bench.compute_residuals(force=False) - time_axis = np.arange(t_start, t_stop) - axes[0].plot(time_axis, residuals["corrected"].mean(0), label=bench.title) - axes[0].legend() - axes[0].set_xlabel("time (s)") - axes[0].set_ylabel(r"$|S_{corrected} - S_{static}|$") - _simpleaxis(axes[0]) - - channel_positions = benchmarks[0].recordings["static"].get_channel_locations() - distances_to_center = channel_positions[:, 1] - idx = np.argsort(distances_to_center) - - for count, bench in enumerate(benchmarks): - residuals, (t_start, t_stop) = bench.compute_residuals(force=False) - time_axis = np.arange(t_start, t_stop) - axes[1].plot( - distances_to_center[idx], residuals["corrected"].mean(1)[idx], label=bench.title, lw=2, c=f"C{count}" - ) - axes[1].fill_between( - distances_to_center[idx], - residuals["corrected"].mean(1)[idx] - residuals["corrected"].std(1)[idx], - residuals["corrected"].mean(1)[idx] + residuals["corrected"].std(1)[idx], - color=f"C{count}", - alpha=0.25, - ) - axes[1].set_xlabel("depth (um)") - _simpleaxis(axes[1]) - - for count, bench in enumerate(benchmarks): - residuals, (t_start, t_stop) = bench.compute_residuals(force=False) - axes[2].bar([count], [residuals["corrected"].mean()], yerr=[residuals["corrected"].std()], color=f"C{count}") - - _simpleaxis(axes[2]) - axes[2].set_xticks(np.arange(len(benchmarks)), [i.title for i in benchmarks]) - - -from spikeinterface.preprocessing.basepreprocessor import BasePreprocessor, BasePreprocessorSegment - - -class ResidualRecording(BasePreprocessor): - name = "residual_recording" - - def __init__(self, recording_1, recording_2): - assert recording_1.get_num_segments() == recording_2.get_num_segments() - BasePreprocessor.__init__(self, recording_1) - - for parent_recording_segment_1, parent_recording_segment_2 in zip( - recording_1._recording_segments, recording_2._recording_segments - ): - rec_segment = DifferenceRecordingSegment(parent_recording_segment_1, parent_recording_segment_2) - self.add_recording_segment(rec_segment) - - self._kwargs = dict(recording_1=recording_1, recording_2=recording_2) - - -class DifferenceRecordingSegment(BasePreprocessorSegment): - def __init__(self, parent_recording_segment_1, parent_recording_segment_2): - BasePreprocessorSegment.__init__(self, parent_recording_segment_1) - self.parent_recording_segment_1 = parent_recording_segment_1 - self.parent_recording_segment_2 = parent_recording_segment_2 - - def get_traces(self, start_frame, end_frame, channel_indices): - traces_1 = self.parent_recording_segment_1.get_traces(start_frame, end_frame, channel_indices) - traces_2 = self.parent_recording_segment_2.get_traces(start_frame, end_frame, channel_indices) - - return traces_2 - traces_1 - - -colors = {"static": "C0", "drifting": "C1", "corrected": "C2"} diff --git a/src/spikeinterface/sortingcomponents/benchmark/benchmark_peak_detection.py b/src/spikeinterface/sortingcomponents/benchmark/benchmark_peak_detection.py new file mode 100644 index 0000000000..8a1e370dbf --- /dev/null +++ b/src/spikeinterface/sortingcomponents/benchmark/benchmark_peak_detection.py @@ -0,0 +1,449 @@ +from __future__ import annotations + +from spikeinterface.preprocessing import bandpass_filter, common_reference +from spikeinterface.sortingcomponents.peak_detection import detect_peaks +from spikeinterface.core import NumpySorting +from spikeinterface.qualitymetrics import compute_quality_metrics +from spikeinterface.comparison import GroundTruthComparison +from spikeinterface.widgets import ( + plot_probe_map, + plot_agreement_matrix, + plot_comparison_collision_by_similarity, + plot_unit_templates, + plot_unit_waveforms, +) +from spikeinterface.comparison.comparisontools import make_matching_events +from spikeinterface.core import get_noise_levels + +import time +import string, random +import pylab as plt +import os +import numpy as np + +from .benchmark_tools import BenchmarkStudy, Benchmark +from spikeinterface.core.basesorting import minimum_spike_dtype +from spikeinterface.core.sortinganalyzer import create_sorting_analyzer +from spikeinterface.core.template_tools import get_template_extremum_channel + + +class PeakDetectionBenchmark(Benchmark): + + def __init__(self, recording, gt_sorting, params, exhaustive_gt=True): + self.recording = recording + self.gt_sorting = gt_sorting + + sorting_analyzer = create_sorting_analyzer(self.gt_sorting, self.recording, format="memory", sparse=False) + sorting_analyzer.compute(["random_spikes", "fast_templates", "spike_amplitudes"]) + extremum_channel_inds = get_template_extremum_channel(sorting_analyzer, outputs="index") + self.gt_peaks = self.gt_sorting.to_spike_vector(extremum_channel_inds=extremum_channel_inds) + self.params = params + self.exhaustive_gt = exhaustive_gt + self.method = params["method"] + self.method_kwargs = params["method_kwargs"] + self.result = {"gt_peaks": self.gt_peaks} + self.result["gt_amplitudes"] = sorting_analyzer.get_extension("spike_amplitudes").get_data() + + def run(self, **job_kwargs): + peaks = detect_peaks(self.recording, method=self.method, **self.method_kwargs, **job_kwargs) + self.result["peaks"] = peaks + + def compute_result(self, **result_params): + spikes = self.result["peaks"] + self.result["peak_on_channels"] = NumpySorting.from_peaks( + spikes, self.recording.sampling_frequency, unit_ids=self.recording.channel_ids + ) + spikes = self.result["gt_peaks"] + self.result["gt_on_channels"] = NumpySorting.from_peaks( + spikes, self.recording.sampling_frequency, unit_ids=self.recording.channel_ids + ) + + self.result["gt_comparison"] = GroundTruthComparison( + self.result["gt_on_channels"], self.result["peak_on_channels"], exhaustive_gt=self.exhaustive_gt + ) + + gt_peaks = self.gt_sorting.to_spike_vector() + times1 = self.result["gt_peaks"]["sample_index"] + times2 = self.result["peaks"]["sample_index"] + + print("The gt recording has {} peaks and {} have been detected".format(len(times1), len(times2))) + + matches = make_matching_events(times1, times2, int(0.4 * self.recording.sampling_frequency / 1000)) + self.matches = matches + self.gt_matches = matches["index1"] + + self.deltas = {"labels": [], "channels": [], "delta": matches["delta_frame"]} + self.deltas["labels"] = gt_peaks["unit_index"][self.gt_matches] + self.deltas["channels"] = self.result["gt_peaks"]["unit_index"][self.gt_matches] + + self.result["sliced_gt_sorting"] = NumpySorting( + gt_peaks[self.gt_matches], self.recording.sampling_frequency, self.gt_sorting.unit_ids + ) + + ratio = 100 * len(self.gt_matches) / len(times1) + print("Only {0:.2f}% of gt peaks are matched to detected peaks".format(ratio)) + + # matches = make_matching_events(times2, times1, int(delta * self.sampling_rate / 1000)) + # self.good_matches = matches["index1"] + + # garbage_matches = ~np.isin(np.arange(len(times2)), self.good_matches) + # garbage_channels = self.peaks["channel_index"][garbage_matches] + # garbage_peaks = times2[garbage_matches] + # nb_garbage = len(garbage_peaks) + + # ratio = 100 * len(garbage_peaks) / len(times2) + # self.garbage_sorting = NumpySorting.from_times_labels(garbage_peaks, garbage_channels, self.sampling_rate) + + # print("The peaks have {0:.2f}% of garbage (without gt around)".format(ratio)) + + _run_key_saved = [("peaks", "npy"), ("gt_peaks", "npy"), ("gt_amplitudes", "npy")] + + _result_key_saved = [ + ("gt_comparison", "pickle"), + ("sliced_gt_sorting", "sorting"), + ("peak_on_channels", "sorting"), + ("gt_on_channels", "sorting"), + ] + + +class PeakDetectionStudy(BenchmarkStudy): + + benchmark_class = PeakDetectionBenchmark + + def create_benchmark(self, key): + dataset_key = self.cases[key]["dataset"] + recording, gt_sorting = self.datasets[dataset_key] + params = self.cases[key]["params"] + init_kwargs = self.cases[key]["init_kwargs"] + benchmark = PeakDetectionBenchmark(recording, gt_sorting, params, **init_kwargs) + return benchmark + + def plot_agreements(self, case_keys=None, figsize=(15, 15)): + if case_keys is None: + case_keys = list(self.cases.keys()) + + fig, axs = plt.subplots(ncols=len(case_keys), nrows=1, figsize=figsize, squeeze=False) + + for count, key in enumerate(case_keys): + ax = axs[0, count] + ax.set_title(self.cases[key]["label"]) + plot_agreement_matrix(self.get_result(key)["gt_comparison"], ax=ax) + + def plot_performances_vs_snr(self, case_keys=None, figsize=(15, 15)): + if case_keys is None: + case_keys = list(self.cases.keys()) + + fig, axs = plt.subplots(ncols=1, nrows=3, figsize=figsize) + + for count, k in enumerate(("accuracy", "recall", "precision")): + + ax = axs[count] + for key in case_keys: + label = self.cases[key]["label"] + + analyzer = self.get_sorting_analyzer(key) + metrics = analyzer.get_extension("quality_metrics").get_data() + x = metrics["snr"].values + y = self.get_result(key)["gt_comparison"].get_performance()[k].values + ax.scatter(x, y, marker=".", label=label) + ax.set_title(k) + + if count == 2: + ax.legend() + + def plot_detected_amplitudes(self, case_keys=None, figsize=(15, 5)): + + if case_keys is None: + case_keys = list(self.cases.keys()) + + fig, axs = plt.subplots(ncols=len(case_keys), nrows=1, figsize=figsize, squeeze=False) + + for count, key in enumerate(case_keys): + ax = axs[0, count] + data1 = self.get_result(key)["peaks"]["amplitude"] + data2 = self.get_result(key)["gt_amplitudes"] + bins = np.linspace(data2.min(), data2.max(), 100) + ax.hist(data1, bins=bins, alpha=0.5, label="detected") + ax.hist(data2, bins=bins, alpha=0.5, label="gt") + ax.set_title(self.cases[key]["label"]) + ax.legend() + + +# def run(self, peaks=None, positions=None, delta=0.2): +# t_start = time.time() + +# if peaks is not None: +# self._peaks = peaks + +# nb_peaks = len(self.peaks) + +# if positions is not None: +# self._positions = positions + +# spikes1 = self.gt_sorting.to_spike_vector(concatenated=False)[0]["sample_index"] +# times2 = self.peaks["sample_index"] + +# print("The gt recording has {} peaks and {} have been detected".format(len(times1[0]), len(times2))) + +# matches = make_matching_events(spikes1["sample_index"], times2, int(delta * self.sampling_rate / 1000)) +# self.matches = matches + +# self.deltas = {"labels": [], "delta": matches["delta_frame"]} +# self.deltas["labels"] = spikes1["unit_index"][matches["index1"]] + +# gt_matches = matches["index1"] +# self.sliced_gt_sorting = NumpySorting(spikes1[gt_matches], self.sampling_rate, self.gt_sorting.unit_ids) + +# ratio = 100 * len(gt_matches) / len(spikes1) +# print("Only {0:.2f}% of gt peaks are matched to detected peaks".format(ratio)) + +# matches = make_matching_events(times2, spikes1["sample_index"], int(delta * self.sampling_rate / 1000)) +# self.good_matches = matches["index1"] + +# garbage_matches = ~np.isin(np.arange(len(times2)), self.good_matches) +# garbage_channels = self.peaks["channel_index"][garbage_matches] +# garbage_peaks = times2[garbage_matches] +# nb_garbage = len(garbage_peaks) + +# ratio = 100 * len(garbage_peaks) / len(times2) +# self.garbage_sorting = NumpySorting.from_times_labels(garbage_peaks, garbage_channels, self.sampling_rate) + +# print("The peaks have {0:.2f}% of garbage (without gt around)".format(ratio)) + +# self.comp = GroundTruthComparison(self.gt_sorting, self.sliced_gt_sorting, exhaustive_gt=self.exhaustive_gt) + +# for label, sorting in zip( +# ["gt", "full_gt", "garbage"], [self.sliced_gt_sorting, self.gt_sorting, self.garbage_sorting] +# ): +# tmp_folder = os.path.join(self.tmp_folder, label) +# if os.path.exists(tmp_folder): +# import shutil + +# shutil.rmtree(tmp_folder) + +# if not (label == "full_gt" and label in self.waveforms): +# if self.verbose: +# print(f"Extracting waveforms for {label}") + +# self.waveforms[label] = extract_waveforms( +# self.recording, +# sorting, +# tmp_folder, +# load_if_exists=True, +# ms_before=2.5, +# ms_after=3.5, +# max_spikes_per_unit=500, +# return_scaled=False, +# **self.job_kwargs, +# ) + +# self.templates[label] = self.waveforms[label].get_all_templates(mode="median") + +# if self.gt_peaks is None: +# if self.verbose: +# print("Computing gt peaks") +# gt_peaks_ = self.gt_sorting.to_spike_vector() +# self.gt_peaks = np.zeros( +# gt_peaks_.size, +# dtype=[ +# ("sample_index", " -1 if np.sum(valid_clusters) > 0: local_labels[valid_clusters] += nb_clusters @@ -165,66 +169,33 @@ def main_function(cls, recording, peaks, params): labels = np.unique(peak_labels) labels = labels[labels >= 0] - best_spikes = {} - nb_spikes = 0 - - import sklearn - - all_indices = np.arange(0, peak_labels.size) - - max_spikes = params["waveforms"]["max_spikes_per_unit"] - selection_method = params["selection_method"] - - for unit_ind in labels: - mask = peak_labels == unit_ind - if selection_method == "closest_to_centroid": - data = all_pc_data[mask].reshape(np.sum(mask), -1) - centroid = np.median(data, axis=0) - distances = sklearn.metrics.pairwise_distances(centroid[np.newaxis, :], data)[0] - best_spikes[unit_ind] = all_indices[mask][np.argsort(distances)[:max_spikes]] - elif selection_method == "random": - best_spikes[unit_ind] = np.random.permutation(all_indices[mask])[:max_spikes] - nb_spikes += best_spikes[unit_ind].size - - spikes = np.zeros(nb_spikes, dtype=peak_dtype) - - mask = np.zeros(0, dtype=np.int32) - for unit_ind in labels: - mask = np.concatenate((mask, best_spikes[unit_ind])) - - idx = np.argsort(mask) - mask = mask[idx] - + spikes = np.zeros(np.sum(peak_labels > -1), dtype=minimum_spike_dtype) + mask = peak_labels > -1 spikes["sample_index"] = peaks[mask]["sample_index"] spikes["segment_index"] = peaks[mask]["segment_index"] spikes["unit_index"] = peak_labels[mask] - if verbose: - print("We found %d raw clusters, starting to clean with matching..." % (len(labels))) - - sorting_folder = tmp_folder / "sorting" unit_ids = np.arange(len(np.unique(spikes["unit_index"]))) - sorting = NumpySorting(spikes, fs, unit_ids=unit_ids) - if params["shared_memory"]: - waveform_folder = None - mode = "memory" - else: - waveform_folder = tmp_folder / "waveforms" - mode = "folder" - sorting = sorting.save(folder=sorting_folder) + nbefore = int(params["waveforms"]["ms_before"] * fs / 1000.0) + nafter = int(params["waveforms"]["ms_after"] * fs / 1000.0) - we = extract_waveforms( - recording, - sorting, - waveform_folder, - return_scaled=False, - precompute_template=["median"], - mode=mode, - **params["job_kwargs"], - **params["waveforms"], + templates_array = estimate_templates( + recording, spikes, unit_ids, nbefore, nafter, return_scaled=False, job_name=None, **job_kwargs ) + templates = Templates( + templates_array, fs, nbefore, None, recording.channel_ids, unit_ids, recording.get_probe() + ) + if params["noise_levels"] is None: + params["noise_levels"] = get_noise_levels(recording, return_scaled=False) + sparsity = compute_sparsity(templates, params["noise_levels"], **params["sparsity"]) + templates = templates.to_sparse(sparsity) + templates = remove_empty_templates(templates) + + if verbose: + print("We found %d raw clusters, starting to clean with matching..." % (len(templates.unit_ids))) + cleaning_matching_params = params["job_kwargs"].copy() for value in ["chunk_size", "chunk_memory", "total_memory", "chunk_duration"]: if value in cleaning_matching_params: @@ -238,18 +209,9 @@ def main_function(cls, recording, peaks, params): cleaning_params["tmp_folder"] = tmp_folder labels, peak_labels = remove_duplicates_via_matching( - we, peak_labels, job_kwargs=cleaning_matching_params, **cleaning_params + templates, peak_labels, job_kwargs=cleaning_matching_params, **cleaning_params ) - del we, sorting - - if params["tmp_folder"] is None: - shutil.rmtree(tmp_folder) - else: - if not params["shared_memory"]: - shutil.rmtree(tmp_folder / "waveforms") - shutil.rmtree(tmp_folder / "sorting") - if verbose: print("We kept %d non-duplicated clusters..." % len(labels)) diff --git a/src/spikeinterface/sortingcomponents/clustering/clustering_tools.py b/src/spikeinterface/sortingcomponents/clustering/clustering_tools.py index b7f17d99e3..0441943d5f 100644 --- a/src/spikeinterface/sortingcomponents/clustering/clustering_tools.py +++ b/src/spikeinterface/sortingcomponents/clustering/clustering_tools.py @@ -535,39 +535,25 @@ def remove_duplicates( return labels, new_labels -def remove_duplicates_via_matching( - waveform_extractor, - peak_labels, - method_kwargs={}, - job_kwargs={}, - tmp_folder=None, - method="circus-omp-svd", -): +def remove_duplicates_via_matching(templates, peak_labels, method_kwargs={}, job_kwargs={}, tmp_folder=None): from spikeinterface.sortingcomponents.matching import find_spikes_from_templates from spikeinterface.core import BinaryRecordingExtractor from spikeinterface.core import NumpySorting - from spikeinterface.core import extract_waveforms from spikeinterface.core import get_global_tmp_folder - import string, random, shutil, os + import os from pathlib import Path job_kwargs = fix_job_kwargs(job_kwargs) - if waveform_extractor.is_sparse(): - sparsity = waveform_extractor.sparsity.mask + templates_array = templates.get_dense_templates() - templates = waveform_extractor.get_all_templates(mode="median").copy() - nb_templates = len(templates) - duration = waveform_extractor.nbefore + waveform_extractor.nafter + nb_templates = len(templates_array) + duration = templates.nbefore + templates.nafter - fs = waveform_extractor.recording.get_sampling_frequency() - num_chans = waveform_extractor.recording.get_num_channels() + fs = templates.sampling_frequency + num_chans = len(templates.channel_ids) - if waveform_extractor.is_sparse(): - for count, unit_id in enumerate(waveform_extractor.sorting.unit_ids): - templates[count][:, ~sparsity[count]] = 0 - - zdata = templates.reshape(nb_templates, -1) + zdata = templates_array.reshape(nb_templates, -1) padding = 2 * duration blanck = np.zeros(padding * num_chans, dtype=np.float32) @@ -586,58 +572,40 @@ def remove_duplicates_via_matching( f.close() recording = BinaryRecordingExtractor(tmp_filename, num_channels=num_chans, sampling_frequency=fs, dtype="float32") - recording = recording.set_probe(waveform_extractor.recording.get_probe()) + recording = recording.set_probe(templates.probe) recording.annotate(is_filtered=True) - margin = 2 * max(waveform_extractor.nbefore, waveform_extractor.nafter) + margin = 2 * max(templates.nbefore, templates.nafter) half_marging = margin // 2 - chunk_size = duration + 3 * margin - local_params = method_kwargs.copy() - local_params.update( - {"waveform_extractor": waveform_extractor, "amplitudes": [0.975, 1.025], "optimize_amplitudes": False} - ) - - spikes_per_units, counts = np.unique(waveform_extractor.sorting.to_spike_vector()["unit_index"], return_counts=True) - indices = np.argsort(counts) + local_params.update({"templates": templates, "amplitudes": [0.975, 1.025]}) ignore_ids = [] similar_templates = [[], []] - for i in indices: + for i in range(nb_templates): t_start = padding + i * duration t_stop = padding + (i + 1) * duration sub_recording = recording.frame_slice(t_start - half_marging, t_stop + half_marging) local_params.update({"ignored_ids": ignore_ids + [i]}) spikes, computed = find_spikes_from_templates( - sub_recording, method=method, method_kwargs=local_params, extra_outputs=True, **job_kwargs + sub_recording, method="circus-omp-svd", method_kwargs=local_params, extra_outputs=True, **job_kwargs + ) + local_params.update( + { + "overlaps": computed["overlaps"], + "normed_templates": computed["normed_templates"], + "norms": computed["norms"], + "temporal": computed["temporal"], + "spatial": computed["spatial"], + "singular": computed["singular"], + "units_overlaps": computed["units_overlaps"], + "unit_overlaps_indices": computed["unit_overlaps_indices"], + } ) - if method == "circus-omp-svd": - local_params.update( - { - "overlaps": computed["overlaps"], - "templates": computed["templates"], - "norms": computed["norms"], - "temporal": computed["temporal"], - "spatial": computed["spatial"], - "singular": computed["singular"], - "units_overlaps": computed["units_overlaps"], - "unit_overlaps_indices": computed["unit_overlaps_indices"], - "sparsity_mask": computed["sparsity_mask"], - } - ) - elif method == "circus-omp": - local_params.update( - { - "overlaps": computed["overlaps"], - "templates": computed["templates"], - "norms": computed["norms"], - "sparsities": computed["sparsities"], - } - ) valid = (spikes["sample_index"] >= half_marging) * (spikes["sample_index"] < duration + half_marging) if np.sum(valid) > 0: if np.sum(valid) == 1: @@ -662,7 +630,7 @@ def remove_duplicates_via_matching( labels = np.unique(new_labels) labels = labels[labels >= 0] - del recording, sub_recording, local_params, waveform_extractor + del recording, sub_recording, local_params, templates os.remove(tmp_filename) return labels, new_labels diff --git a/src/spikeinterface/sortingcomponents/clustering/main.py b/src/spikeinterface/sortingcomponents/clustering/main.py index 151f4be270..4cb0db7db6 100644 --- a/src/spikeinterface/sortingcomponents/clustering/main.py +++ b/src/spikeinterface/sortingcomponents/clustering/main.py @@ -14,8 +14,8 @@ def find_cluster_from_peaks(recording, peaks, method="stupid", method_kwargs={}, ---------- recording: RecordingExtractor The recording extractor object - peaks: WaveformExtractor - The waveform extractor + peaks: numpy.array + The peak vector method: str Which method to use ("stupid" | "XXXX") method_kwargs: dict, default: dict() diff --git a/src/spikeinterface/sortingcomponents/clustering/position_and_features.py b/src/spikeinterface/sortingcomponents/clustering/position_and_features.py index 871c0aab31..3c58b5edb9 100644 --- a/src/spikeinterface/sortingcomponents/clustering/position_and_features.py +++ b/src/spikeinterface/sortingcomponents/clustering/position_and_features.py @@ -14,12 +14,11 @@ HAVE_HDBSCAN = False import random, string, os -from spikeinterface.core import get_global_tmp_folder, get_noise_levels, get_channel_distances -from sklearn.preprocessing import QuantileTransformer, MaxAbsScaler +from spikeinterface.core import get_global_tmp_folder, get_noise_levels from spikeinterface.core.waveform_tools import extract_waveforms_to_buffers from .clustering_tools import remove_duplicates, remove_duplicates_via_matching, remove_duplicates_via_dip from spikeinterface.core import NumpySorting -from spikeinterface.core import extract_waveforms +from spikeinterface.core import estimate_templates_average, Templates from spikeinterface.sortingcomponents.features_from_peaks import compute_features_from_peaks @@ -48,6 +47,8 @@ class PositionAndFeaturesClustering: @classmethod def main_function(cls, recording, peaks, params): + from sklearn.preprocessing import QuantileTransformer + assert HAVE_HDBSCAN, "twisted clustering needs hdbscan to be installed" if "n_jobs" in params["job_kwargs"]: @@ -69,22 +70,23 @@ def main_function(cls, recording, peaks, params): position_method = d["peak_localization_kwargs"]["method"] - features_list = [position_method, "ptp", "energy"] + features_list = [ + position_method, + "ptp", + ] features_params = { position_method: {"radius_um": params["radius_um"]}, "ptp": {"all_channels": False, "radius_um": params["radius_um"]}, - "energy": {"radius_um": params["radius_um"]}, } features_data = compute_features_from_peaks( recording, peaks, features_list, features_params, ms_before=1, ms_after=1, **params["job_kwargs"] ) - hdbscan_data = np.zeros((len(peaks), 4), dtype=np.float32) + hdbscan_data = np.zeros((len(peaks), 3), dtype=np.float32) hdbscan_data[:, 0] = features_data[0]["x"] hdbscan_data[:, 1] = features_data[0]["y"] hdbscan_data[:, 2] = features_data[1] - hdbscan_data[:, 3] = features_data[2] preprocessing = QuantileTransformer(output_distribution="uniform") hdbscan_data = preprocessing.fit_transform(hdbscan_data) @@ -169,18 +171,24 @@ def main_function(cls, recording, peaks, params): tmp_folder = Path(os.path.join(get_global_tmp_folder(), name)) sorting = NumpySorting.from_times_labels(spikes["sample_index"], spikes["unit_index"], fs) - we = extract_waveforms( + + nbefore = int(params["ms_before"] * fs / 1000.0) + nafter = int(params["ms_after"] * fs / 1000.0) + templates_array = estimate_templates_average( recording, - sorting, - tmp_folder, - overwrite=True, - ms_before=params["ms_before"], - ms_after=params["ms_after"], - **params["job_kwargs"], + sorting.to_spike_vector(), + sorting.unit_ids, + nbefore, + nafter, return_scaled=False, + **params["job_kwargs"], ) + templates = Templates( + templates_array=templates_array, sampling_frequency=fs, nbefore=nbefore, probe=recording.get_probe() + ) + labels, peak_labels = remove_duplicates_via_matching( - we, peak_labels, job_kwargs=params["job_kwargs"], **params["cleaning_kwargs"] + templates, peak_labels, job_kwargs=params["job_kwargs"], **params["cleaning_kwargs"] ) shutil.rmtree(tmp_folder) diff --git a/src/spikeinterface/sortingcomponents/clustering/random_projections.py b/src/spikeinterface/sortingcomponents/clustering/random_projections.py index 48660cc80c..31d25222a9 100644 --- a/src/spikeinterface/sortingcomponents/clustering/random_projections.py +++ b/src/spikeinterface/sortingcomponents/clustering/random_projections.py @@ -17,12 +17,17 @@ from spikeinterface.core.basesorting import minimum_spike_dtype from spikeinterface.core import get_global_tmp_folder, get_channel_distances, get_random_data_chunks from sklearn.preprocessing import QuantileTransformer, MaxAbsScaler -from spikeinterface.core.waveform_tools import extract_waveforms_to_buffers +from spikeinterface.core.waveform_tools import extract_waveforms_to_buffers, estimate_templates from .clustering_tools import remove_duplicates, remove_duplicates_via_matching, remove_duplicates_via_dip from spikeinterface.core import NumpySorting from spikeinterface.core import extract_waveforms +from spikeinterface.core.recording_tools import get_noise_levels +from spikeinterface.core.job_tools import fix_job_kwargs from spikeinterface.sortingcomponents.waveforms.savgol_denoiser import SavGolDenoiser from spikeinterface.sortingcomponents.features_from_peaks import RandomProjectionsFeature +from spikeinterface.core.template import Templates +from spikeinterface.core.sparsity import compute_sparsity +from spikeinterface.sortingcomponents.tools import remove_empty_templates from spikeinterface.core.node_pipeline import ( run_node_pipeline, ExtractDenseWaveforms, @@ -40,38 +45,34 @@ class RandomProjectionClustering: "hdbscan_kwargs": { "min_cluster_size": 20, "allow_single_cluster": True, - "core_dist_n_jobs": os.cpu_count(), + "core_dist_n_jobs": -1, "cluster_selection_method": "leaf", }, "cleaning_kwargs": {}, - "waveforms": {"ms_before": 2, "ms_after": 2, "max_spikes_per_unit": 100}, + "waveforms": {"ms_before": 2, "ms_after": 2}, + "sparsity": {"method": "ptp", "threshold": 0.25}, "radius_um": 100, - "selection_method": "closest_to_centroid", "nb_projections": 10, - "ms_before": 1, - "ms_after": 1, + "ms_before": 0.5, + "ms_after": 0.5, "random_seed": 42, + "noise_levels": None, "smoothing_kwargs": {"window_length_ms": 0.25}, - "shared_memory": True, "tmp_folder": None, - "debug": False, - "job_kwargs": {"n_jobs": os.cpu_count(), "chunk_memory": "100M", "verbose": True, "progress_bar": True}, + "job_kwargs": {}, } @classmethod def main_function(cls, recording, peaks, params): assert HAVE_HDBSCAN, "random projections clustering need hdbscan to be installed" - if "n_jobs" in params["job_kwargs"]: - if params["job_kwargs"]["n_jobs"] == -1: - params["job_kwargs"]["n_jobs"] = os.cpu_count() - - if "core_dist_n_jobs" in params["hdbscan_kwargs"]: - if params["hdbscan_kwargs"]["core_dist_n_jobs"] == -1: - params["hdbscan_kwargs"]["core_dist_n_jobs"] = os.cpu_count() + job_kwargs = fix_job_kwargs(params["job_kwargs"]) d = params - verbose = d["job_kwargs"]["verbose"] + if "verbose" in job_kwargs: + verbose = job_kwargs["verbose"] + else: + verbose = False fs = recording.get_sampling_frequency() nbefore = int(params["ms_before"] * fs / 1000.0) @@ -110,19 +111,23 @@ def main_function(cls, recording, peaks, params): nafter = int(params["ms_after"] * fs / 1000) nsamples = nbefore + nafter + # noise_ptps = np.linalg.norm(np.random.randn(1000, nsamples), axis=1) + # noise_threshold = np.mean(noise_ptps) + 3 * np.std(noise_ptps) + node3 = RandomProjectionsFeature( recording, parents=[node0, node2], return_output=True, projections=projections, radius_um=params["radius_um"], + noise_threshold=None, sparse=True, ) pipeline_nodes = [node0, node1, node2, node3] hdbscan_data = run_node_pipeline( - recording, pipeline_nodes, params["job_kwargs"], job_name="extracting features" + recording, pipeline_nodes, job_kwargs=job_kwargs, job_name="extracting features" ) import sklearn @@ -130,83 +135,40 @@ def main_function(cls, recording, peaks, params): clustering = hdbscan.hdbscan(hdbscan_data, **d["hdbscan_kwargs"]) peak_labels = clustering[0] - # peak_labels = -1 * np.ones(len(peaks), dtype=int) - # nb_clusters = 0 - # for c in np.unique(peaks['channel_index']): - # mask = peaks['channel_index'] == c - # clustering = hdbscan.hdbscan(hdbscan_data[mask], **d['hdbscan_kwargs']) - # local_labels = clustering[0] - # valid_clusters = local_labels > -1 - # if np.sum(valid_clusters) > 0: - # local_labels[valid_clusters] += nb_clusters - # peak_labels[mask] = local_labels - # nb_clusters += len(np.unique(local_labels[valid_clusters])) - labels = np.unique(peak_labels) labels = labels[labels >= 0] - best_spikes = {} - nb_spikes = 0 - - all_indices = np.arange(0, peak_labels.size) - - max_spikes = params["waveforms"]["max_spikes_per_unit"] - selection_method = params["selection_method"] - - for unit_ind in labels: - mask = peak_labels == unit_ind - if selection_method == "closest_to_centroid": - data = hdbscan_data[mask] - centroid = np.median(data, axis=0) - distances = sklearn.metrics.pairwise_distances(centroid[np.newaxis, :], data)[0] - best_spikes[unit_ind] = all_indices[mask][np.argsort(distances)[:max_spikes]] - elif selection_method == "random": - best_spikes[unit_ind] = np.random.permutation(all_indices[mask])[:max_spikes] - nb_spikes += best_spikes[unit_ind].size - - spikes = np.zeros(nb_spikes, dtype=minimum_spike_dtype) - - mask = np.zeros(0, dtype=np.int32) - for unit_ind in labels: - mask = np.concatenate((mask, best_spikes[unit_ind])) - - idx = np.argsort(mask) - mask = mask[idx] - + spikes = np.zeros(np.sum(peak_labels > -1), dtype=minimum_spike_dtype) + mask = peak_labels > -1 spikes["sample_index"] = peaks[mask]["sample_index"] spikes["segment_index"] = peaks[mask]["segment_index"] spikes["unit_index"] = peak_labels[mask] - if verbose: - print("We found %d raw clusters, starting to clean with matching..." % (len(labels))) - - sorting_folder = tmp_folder / "sorting" unit_ids = np.arange(len(np.unique(spikes["unit_index"]))) - sorting = NumpySorting(spikes, fs, unit_ids=unit_ids) - if params["shared_memory"]: - waveform_folder = None - mode = "memory" - else: - waveform_folder = tmp_folder / "waveforms" - mode = "folder" - sorting = sorting.save(folder=sorting_folder) + nbefore = int(params["waveforms"]["ms_before"] * fs / 1000.0) + nafter = int(params["waveforms"]["ms_after"] * fs / 1000.0) - we = extract_waveforms( - recording, - sorting, - waveform_folder, - return_scaled=False, - mode=mode, - precompute_template=["median"], - **params["job_kwargs"], - **params["waveforms"], + templates_array = estimate_templates( + recording, spikes, unit_ids, nbefore, nafter, return_scaled=False, job_name=None, **job_kwargs ) - cleaning_matching_params = params["job_kwargs"].copy() + templates = Templates( + templates_array, fs, nbefore, None, recording.channel_ids, unit_ids, recording.get_probe() + ) + if params["noise_levels"] is None: + params["noise_levels"] = get_noise_levels(recording, return_scaled=False) + sparsity = compute_sparsity(templates, params["noise_levels"], **params["sparsity"]) + templates = templates.to_sparse(sparsity) + templates = remove_empty_templates(templates) + + if verbose: + print("We found %d raw clusters, starting to clean with matching..." % (len(templates.unit_ids))) + + cleaning_matching_params = job_kwargs.copy() for value in ["chunk_size", "chunk_memory", "total_memory", "chunk_duration"]: if value in cleaning_matching_params: - cleaning_matching_params.pop(value) + cleaning_matching_params[value] = None cleaning_matching_params["chunk_duration"] = "100ms" cleaning_matching_params["n_jobs"] = 1 cleaning_matching_params["verbose"] = False @@ -216,18 +178,9 @@ def main_function(cls, recording, peaks, params): cleaning_params["tmp_folder"] = tmp_folder labels, peak_labels = remove_duplicates_via_matching( - we, peak_labels, job_kwargs=cleaning_matching_params, **cleaning_params + templates, peak_labels, job_kwargs=cleaning_matching_params, **cleaning_params ) - del we, sorting - - if params["tmp_folder"] is None: - shutil.rmtree(tmp_folder) - else: - if not params["shared_memory"]: - shutil.rmtree(tmp_folder / "waveforms") - shutil.rmtree(tmp_folder / "sorting") - if verbose: print("We kept %d non-duplicated clusters..." % len(labels)) diff --git a/src/spikeinterface/sortingcomponents/features_from_peaks.py b/src/spikeinterface/sortingcomponents/features_from_peaks.py index 4479319fe3..40f89068f9 100644 --- a/src/spikeinterface/sortingcomponents/features_from_peaks.py +++ b/src/spikeinterface/sortingcomponents/features_from_peaks.py @@ -144,82 +144,44 @@ def compute(self, traces, peaks, waveforms): return all_ptps -class PeakToPeakLagsFeature(PipelineNode): - def __init__( - self, - recording, - name="ptp_lag_feature", - return_output=True, - parents=None, - radius_um=150.0, - all_channels=True, - ): - PipelineNode.__init__(self, recording, return_output=return_output, parents=parents) - - self.all_channels = all_channels - self.radius_um = radius_um - - self.contact_locations = recording.get_channel_locations() - self.channel_distance = get_channel_distances(recording) - self.neighbours_mask = self.channel_distance <= radius_um - - self._kwargs.update(dict(radius_um=radius_um, all_channels=all_channels)) - self._dtype = recording.get_dtype() - - def get_dtype(self): - return self._dtype - - def compute(self, traces, peaks, waveforms): - if self.all_channels: - all_maxs = np.argmax(waveforms, axis=1) - all_mins = np.argmin(waveforms, axis=1) - all_lags = all_maxs - all_mins - else: - all_lags = np.zeros(peaks.size) - for main_chan in np.unique(peaks["channel_index"]): - (idx,) = np.nonzero(peaks["channel_index"] == main_chan) - (chan_inds,) = np.nonzero(self.neighbours_mask[main_chan]) - wfs = waveforms[idx][:, :, chan_inds] - maxs = np.argmax(wfs, axis=1) - mins = np.argmin(wfs, axis=1) - lags = maxs - mins - ptps = np.argmax(np.ptp(wfs, axis=1), axis=1) - all_lags[idx] = lags[np.arange(len(idx)), ptps] - return all_lags - - class RandomProjectionsFeature(PipelineNode): def __init__( self, recording, name="random_projections_feature", + feature="ptp", return_output=True, parents=None, projections=None, - sigmoid=None, - radius_um=None, + radius_um=100, sparse=True, + noise_threshold=None, ): PipelineNode.__init__(self, recording, return_output=return_output, parents=parents) + assert feature in ["ptp", "energy"] self.projections = projections - self.sigmoid = sigmoid + self.feature = feature self.contact_locations = recording.get_channel_locations() self.channel_distance = get_channel_distances(recording) self.neighbours_mask = self.channel_distance <= radius_um self.radius_um = radius_um self.sparse = sparse - self._kwargs.update(dict(projections=projections, sigmoid=sigmoid, radius_um=radius_um, sparse=sparse)) + self.noise_threshold = noise_threshold + self._kwargs.update( + dict( + projections=projections, + radius_um=radius_um, + sparse=sparse, + noise_threshold=noise_threshold, + feature=feature, + ) + ) self._dtype = recording.get_dtype() def get_dtype(self): return self._dtype - def _sigmoid(self, x): - L, x0, k, b = self.sigmoid - y = L / (1 + np.exp(-k * (x - x0))) + b - return y - def compute(self, traces, peaks, waveforms): all_projections = np.zeros((peaks.size, self.projections.shape[1]), dtype=self._dtype) @@ -228,175 +190,30 @@ def compute(self, traces, peaks, waveforms): (chan_inds,) = np.nonzero(self.neighbours_mask[main_chan]) local_projections = self.projections[chan_inds, :] if self.sparse: - wf_ptp = np.ptp(waveforms[idx][:, :, : len(chan_inds)], axis=1) + if self.feature == "ptp": + features = np.ptp(waveforms[idx][:, :, : len(chan_inds)], axis=1) + elif self.feature == "energy": + features = np.linalg.norm(waveforms[idx][:, :, : len(chan_inds)], axis=1) else: - wf_ptp = np.ptp(waveforms[idx][:, :, chan_inds], axis=1) + if self.feature == "ptp": + features = np.ptp(waveforms[idx][:, :, chan_inds], axis=1) + elif self.feature == "energy": + features = np.linalg.norm(waveforms[idx][:, :, chan_inds], axis=1) - if self.sigmoid is not None: - wf_ptp *= self._sigmoid(wf_ptp) + if self.noise_threshold is not None: + local_map = np.median(features, axis=0) < self.noise_threshold + features[features < local_map] = 0 - denom = np.sum(wf_ptp, axis=1) + denom = np.sum(features, axis=1) mask = denom != 0 - all_projections[idx[mask]] = np.dot(wf_ptp[mask], local_projections) / (denom[mask][:, np.newaxis]) + all_projections[idx[mask]] = np.dot(features[mask], local_projections) / (denom[mask][:, np.newaxis]) return all_projections -class RandomProjectionsEnergyFeature(PipelineNode): - def __init__( - self, - recording, - name="random_projections_energy_feature", - return_output=True, - parents=None, - projections=None, - radius_um=150.0, - min_values=None, - ): - PipelineNode.__init__(self, recording, return_output=return_output, parents=parents) - - self.contact_locations = recording.get_channel_locations() - self.channel_distance = get_channel_distances(recording) - self.neighbours_mask = self.channel_distance <= radius_um - - self.projections = projections - self.min_values = min_values - self.radius_um = radius_um - self._kwargs.update(dict(projections=projections, min_values=min_values, radius_um=radius_um)) - self._dtype = recording.get_dtype() - - def get_dtype(self): - return self._dtype - - def compute(self, traces, peaks, waveforms): - all_projections = np.zeros((peaks.size, self.projections.shape[1]), dtype=self._dtype) - for main_chan in np.unique(peaks["channel_index"]): - (idx,) = np.nonzero(peaks["channel_index"] == main_chan) - (chan_inds,) = np.nonzero(self.neighbours_mask[main_chan]) - local_projections = self.projections[chan_inds, :] - energies = np.linalg.norm(waveforms[idx][:, :, chan_inds], axis=1) - - if self.min_values is not None: - energies = (energies / self.min_values[chan_inds]) ** 4 - - denom = np.sum(energies, axis=1) - mask = denom != 0 - - all_projections[idx[mask]] = np.dot(energies[mask], local_projections) / (denom[mask][:, np.newaxis]) - return all_projections - - -class StdPeakToPeakFeature(PipelineNode): - def __init__(self, recording, name="std_ptp_feature", return_output=True, parents=None, radius_um=150.0): - PipelineNode.__init__(self, recording, return_output=return_output, parents=parents) - - self.contact_locations = recording.get_channel_locations() - self.channel_distance = get_channel_distances(recording) - self.neighbours_mask = self.channel_distance <= radius_um - - self._kwargs.update(dict(radius_um=radius_um)) - - self._dtype = recording.get_dtype() - - def get_dtype(self): - return self._dtype - - def compute(self, traces, peaks, waveforms): - all_ptps = np.zeros(peaks.size) - for main_chan in np.unique(peaks["channel_index"]): - (idx,) = np.nonzero(peaks["channel_index"] == main_chan) - (chan_inds,) = np.nonzero(self.neighbours_mask[main_chan]) - wfs = waveforms[idx][:, :, chan_inds] - all_ptps[idx] = np.std(np.ptp(wfs, axis=1), axis=1) - return all_ptps - - -class GlobalPeakToPeakFeature(PipelineNode): - def __init__(self, recording, name="global_ptp_feature", return_output=True, parents=None, radius_um=150.0): - PipelineNode.__init__(self, recording, return_output=return_output, parents=parents) - - self.contact_locations = recording.get_channel_locations() - self.channel_distance = get_channel_distances(recording) - self.neighbours_mask = self.channel_distance <= radius_um - - self._kwargs.update(dict(radius_um=radius_um)) - - self._dtype = recording.get_dtype() - - def get_dtype(self): - return self._dtype - - def compute(self, traces, peaks, waveforms): - all_ptps = np.zeros(peaks.size) - for main_chan in np.unique(peaks["channel_index"]): - (idx,) = np.nonzero(peaks["channel_index"] == main_chan) - (chan_inds,) = np.nonzero(self.neighbours_mask[main_chan]) - wfs = waveforms[idx][:, :, chan_inds] - all_ptps[idx] = np.max(wfs, axis=(1, 2)) - np.min(wfs, axis=(1, 2)) - return all_ptps - - -class KurtosisPeakToPeakFeature(PipelineNode): - def __init__(self, recording, name="kurtosis_ptp_feature", return_output=True, parents=None, radius_um=150.0): - PipelineNode.__init__(self, recording, return_output=return_output, parents=parents) - - self.contact_locations = recording.get_channel_locations() - self.channel_distance = get_channel_distances(recording) - self.neighbours_mask = self.channel_distance <= radius_um - - self._kwargs.update(dict(radius_um=radius_um)) - - self._dtype = recording.get_dtype() - - def get_dtype(self): - return self._dtype - - def compute(self, traces, peaks, waveforms): - all_ptps = np.zeros(peaks.size) - import scipy - - for main_chan in np.unique(peaks["channel_index"]): - (idx,) = np.nonzero(peaks["channel_index"] == main_chan) - (chan_inds,) = np.nonzero(self.neighbours_mask[main_chan]) - wfs = waveforms[idx][:, :, chan_inds] - all_ptps[idx] = scipy.stats.kurtosis(np.ptp(wfs, axis=1), axis=1) - return all_ptps - - -class EnergyFeature(PipelineNode): - def __init__(self, recording, name="energy_feature", return_output=True, parents=None, radius_um=50.0): - PipelineNode.__init__(self, recording, return_output=return_output, parents=parents) - - self.contact_locations = recording.get_channel_locations() - self.channel_distance = get_channel_distances(recording) - self.neighbours_mask = self.channel_distance <= radius_um - - self._kwargs.update(dict(radius_um=radius_um)) - - def get_dtype(self): - return np.dtype("float32") - - def compute(self, traces, peaks, waveforms): - energy = np.zeros(peaks.size, dtype="float32") - for main_chan in np.unique(peaks["channel_index"]): - (idx,) = np.nonzero(peaks["channel_index"] == main_chan) - (chan_inds,) = np.nonzero(self.neighbours_mask[main_chan]) - - wfs = waveforms[idx][:, :, chan_inds] - energy[idx] = np.linalg.norm(wfs, axis=(1, 2)) / chan_inds.size - return energy - - _features_class = { "amplitude": AmplitudeFeature, "ptp": PeakToPeakFeature, + "random_projections": RandomProjectionsFeature, "center_of_mass": LocalizeCenterOfMass, - "monopolar_triangulation": LocalizeMonopolarTriangulation, - "energy": EnergyFeature, - "std_ptp": StdPeakToPeakFeature, - "kurtosis_ptp": KurtosisPeakToPeakFeature, - "random_projections_ptp": RandomProjectionsFeature, - "random_projections_energy": RandomProjectionsEnergyFeature, - "ptp_lag": PeakToPeakLagsFeature, - "global_ptp": GlobalPeakToPeakFeature, } diff --git a/src/spikeinterface/sortingcomponents/matching/circus.py b/src/spikeinterface/sortingcomponents/matching/circus.py index a4c7ab4735..ecf63f973e 100644 --- a/src/spikeinterface/sortingcomponents/matching/circus.py +++ b/src/spikeinterface/sortingcomponents/matching/circus.py @@ -21,6 +21,7 @@ from spikeinterface.core import get_noise_levels, get_random_data_chunks, compute_sparsity from spikeinterface.sortingcomponents.peak_detection import DetectPeakByChannel +from spikeinterface.core.template import Templates (potrs,) = scipy.linalg.get_lapack_funcs(("potrs",), dtype=np.float32) @@ -37,100 +38,6 @@ from .main import BaseTemplateMatchingEngine -from scipy.fft._helper import _init_nd_shape_and_axes - -try: - from scipy.signal.signaltools import _init_freq_conv_axes, _apply_conv_mode -except Exception: - from scipy.signal._signaltools import _init_freq_conv_axes, _apply_conv_mode -from scipy import linalg, fft as sp_fft - - -def get_scipy_shape(in1, in2, mode="full", axes=None, calc_fast_len=True): - in1 = np.asarray(in1) - in2 = np.asarray(in2) - - if in1.ndim == in2.ndim == 0: # scalar inputs - return in1 * in2 - elif in1.ndim != in2.ndim: - raise ValueError("in1 and in2 should have the same dimensionality") - elif in1.size == 0 or in2.size == 0: # empty arrays - return np.array([]) - - in1, in2, axes = _init_freq_conv_axes(in1, in2, mode, axes, sorted_axes=False) - - s1 = in1.shape - s2 = in2.shape - - shape = [max((s1[i], s2[i])) if i not in axes else s1[i] + s2[i] - 1 for i in range(in1.ndim)] - - if not len(axes): - return in1 * in2 - - complex_result = in1.dtype.kind == "c" or in2.dtype.kind == "c" - - if calc_fast_len: - # Speed up FFT by padding to optimal size. - fshape = [sp_fft.next_fast_len(shape[a], not complex_result) for a in axes] - else: - fshape = shape - - return fshape, axes - - -def fftconvolve_with_cache(in1, in2, cache, mode="full", axes=None): - in1 = np.asarray(in1) - in2 = np.asarray(in2) - - if in1.ndim == in2.ndim == 0: # scalar inputs - return in1 * in2 - elif in1.ndim != in2.ndim: - raise ValueError("in1 and in2 should have the same dimensionality") - elif in1.size == 0 or in2.size == 0: # empty arrays - return np.array([]) - - in1, in2, axes = _init_freq_conv_axes(in1, in2, mode, axes, sorted_axes=False) - - s1 = in1.shape - s2 = in2.shape - - shape = [max((s1[i], s2[i])) if i not in axes else s1[i] + s2[i] - 1 for i in range(in1.ndim)] - - ret = _freq_domain_conv(in1, in2, axes, shape, cache, calc_fast_len=True) - - return _apply_conv_mode(ret, s1, s2, mode, axes) - - -def _freq_domain_conv(in1, in2, axes, shape, cache, calc_fast_len=True): - if not len(axes): - return in1 * in2 - - complex_result = in1.dtype.kind == "c" or in2.dtype.kind == "c" - - if calc_fast_len: - # Speed up FFT by padding to optimal size. - fshape = [sp_fft.next_fast_len(shape[a], not complex_result) for a in axes] - else: - fshape = shape - - if not complex_result: - fft, ifft = sp_fft.rfftn, sp_fft.irfftn - else: - fft, ifft = sp_fft.fftn, sp_fft.ifftn - - sp1 = cache["full"][cache["mask"]] - sp2 = cache["template"] - - # sp2 = fft(in2[cache['mask']], fshape, axes=axes) - ret = ifft(sp1 * sp2, fshape, axes=axes) - - if calc_fast_len: - fslice = tuple([slice(sz) for sz in shape]) - ret = ret[fslice] - - return ret - - def compute_overlaps(templates, num_samples, num_channels, sparsities): num_templates = len(templates) @@ -163,321 +70,6 @@ def compute_overlaps(templates, num_samples, num_channels, sparsities): return new_overlaps -class CircusOMPPeeler(BaseTemplateMatchingEngine): - """ - Orthogonal Matching Pursuit inspired from Spyking Circus sorter - - https://elifesciences.org/articles/34518 - - This is an Orthogonal Template Matching algorithm. For speed and - memory optimization, templates are automatically sparsified. Signal - is convolved with the templates, and as long as some scalar products - are higher than a given threshold, we use a Cholesky decomposition - to compute the optimal amplitudes needed to reconstruct the signal. - - IMPORTANT NOTE: small chunks are more efficient for such Peeler, - consider using 100ms chunk - - Parameters - ---------- - amplitude: tuple - (Minimal, Maximal) amplitudes allowed for every template - omp_min_sps: float - Stopping criteria of the OMP algorithm, in percentage of the norm - noise_levels: array - The noise levels, for every channels. If None, they will be automatically - computed - random_chunk_kwargs: dict - Parameters for computing noise levels, if not provided (sub optimal) - sparse_kwargs: dict - Parameters to extract a sparsity mask from the waveform_extractor, if not - already sparse. - ----- - """ - - _default_params = { - "amplitudes": [0.6, 2], - "omp_min_sps": 0.1, - "waveform_extractor": None, - "templates": None, - "overlaps": None, - "norms": None, - "random_chunk_kwargs": {}, - "noise_levels": None, - "sparse_kwargs": {"method": "ptp", "threshold": 1}, - "ignored_ids": [], - "vicinity": 0, - } - - @classmethod - def _prepare_templates(cls, d): - waveform_extractor = d["waveform_extractor"] - num_templates = len(d["waveform_extractor"].sorting.unit_ids) - - if not waveform_extractor.is_sparse(): - sparsity = compute_sparsity(waveform_extractor, **d["sparse_kwargs"]).mask - else: - sparsity = waveform_extractor.sparsity.mask - - templates = waveform_extractor.get_all_templates(mode="median").copy() - - d["sparsities"] = {} - d["templates"] = {} - d["norms"] = np.zeros(num_templates, dtype=np.float32) - - for count, unit_id in enumerate(waveform_extractor.sorting.unit_ids): - template = templates[count][:, sparsity[count]] - (d["sparsities"][count],) = np.nonzero(sparsity[count]) - d["norms"][count] = np.linalg.norm(template) - d["templates"][count] = template / d["norms"][count] - - return d - - @classmethod - def initialize_and_check_kwargs(cls, recording, kwargs): - d = cls._default_params.copy() - d.update(kwargs) - - # assert isinstance(d['waveform_extractor'], WaveformExtractor) - - for v in ["omp_min_sps"]: - assert (d[v] >= 0) and (d[v] <= 1), f"{v} should be in [0, 1]" - - d["num_channels"] = d["waveform_extractor"].recording.get_num_channels() - d["num_samples"] = d["waveform_extractor"].nsamples - d["nbefore"] = d["waveform_extractor"].nbefore - d["nafter"] = d["waveform_extractor"].nafter - d["sampling_frequency"] = d["waveform_extractor"].recording.get_sampling_frequency() - d["vicinity"] *= d["num_samples"] - - if d["noise_levels"] is None: - print("CircusOMPPeeler : noise should be computed outside") - d["noise_levels"] = get_noise_levels(recording, **d["random_chunk_kwargs"], return_scaled=False) - - if d["templates"] is None: - d = cls._prepare_templates(d) - else: - for key in ["norms", "sparsities"]: - assert d[key] is not None, "If templates are provided, %d should also be there" % key - - d["num_templates"] = len(d["templates"]) - - if d["overlaps"] is None: - d["overlaps"] = compute_overlaps(d["templates"], d["num_samples"], d["num_channels"], d["sparsities"]) - - d["ignored_ids"] = np.array(d["ignored_ids"]) - - omp_min_sps = d["omp_min_sps"] - # nb_active_channels = np.array([len(d['sparsities'][count]) for count in range(d['num_templates'])]) - d["stop_criteria"] = omp_min_sps * np.sqrt(d["noise_levels"].sum() * d["num_samples"]) - - return d - - @classmethod - def serialize_method_kwargs(cls, kwargs): - kwargs = dict(kwargs) - # remove waveform_extractor - kwargs.pop("waveform_extractor") - return kwargs - - @classmethod - def unserialize_in_worker(cls, kwargs): - return kwargs - - @classmethod - def get_margin(cls, recording, kwargs): - margin = 2 * max(kwargs["nbefore"], kwargs["nafter"]) - return margin - - @classmethod - def main_function(cls, traces, d): - templates = d["templates"] - num_templates = d["num_templates"] - num_channels = d["num_channels"] - num_samples = d["num_samples"] - overlaps = d["overlaps"] - norms = d["norms"] - nbefore = d["nbefore"] - nafter = d["nafter"] - omp_tol = np.finfo(np.float32).eps - num_samples = d["nafter"] + d["nbefore"] - neighbor_window = num_samples - 1 - min_amplitude, max_amplitude = d["amplitudes"] - sparsities = d["sparsities"] - ignored_ids = d["ignored_ids"] - stop_criteria = d["stop_criteria"] - vicinity = d["vicinity"] - - if "cached_fft_kernels" not in d: - d["cached_fft_kernels"] = {"fshape": 0} - - cached_fft_kernels = d["cached_fft_kernels"] - - num_timesteps = len(traces) - - num_peaks = num_timesteps - num_samples + 1 - - traces = traces.T - - dummy_filter = np.empty((num_channels, num_samples), dtype=np.float32) - dummy_traces = np.empty((num_channels, num_timesteps), dtype=np.float32) - - fshape, axes = get_scipy_shape(dummy_filter, traces, axes=1) - fft_cache = {"full": sp_fft.rfftn(traces, fshape, axes=axes)} - - scalar_products = np.empty((num_templates, num_peaks), dtype=np.float32) - - flagged_chunk = cached_fft_kernels["fshape"] != fshape[0] - - for i in range(num_templates): - if i not in ignored_ids: - if i not in cached_fft_kernels or flagged_chunk: - kernel_filter = np.ascontiguousarray(templates[i][::-1].T) - cached_fft_kernels.update({i: sp_fft.rfftn(kernel_filter, fshape, axes=axes)}) - cached_fft_kernels["fshape"] = fshape[0] - - fft_cache.update({"mask": sparsities[i], "template": cached_fft_kernels[i]}) - - convolution = fftconvolve_with_cache(dummy_filter, dummy_traces, fft_cache, axes=1, mode="valid") - if len(convolution) > 0: - scalar_products[i] = convolution.sum(0) - else: - scalar_products[i] = 0 - - if len(ignored_ids) > 0: - scalar_products[ignored_ids] = -np.inf - - num_spikes = 0 - - spikes = np.empty(scalar_products.size, dtype=spike_dtype) - idx_lookup = np.arange(scalar_products.size).reshape(num_templates, -1) - - M = np.zeros((100, 100), dtype=np.float32) - - all_selections = np.empty((2, scalar_products.size), dtype=np.int32) - final_amplitudes = np.zeros(scalar_products.shape, dtype=np.float32) - num_selection = 0 - - full_sps = scalar_products.copy() - - neighbors = {} - cached_overlaps = {} - - is_valid = scalar_products > stop_criteria - all_amplitudes = np.zeros(0, dtype=np.float32) - is_in_vicinity = np.zeros(0, dtype=np.int32) - - while np.any(is_valid): - best_amplitude_ind = scalar_products[is_valid].argmax() - best_cluster_ind, peak_index = np.unravel_index(idx_lookup[is_valid][best_amplitude_ind], idx_lookup.shape) - - if num_selection > 0: - delta_t = selection[1] - peak_index - idx = np.where((delta_t < neighbor_window) & (delta_t > -num_samples))[0] - myline = num_samples + delta_t[idx] - - if not best_cluster_ind in cached_overlaps: - cached_overlaps[best_cluster_ind] = overlaps[best_cluster_ind].toarray() - - if num_selection == M.shape[0]: - Z = np.zeros((2 * num_selection, 2 * num_selection), dtype=np.float32) - Z[:num_selection, :num_selection] = M - M = Z - - M[num_selection, idx] = cached_overlaps[best_cluster_ind][selection[0, idx], myline] - - if vicinity == 0: - scipy.linalg.solve_triangular( - M[:num_selection, :num_selection], - M[num_selection, :num_selection], - trans=0, - lower=1, - overwrite_b=True, - check_finite=False, - ) - - v = nrm2(M[num_selection, :num_selection]) ** 2 - Lkk = 1 - v - if Lkk <= omp_tol: # selected atoms are dependent - break - M[num_selection, num_selection] = np.sqrt(Lkk) - else: - is_in_vicinity = np.where(np.abs(delta_t) < vicinity)[0] - - if len(is_in_vicinity) > 0: - L = M[is_in_vicinity, :][:, is_in_vicinity] - - M[num_selection, is_in_vicinity] = scipy.linalg.solve_triangular( - L, M[num_selection, is_in_vicinity], trans=0, lower=1, overwrite_b=True, check_finite=False - ) - - v = nrm2(M[num_selection, is_in_vicinity]) ** 2 - Lkk = 1 - v - if Lkk <= omp_tol: # selected atoms are dependent - break - M[num_selection, num_selection] = np.sqrt(Lkk) - else: - M[num_selection, num_selection] = 1.0 - else: - M[0, 0] = 1 - - all_selections[:, num_selection] = [best_cluster_ind, peak_index] - num_selection += 1 - - selection = all_selections[:, :num_selection] - res_sps = full_sps[selection[0], selection[1]] - - if True: # vicinity == 0: - all_amplitudes, _ = potrs(M[:num_selection, :num_selection], res_sps, lower=True, overwrite_b=False) - all_amplitudes /= norms[selection[0]] - else: - # This is not working, need to figure out why - is_in_vicinity = np.append(is_in_vicinity, num_selection - 1) - all_amplitudes = np.append(all_amplitudes, np.float32(1)) - L = M[is_in_vicinity, :][:, is_in_vicinity] - all_amplitudes[is_in_vicinity], _ = potrs(L, res_sps[is_in_vicinity], lower=True, overwrite_b=False) - all_amplitudes[is_in_vicinity] /= norms[selection[0][is_in_vicinity]] - - diff_amplitudes = all_amplitudes - final_amplitudes[selection[0], selection[1]] - modified = np.where(np.abs(diff_amplitudes) > omp_tol)[0] - final_amplitudes[selection[0], selection[1]] = all_amplitudes - - for i in modified: - tmp_best, tmp_peak = selection[:, i] - diff_amp = diff_amplitudes[i] * norms[tmp_best] - - if not tmp_best in cached_overlaps: - cached_overlaps[tmp_best] = overlaps[tmp_best].toarray() - - if not tmp_peak in neighbors.keys(): - idx = [max(0, tmp_peak - num_samples), min(num_peaks, tmp_peak + neighbor_window)] - tdx = [num_samples + idx[0] - tmp_peak, num_samples + idx[1] - tmp_peak] - neighbors[tmp_peak] = {"idx": idx, "tdx": tdx} - - idx = neighbors[tmp_peak]["idx"] - tdx = neighbors[tmp_peak]["tdx"] - - to_add = diff_amp * cached_overlaps[tmp_best][:, tdx[0] : tdx[1]] - scalar_products[:, idx[0] : idx[1]] -= to_add - - is_valid = scalar_products > stop_criteria - - is_valid = (final_amplitudes > min_amplitude) * (final_amplitudes < max_amplitude) - valid_indices = np.where(is_valid) - - num_spikes = len(valid_indices[0]) - spikes["sample_index"][:num_spikes] = valid_indices[1] + d["nbefore"] - spikes["channel_index"][:num_spikes] = 0 - spikes["cluster_index"][:num_spikes] = valid_indices[0] - spikes["amplitude"][:num_spikes] = final_amplitudes[valid_indices[0], valid_indices[1]] - - spikes = spikes[:num_spikes] - order = np.argsort(spikes["sample_index"]) - spikes = spikes[order] - - return spikes - - class CircusOMPSVDPeeler(BaseTemplateMatchingEngine): """ Orthogonal Matching Pursuit inspired from Spyking Circus sorter @@ -516,82 +108,47 @@ class CircusOMPSVDPeeler(BaseTemplateMatchingEngine): "max_failures": 20, "omp_min_sps": 0.1, "relative_error": 5e-5, - "waveform_extractor": None, + "templates": None, "rank": 5, - "sparse_kwargs": {"method": "ptp", "threshold": 1}, "ignored_ids": [], - "vicinity": 0, - "optimize_amplitudes": False, + "vicinity": 3, } @classmethod def _prepare_templates(cls, d): - waveform_extractor = d["waveform_extractor"] - num_templates = len(d["waveform_extractor"].sorting.unit_ids) + templates = d["templates"] + num_templates = len(d["templates"].unit_ids) assert d["stop_criteria"] in ["max_failures", "omp_min_sps", "relative_error"] - if not waveform_extractor.is_sparse(): - sparsity = compute_sparsity(waveform_extractor, **d["sparse_kwargs"]).mask - else: - sparsity = waveform_extractor.sparsity.mask + sparsity = templates.sparsity.mask - d["sparsity_mask"] = sparsity units_overlaps = np.sum(np.logical_and(sparsity[:, np.newaxis, :], sparsity[np.newaxis, :, :]), axis=2) d["units_overlaps"] = units_overlaps > 0 d["unit_overlaps_indices"] = {} for i in range(num_templates): (d["unit_overlaps_indices"][i],) = np.nonzero(d["units_overlaps"][i]) - templates = waveform_extractor.get_all_templates(mode="median").copy() - - # First, we set masked channels to 0 - for count in range(num_templates): - templates[count][:, ~d["sparsity_mask"][count]] = 0 + templates_array = templates.get_dense_templates().copy() # Then we keep only the strongest components rank = d["rank"] - temporal, singular, spatial = np.linalg.svd(templates, full_matrices=False) + temporal, singular, spatial = np.linalg.svd(templates_array, full_matrices=False) d["temporal"] = temporal[:, :, :rank] d["singular"] = singular[:, :rank] d["spatial"] = spatial[:, :rank, :] # We reconstruct the approximated templates - templates = np.matmul(d["temporal"] * d["singular"][:, np.newaxis, :], d["spatial"]) + templates_array = np.matmul(d["temporal"] * d["singular"][:, np.newaxis, :], d["spatial"]) - d["templates"] = np.zeros(templates.shape, dtype=np.float32) + d["normed_templates"] = np.zeros(templates_array.shape, dtype=np.float32) d["norms"] = np.zeros(num_templates, dtype=np.float32) # And get the norms, saving compressed templates for CC matrix for count in range(num_templates): - template = templates[count][:, d["sparsity_mask"][count]] + template = templates_array[count][:, sparsity[count]] d["norms"][count] = np.linalg.norm(template) - d["templates"][count][:, d["sparsity_mask"][count]] = template / d["norms"][count] - - if d["optimize_amplitudes"]: - noise = np.random.randn(200, d["num_samples"] * d["num_channels"]) - r = d["templates"].reshape(num_templates, -1).dot(noise.reshape(len(noise), -1).T) - s = r / d["norms"][:, np.newaxis] - mad = np.median(np.abs(s - np.median(s, 1)[:, np.newaxis]), 1) - a_min = np.median(s, 1) + 5 * mad - - means = np.zeros((num_templates, num_templates), dtype=np.float32) - stds = np.zeros((num_templates, num_templates), dtype=np.float32) - for count, unit_id in enumerate(waveform_extractor.unit_ids): - w = waveform_extractor.get_waveforms(unit_id, force_dense=True) - r = d["templates"].reshape(num_templates, -1).dot(w.reshape(len(w), -1).T) - s = r / d["norms"][:, np.newaxis] - means[count] = np.median(s, 1) - stds[count] = np.median(np.abs(s - np.median(s, 1)[:, np.newaxis]), 1) - - _, a_max = d["amplitudes"] - d["amplitudes"] = np.zeros((num_templates, 2), dtype=np.float32) - - for count in range(num_templates): - indices = np.argsort(means[count]) - a = np.where(indices == count)[0][0] - d["amplitudes"][count][1] = 1 + 5 * stds[count, indices[a]] - d["amplitudes"][count][0] = max(a_min[count], 1 - 5 * stds[count, indices[a]]) + d["normed_templates"][count][:, sparsity[count]] = template / d["norms"][count] d["temporal"] /= d["norms"][:, np.newaxis, np.newaxis] d["temporal"] = np.flip(d["temporal"], axis=1) @@ -609,7 +166,7 @@ def _prepare_templates(cls, d): unit_overlaps = np.zeros([num_overlaps, 2 * d["num_samples"] - 1], dtype=np.float32) for count, j in enumerate(overlapping_units): - overlapped_channels = d["sparsity_mask"][j] + overlapped_channels = sparsity[j] visible_i = template_i[:, overlapped_channels] spatial_filters = d["spatial"][j, :, overlapped_channels] @@ -624,7 +181,6 @@ def _prepare_templates(cls, d): d["spatial"] = np.moveaxis(d["spatial"], [0, 1, 2], [1, 0, 2]) d["temporal"] = np.moveaxis(d["temporal"], [0, 1, 2], [1, 2, 0]) d["singular"] = d["singular"].T[:, :, np.newaxis] - return d @classmethod @@ -632,14 +188,18 @@ def initialize_and_check_kwargs(cls, recording, kwargs): d = cls._default_params.copy() d.update(kwargs) - d["num_channels"] = d["waveform_extractor"].recording.get_num_channels() - d["num_samples"] = d["waveform_extractor"].nsamples - d["nbefore"] = d["waveform_extractor"].nbefore - d["nafter"] = d["waveform_extractor"].nafter - d["sampling_frequency"] = d["waveform_extractor"].recording.get_sampling_frequency() + assert isinstance(d["templates"], Templates), ( + f"The templates supplied is of type {type(d['templates'])} " f"and must be a Templates" + ) + + d["num_channels"] = recording.get_num_channels() + d["num_samples"] = d["templates"].num_samples + d["nbefore"] = d["templates"].nbefore + d["nafter"] = d["templates"].nafter + d["sampling_frequency"] = recording.get_sampling_frequency() d["vicinity"] *= d["num_samples"] - if "templates" not in d: + if "overlaps" not in d: d = cls._prepare_templates(d) else: for key in [ @@ -648,12 +208,11 @@ def initialize_and_check_kwargs(cls, recording, kwargs): "spatial", "singular", "units_overlaps", - "sparsity_mask", "unit_overlaps_indices", ]: assert d[key] is not None, "If templates are provided, %d should also be there" % key - d["num_templates"] = len(d["templates"]) + d["num_templates"] = len(d["templates"].templates_array) d["ignored_ids"] = np.array(d["ignored_ids"]) d["unit_overlaps_tables"] = {} @@ -666,8 +225,6 @@ def initialize_and_check_kwargs(cls, recording, kwargs): @classmethod def serialize_method_kwargs(cls, kwargs): kwargs = dict(kwargs) - # remove waveform_extractor - kwargs.pop("waveform_extractor") return kwargs @classmethod @@ -676,28 +233,25 @@ def unserialize_in_worker(cls, kwargs): @classmethod def get_margin(cls, recording, kwargs): - margin = 2 * max(kwargs["nbefore"], kwargs["nafter"]) + if kwargs["vicinity"] > 0: + margin = kwargs["vicinity"] + else: + margin = 2 * kwargs["num_samples"] return margin @classmethod def main_function(cls, traces, d): - templates = d["templates"] num_templates = d["num_templates"] num_channels = d["num_channels"] num_samples = d["num_samples"] - overlaps = d["overlaps"] + overlaps_array = d["overlaps"] norms = d["norms"] nbefore = d["nbefore"] nafter = d["nafter"] omp_tol = np.finfo(np.float32).eps num_samples = d["nafter"] + d["nbefore"] neighbor_window = num_samples - 1 - if d["optimize_amplitudes"]: - min_amplitude, max_amplitude = d["amplitudes"][:, 0], d["amplitudes"][:, 1] - min_amplitude = min_amplitude[:, np.newaxis] - max_amplitude = max_amplitude[:, np.newaxis] - else: - min_amplitude, max_amplitude = d["amplitudes"] + min_amplitude, max_amplitude = d["amplitudes"] ignored_ids = d["ignored_ids"] vicinity = d["vicinity"] rank = d["rank"] @@ -766,7 +320,7 @@ def main_function(cls, traces, d): myline = neighbor_window + delta_t[idx] myindices = selection[0, idx] - local_overlaps = overlaps[best_cluster_ind] + local_overlaps = overlaps_array[best_cluster_ind] overlapping_templates = d["unit_overlaps_indices"][best_cluster_ind] table = d["unit_overlaps_tables"][best_cluster_ind] @@ -820,11 +374,10 @@ def main_function(cls, traces, d): selection = all_selections[:, :num_selection] res_sps = full_sps[selection[0], selection[1]] - if True: # vicinity == 0: + if vicinity == 0: all_amplitudes, _ = potrs(M[:num_selection, :num_selection], res_sps, lower=True, overwrite_b=False) all_amplitudes /= norms[selection[0]] else: - # This is not working, need to figure out why is_in_vicinity = np.append(is_in_vicinity, num_selection - 1) all_amplitudes = np.append(all_amplitudes, np.float32(1)) L = M[is_in_vicinity, :][:, is_in_vicinity] @@ -839,7 +392,7 @@ def main_function(cls, traces, d): tmp_best, tmp_peak = selection[:, i] diff_amp = diff_amplitudes[i] * norms[tmp_best] - local_overlaps = overlaps[tmp_best] + local_overlaps = overlaps_array[tmp_best] overlapping_templates = d["units_overlaps"][tmp_best] if not tmp_peak in neighbors.keys(): @@ -945,13 +498,12 @@ class CircusPeeler(BaseTemplateMatchingEngine): "max_amplitude": 1.5, "min_amplitude": 0.5, "use_sparse_matrix_threshold": 0.25, - "waveform_extractor": None, - "sparse_kwargs": {"method": "ptp", "threshold": 1}, + "templates": None, } @classmethod def _prepare_templates(cls, d): - waveform_extractor = d["waveform_extractor"] + templates = d["templates"] num_samples = d["num_samples"] num_channels = d["num_channels"] num_templates = d["num_templates"] @@ -959,163 +511,155 @@ def _prepare_templates(cls, d): d["norms"] = np.zeros(num_templates, dtype=np.float32) - all_units = list(d["waveform_extractor"].sorting.unit_ids) + all_units = d["templates"].unit_ids - if not waveform_extractor.is_sparse(): - sparsity = compute_sparsity(waveform_extractor, **d["sparse_kwargs"]).mask - else: - sparsity = waveform_extractor.sparsity.mask + sparsity = templates.sparsity.mask - templates = waveform_extractor.get_all_templates(mode="median").copy() + templates_array = templates.get_dense_templates() d["sparsities"] = {} - d["circus_templates"] = {} + d["normed_templates"] = {} for count, unit_id in enumerate(all_units): (d["sparsities"][count],) = np.nonzero(sparsity[count]) - templates[count][:, ~sparsity[count]] = 0 - d["norms"][count] = np.linalg.norm(templates[count]) - templates[count] /= d["norms"][count] - d["circus_templates"][count] = templates[count][:, sparsity[count]] + d["norms"][count] = np.linalg.norm(templates_array[count]) + templates_array[count] /= d["norms"][count] + d["normed_templates"][count] = templates_array[count][:, sparsity[count]] - templates = templates.reshape(num_templates, -1) + templates_array = templates_array.reshape(num_templates, -1) - nnz = np.sum(templates != 0) / (num_templates * num_samples * num_channels) + nnz = np.sum(templates_array != 0) / (num_templates * num_samples * num_channels) if nnz <= use_sparse_matrix_threshold: - templates = scipy.sparse.csr_matrix(templates) + templates_array = scipy.sparse.csr_matrix(templates_array) print(f"Templates are automatically sparsified (sparsity level is {nnz})") d["is_dense"] = False else: d["is_dense"] = True - d["templates"] = templates + d["circus_templates"] = templates_array return d - @classmethod - def _mcc_error(cls, bounds, good, bad): - fn = np.sum((good < bounds[0]) | (good > bounds[1])) - fp = np.sum((bounds[0] <= bad) & (bad <= bounds[1])) - tp = np.sum((bounds[0] <= good) & (good <= bounds[1])) - tn = np.sum((bad < bounds[0]) | (bad > bounds[1])) - denom = (tp + fp) * (tp + fn) * (tn + fp) * (tn + fn) - if denom > 0: - mcc = 1 - (tp * tn - fp * fn) / np.sqrt(denom) - else: - mcc = 1 - return mcc - - @classmethod - def _cost_function_mcc(cls, bounds, good, bad, delta_amplitude, alpha): - # We want a minimal error, with the larger bounds that are possible - cost = alpha * cls._mcc_error(bounds, good, bad) + (1 - alpha) * np.abs( - (1 - (bounds[1] - bounds[0]) / delta_amplitude) - ) - return cost - - @classmethod - def _optimize_amplitudes(cls, noise_snippets, d): - parameters = d - waveform_extractor = parameters["waveform_extractor"] - templates = parameters["templates"] - num_templates = parameters["num_templates"] - max_amplitude = parameters["max_amplitude"] - min_amplitude = parameters["min_amplitude"] - alpha = 0.5 - norms = parameters["norms"] - all_units = list(waveform_extractor.sorting.unit_ids) - - parameters["amplitudes"] = np.zeros((num_templates, 2), dtype=np.float32) - noise = templates.dot(noise_snippets) / norms[:, np.newaxis] - - all_amps = {} - for count, unit_id in enumerate(all_units): - waveform = waveform_extractor.get_waveforms(unit_id, force_dense=True) - snippets = waveform.reshape(waveform.shape[0], -1).T - amps = templates.dot(snippets) / norms[:, np.newaxis] - good = amps[count, :].flatten() - - sub_amps = amps[np.concatenate((np.arange(count), np.arange(count + 1, num_templates))), :] - bad = sub_amps[sub_amps >= good] - bad = np.concatenate((bad, noise[count])) - cost_kwargs = [good, bad, max_amplitude - min_amplitude, alpha] - cost_bounds = [(min_amplitude, 1), (1, max_amplitude)] - res = scipy.optimize.differential_evolution(cls._cost_function_mcc, bounds=cost_bounds, args=cost_kwargs) - parameters["amplitudes"][count] = res.x - - return d + # @classmethod + # def _mcc_error(cls, bounds, good, bad): + # fn = np.sum((good < bounds[0]) | (good > bounds[1])) + # fp = np.sum((bounds[0] <= bad) & (bad <= bounds[1])) + # tp = np.sum((bounds[0] <= good) & (good <= bounds[1])) + # tn = np.sum((bad < bounds[0]) | (bad > bounds[1])) + # denom = (tp + fp) * (tp + fn) * (tn + fp) * (tn + fn) + # if denom > 0: + # mcc = 1 - (tp * tn - fp * fn) / np.sqrt(denom) + # else: + # mcc = 1 + # return mcc + + # @classmethod + # def _cost_function_mcc(cls, bounds, good, bad, delta_amplitude, alpha): + # # We want a minimal error, with the larger bounds that are possible + # cost = alpha * cls._mcc_error(bounds, good, bad) + (1 - alpha) * np.abs( + # (1 - (bounds[1] - bounds[0]) / delta_amplitude) + # ) + # return cost + + # @classmethod + # def _optimize_amplitudes(cls, noise_snippets, d): + # parameters = d + # waveform_extractor = parameters["waveform_extractor"] + # templates = parameters["templates"] + # num_templates = parameters["num_templates"] + # max_amplitude = parameters["max_amplitude"] + # min_amplitude = parameters["min_amplitude"] + # alpha = 0.5 + # norms = parameters["norms"] + # all_units = list(waveform_extractor.sorting.unit_ids) + + # parameters["amplitudes"] = np.zeros((num_templates, 2), dtype=np.float32) + # noise = templates.dot(noise_snippets) / norms[:, np.newaxis] + + # all_amps = {} + # for count, unit_id in enumerate(all_units): + # waveform = waveform_extractor.get_waveforms(unit_id, force_dense=True) + # snippets = waveform.reshape(waveform.shape[0], -1).T + # amps = templates.dot(snippets) / norms[:, np.newaxis] + # good = amps[count, :].flatten() + + # sub_amps = amps[np.concatenate((np.arange(count), np.arange(count + 1, num_templates))), :] + # bad = sub_amps[sub_amps >= good] + # bad = np.concatenate((bad, noise[count])) + # cost_kwargs = [good, bad, max_amplitude - min_amplitude, alpha] + # cost_bounds = [(min_amplitude, 1), (1, max_amplitude)] + # res = scipy.optimize.differential_evolution(cls._cost_function_mcc, bounds=cost_bounds, args=cost_kwargs) + # parameters["amplitudes"][count] = res.x + + # return d @classmethod def initialize_and_check_kwargs(cls, recording, kwargs): assert HAVE_SKLEARN, "CircusPeeler needs sklearn to work" - default_parameters = cls._default_params.copy() - default_parameters.update(kwargs) + d = cls._default_params.copy() + d.update(kwargs) # assert isinstance(d['waveform_extractor'], WaveformExtractor) for v in ["use_sparse_matrix_threshold"]: - assert (default_parameters[v] >= 0) and (default_parameters[v] <= 1), f"{v} should be in [0, 1]" + assert (d[v] >= 0) and (d[v] <= 1), f"{v} should be in [0, 1]" - default_parameters["num_channels"] = default_parameters["waveform_extractor"].recording.get_num_channels() - default_parameters["num_samples"] = default_parameters["waveform_extractor"].nsamples - default_parameters["num_templates"] = len(default_parameters["waveform_extractor"].sorting.unit_ids) + d["num_channels"] = recording.get_num_channels() + d["num_samples"] = d["templates"].num_samples + d["num_templates"] = len(d["templates"].unit_ids) - if default_parameters["noise_levels"] is None: + if d["noise_levels"] is None: print("CircusPeeler : noise should be computed outside") - default_parameters["noise_levels"] = get_noise_levels( - recording, **default_parameters["random_chunk_kwargs"], return_scaled=False - ) - - default_parameters["abs_threholds"] = ( - default_parameters["noise_levels"] * default_parameters["detect_threshold"] - ) - - default_parameters = cls._prepare_templates(default_parameters) - - default_parameters["overlaps"] = compute_overlaps( - default_parameters["circus_templates"], - default_parameters["num_samples"], - default_parameters["num_channels"], - default_parameters["sparsities"], - ) - - default_parameters["exclude_sweep_size"] = int( - default_parameters["exclude_sweep_ms"] * recording.get_sampling_frequency() / 1000.0 - ) + d["noise_levels"] = get_noise_levels(recording, **d["random_chunk_kwargs"], return_scaled=False) - default_parameters["nbefore"] = default_parameters["waveform_extractor"].nbefore - default_parameters["nafter"] = default_parameters["waveform_extractor"].nafter - default_parameters["patch_sizes"] = ( - default_parameters["waveform_extractor"].nsamples, - default_parameters["num_channels"], - ) - default_parameters["sym_patch"] = default_parameters["nbefore"] == default_parameters["nafter"] - default_parameters["jitter"] = int( - default_parameters["jitter_ms"] * recording.get_sampling_frequency() / 1000.0 - ) + d["abs_threholds"] = d["noise_levels"] * d["detect_threshold"] - num_segments = recording.get_num_segments() - if default_parameters["waveform_extractor"]._params["max_spikes_per_unit"] is None: - num_snippets = 1000 + if "overlaps" not in d: + d = cls._prepare_templates(d) + d["overlaps"] = compute_overlaps( + d["normed_templates"], + d["num_samples"], + d["num_channels"], + d["sparsities"], + ) else: - num_snippets = 2 * default_parameters["waveform_extractor"]._params["max_spikes_per_unit"] + for key in ["circus_templates", "norms"]: + assert d[key] is not None, "If templates are provided, %d should also be there" % key - num_chunks = num_snippets // num_segments - noise_snippets = get_random_data_chunks( - recording, num_chunks_per_segment=num_chunks, chunk_size=default_parameters["num_samples"], seed=42 - ) - noise_snippets = ( - noise_snippets.reshape(num_chunks, default_parameters["num_samples"], default_parameters["num_channels"]) - .reshape(num_chunks, -1) - .T + d["exclude_sweep_size"] = int(d["exclude_sweep_ms"] * recording.get_sampling_frequency() / 1000.0) + + d["nbefore"] = d["templates"].nbefore + d["nafter"] = d["templates"].nafter + d["patch_sizes"] = ( + d["templates"].num_samples, + d["num_channels"], ) - parameters = cls._optimize_amplitudes(noise_snippets, default_parameters) + d["sym_patch"] = d["nbefore"] == d["nafter"] + d["jitter"] = int(d["jitter_ms"] * recording.get_sampling_frequency() / 1000.0) + + d["amplitudes"] = np.zeros((d["num_templates"], 2), dtype=np.float32) + d["amplitudes"][:, 0] = d["min_amplitude"] + d["amplitudes"][:, 1] = d["max_amplitude"] + # num_segments = recording.get_num_segments() + # if d["waveform_extractor"]._params["max_spikes_per_unit"] is None: + # num_snippets = 1000 + # else: + # num_snippets = 2 * d["waveform_extractor"]._params["max_spikes_per_unit"] + + # num_chunks = num_snippets // num_segments + # noise_snippets = get_random_data_chunks( + # recording, num_chunks_per_segment=num_chunks, chunk_size=d["num_samples"], seed=42 + # ) + # noise_snippets = ( + # noise_snippets.reshape(num_chunks, d["num_samples"], d["num_channels"]) + # .reshape(num_chunks, -1) + # .T + # ) + # parameters = cls._optimize_amplitudes(noise_snippets, d) - return parameters + return d @classmethod def serialize_method_kwargs(cls, kwargs): kwargs = dict(kwargs) - # remove waveform_extractor - kwargs.pop("waveform_extractor") return kwargs @classmethod @@ -1132,7 +676,7 @@ def main_function(cls, traces, d): peak_sign = d["peak_sign"] abs_threholds = d["abs_threholds"] exclude_sweep_size = d["exclude_sweep_size"] - templates = d["templates"] + templates = d["circus_templates"] num_templates = d["num_templates"] num_channels = d["num_channels"] overlaps = d["overlaps"] diff --git a/src/spikeinterface/sortingcomponents/matching/main.py b/src/spikeinterface/sortingcomponents/matching/main.py index 37eb4d2ec4..1c5c947b02 100644 --- a/src/spikeinterface/sortingcomponents/matching/main.py +++ b/src/spikeinterface/sortingcomponents/matching/main.py @@ -30,10 +30,6 @@ def find_spikes_from_templates(recording, method="naive", method_kwargs={}, extr method_kwargs: Optionaly returns for debug purpose. - Notes - ----- - For all methods except "wobble", templates are represented as a WaveformExtractor in method_kwargs - so statistics can be extracted. For "wobble" templates are represented as a numpy.ndarray. """ from .method_list import matching_methods diff --git a/src/spikeinterface/sortingcomponents/matching/method_list.py b/src/spikeinterface/sortingcomponents/matching/method_list.py index 4a27fcd8c2..ca6c0db924 100644 --- a/src/spikeinterface/sortingcomponents/matching/method_list.py +++ b/src/spikeinterface/sortingcomponents/matching/method_list.py @@ -2,14 +2,13 @@ from .naive import NaiveMatching from .tdc import TridesclousPeeler -from .circus import CircusPeeler, CircusOMPPeeler, CircusOMPSVDPeeler +from .circus import CircusPeeler, CircusOMPSVDPeeler from .wobble import WobbleMatch matching_methods = { "naive": NaiveMatching, - "tridesclous": TridesclousPeeler, + "tdc-peeler": TridesclousPeeler, "circus": CircusPeeler, - "circus-omp": CircusOMPPeeler, "circus-omp-svd": CircusOMPSVDPeeler, "wobble": WobbleMatch, } diff --git a/src/spikeinterface/sortingcomponents/matching/naive.py b/src/spikeinterface/sortingcomponents/matching/naive.py index f79f5c3f08..c172e90fd8 100644 --- a/src/spikeinterface/sortingcomponents/matching/naive.py +++ b/src/spikeinterface/sortingcomponents/matching/naive.py @@ -4,9 +4,9 @@ import numpy as np -from spikeinterface.core import WaveformExtractor, get_template_channel_sparsity, get_template_extremum_channel from spikeinterface.core import get_noise_levels, get_channel_distances, get_chunk_with_margin, get_random_data_chunks from spikeinterface.sortingcomponents.peak_detection import DetectPeakLocallyExclusive +from spikeinterface.core.template import Templates spike_dtype = [ ("sample_index", "int64"), @@ -31,7 +31,7 @@ class NaiveMatching(BaseTemplateMatchingEngine): """ default_params = { - "waveform_extractor": None, + "templates": None, "peak_sign": "neg", "exclude_sweep_ms": 0.1, "detect_threshold": 5, @@ -45,20 +45,22 @@ def initialize_and_check_kwargs(cls, recording, kwargs): d = cls.default_params.copy() d.update(kwargs) - assert d["waveform_extractor"] is not None, "'waveform_extractor' must be supplied" + assert isinstance(d["templates"], Templates), ( + f"The templates supplied is of type {type(d['templates'])} " f"and must be a Templates" + ) - we = d["waveform_extractor"] + templates = d["templates"] if d["noise_levels"] is None: - d["noise_levels"] = get_noise_levels(recording, **d["random_chunk_kwargs"]) + d["noise_levels"] = get_noise_levels(recording, **d["random_chunk_kwargs"], return_scaled=False) d["abs_threholds"] = d["noise_levels"] * d["detect_threshold"] channel_distance = get_channel_distances(recording) d["neighbours_mask"] = channel_distance < d["radius_um"] - d["nbefore"] = we.nbefore - d["nafter"] = we.nafter + d["nbefore"] = templates.nbefore + d["nafter"] = templates.nafter d["exclude_sweep_size"] = int(d["exclude_sweep_ms"] * recording.get_sampling_frequency() / 1000.0) @@ -72,10 +74,6 @@ def get_margin(cls, recording, kwargs): @classmethod def serialize_method_kwargs(cls, kwargs): kwargs = dict(kwargs) - - we = kwargs.pop("waveform_extractor") - kwargs["templates"] = we.get_all_templates(mode="average") - return kwargs @classmethod @@ -88,7 +86,7 @@ def main_function(cls, traces, method_kwargs): abs_threholds = method_kwargs["abs_threholds"] exclude_sweep_size = method_kwargs["exclude_sweep_size"] neighbours_mask = method_kwargs["neighbours_mask"] - templates = method_kwargs["templates"] + templates_array = method_kwargs["templates"].get_dense_templates() nbefore = method_kwargs["nbefore"] nafter = method_kwargs["nafter"] @@ -114,7 +112,7 @@ def main_function(cls, traces, method_kwargs): i1 = peak_sample_ind[i] + nafter waveforms = traces[i0:i1, :] - dist = np.sum(np.sum((templates - waveforms[None, :, :]) ** 2, axis=1), axis=1) + dist = np.sum(np.sum((templates_array - waveforms[None, :, :]) ** 2, axis=1), axis=1) cluster_index = np.argmin(dist) spikes["cluster_index"][i] = cluster_index diff --git a/src/spikeinterface/sortingcomponents/matching/tdc.py b/src/spikeinterface/sortingcomponents/matching/tdc.py index 5c2303f9a0..44a7aa00ee 100644 --- a/src/spikeinterface/sortingcomponents/matching/tdc.py +++ b/src/spikeinterface/sortingcomponents/matching/tdc.py @@ -3,7 +3,6 @@ import numpy as np import scipy from spikeinterface.core import ( - WaveformExtractor, get_noise_levels, get_channel_distances, compute_sparsity, @@ -11,6 +10,7 @@ ) from spikeinterface.sortingcomponents.peak_detection import DetectPeakLocallyExclusive +from spikeinterface.core.template import Templates spike_dtype = [ ("sample_index", "int64"), @@ -47,7 +47,7 @@ class TridesclousPeeler(BaseTemplateMatchingEngine): """ default_params = { - "waveform_extractor": None, + "templates": None, "peak_sign": "neg", "peak_shift_ms": 0.2, "detect_threshold": 5, @@ -68,35 +68,31 @@ def initialize_and_check_kwargs(cls, recording, kwargs): d = cls.default_params.copy() d.update(kwargs) - assert isinstance(d["waveform_extractor"], WaveformExtractor), ( - f"The waveform_extractor supplied is of type {type(d['waveform_extractor'])} " - f"and must be a WaveformExtractor" + assert isinstance(d["templates"], Templates), ( + f"The templates supplied is of type {type(d['templates'])} " f"and must be a Templates" ) - we = d["waveform_extractor"] - unit_ids = we.unit_ids - channel_ids = we.channel_ids + templates = d["templates"] + unit_ids = templates.unit_ids + channel_ids = templates.channel_ids - sr = we.sampling_frequency + sr = templates.sampling_frequency - # TODO load as sharedmem - templates = we.get_all_templates(mode="average") - d["templates"] = templates - - d["nbefore"] = we.nbefore - d["nafter"] = we.nafter + d["nbefore"] = templates.nbefore + d["nafter"] = templates.nafter + templates_array = templates.get_dense_templates() nbefore_short = int(d["ms_before"] * sr / 1000.0) nafter_short = int(d["ms_before"] * sr / 1000.0) - assert nbefore_short <= we.nbefore - assert nafter_short <= we.nafter + assert nbefore_short <= templates.nbefore + assert nafter_short <= templates.nafter d["nbefore_short"] = nbefore_short d["nafter_short"] = nafter_short - s0 = we.nbefore - nbefore_short - s1 = -(we.nafter - nafter_short) + s0 = templates.nbefore - nbefore_short + s1 = -(templates.nafter - nafter_short) if s1 == 0: s1 = None - templates_short = templates[:, slice(s0, s1), :].copy() + templates_short = templates_array[:, slice(s0, s1), :].copy() d["templates_short"] = templates_short d["peak_shift"] = int(d["peak_shift_ms"] / 1000 * sr) @@ -105,12 +101,14 @@ def initialize_and_check_kwargs(cls, recording, kwargs): print("TridesclousPeeler : noise should be computed outside") d["noise_levels"] = get_noise_levels(recording) - d["abs_threholds"] = d["noise_levels"] * d["detect_threshold"] + d["abs_thresholds"] = d["noise_levels"] * d["detect_threshold"] channel_distance = get_channel_distances(recording) d["neighbours_mask"] = channel_distance < d["radius_um"] - sparsity = compute_sparsity(we, method="snr", peak_sign=d["peak_sign"], threshold=d["detect_threshold"]) + sparsity = compute_sparsity( + templates, method="best_channels" + ) # , peak_sign=d["peak_sign"], threshold=d["detect_threshold"]) template_sparsity_inds = sparsity.unit_id_to_channel_indices template_sparsity = np.zeros((unit_ids.size, channel_ids.size), dtype="bool") for unit_index, unit_id in enumerate(unit_ids): @@ -119,12 +117,12 @@ def initialize_and_check_kwargs(cls, recording, kwargs): d["template_sparsity"] = template_sparsity - extremum_channel = get_template_extremum_channel(we, peak_sign=d["peak_sign"], outputs="index") + extremum_channel = get_template_extremum_channel(templates, peak_sign=d["peak_sign"], outputs="index") # as numpy vector extremum_channel = np.array([extremum_channel[unit_id] for unit_id in unit_ids], dtype="int64") d["extremum_channel"] = extremum_channel - channel_locations = we.recording.get_channel_locations() + channel_locations = templates.probe.contact_positions # TODO try it with real locaion unit_locations = channel_locations[extremum_channel] @@ -143,11 +141,11 @@ def initialize_and_check_kwargs(cls, recording, kwargs): # compute unitary discriminent vector (chans,) = np.nonzero(d["template_sparsity"][unit_ind, :]) - template_sparse = templates[unit_ind, :, :][:, chans] + template_sparse = templates_array[unit_ind, :, :][:, chans] closest_vec = [] # against N closets for u in closest_u: - vec = templates[u, :, :][:, chans] - template_sparse + vec = templates_array[u, :, :][:, chans] - template_sparse vec /= np.sum(vec**2) closest_vec.append((u, vec)) # against noise @@ -175,9 +173,6 @@ def initialize_and_check_kwargs(cls, recording, kwargs): @classmethod def serialize_method_kwargs(cls, kwargs): kwargs = dict(kwargs) - - # remove waveform_extractor - kwargs.pop("waveform_extractor") return kwargs @classmethod @@ -222,12 +217,14 @@ def _tdc_find_spikes(traces, d, level=0): peak_sign = d["peak_sign"] templates = d["templates"] templates_short = d["templates_short"] + templates_array = templates.get_dense_templates() + margin = d["margin"] possible_clusters_by_channel = d["possible_clusters_by_channel"] peak_traces = traces[margin // 2 : -margin // 2, :] peak_sample_ind, peak_chan_ind = DetectPeakLocallyExclusive.detect_peaks( - peak_traces, peak_sign, d["abs_threholds"], d["peak_shift"], d["neighbours_mask"] + peak_traces, peak_sign, d["abs_thresholds"], d["peak_shift"], d["neighbours_mask"] ) peak_sample_ind += margin // 2 @@ -266,7 +263,7 @@ def _tdc_find_spikes(traces, d, level=0): # union_channels, = np.nonzero(np.any(d['template_sparsity'][possible_clusters, :], axis=0)) # distances = np.sum(np.sum((templates[possible_clusters][:, :, union_channels] - wf[: , union_channels][None, : :])**2, axis=1), axis=1) - ## numba with cluster+channel spasity + ## numba with cluster+channel spasity union_channels = np.any(d["template_sparsity"][possible_clusters, :], axis=0) # distances = numba_sparse_dist(wf, templates, union_channels, possible_clusters) distances = numba_sparse_dist(wf_short, templates_short, union_channels, possible_clusters) @@ -279,7 +276,7 @@ def _tdc_find_spikes(traces, d, level=0): cluster_index = possible_clusters[ind] chan_sparsity = d["template_sparsity"][cluster_index, :] - template_sparse = templates[cluster_index, :, :][:, chan_sparsity] + template_sparse = templates_array[cluster_index, :, :][:, chan_sparsity] # find best shift @@ -293,7 +290,7 @@ def _tdc_find_spikes(traces, d, level=0): ## numba version numba_best_shift( traces, - templates[cluster_index, :, :], + templates_array[cluster_index, :, :], sample_index, d["nbefore"], possible_shifts, @@ -327,7 +324,7 @@ def _tdc_find_spikes(traces, d, level=0): amplitude = 1.0 # remove template - template = templates[cluster_index, :, :] + template = templates_array[cluster_index, :, :] s0 = sample_index - d["nbefore"] s1 = sample_index + d["nafter"] traces[s0:s1, :] -= template * amplitude diff --git a/src/spikeinterface/sortingcomponents/matching/wobble.py b/src/spikeinterface/sortingcomponents/matching/wobble.py index 1b11796fa5..8196df4dec 100644 --- a/src/spikeinterface/sortingcomponents/matching/wobble.py +++ b/src/spikeinterface/sortingcomponents/matching/wobble.py @@ -7,6 +7,7 @@ import matplotlib.pyplot as plt from .main import BaseTemplateMatchingEngine +from spikeinterface.core.template import Templates @dataclass @@ -239,6 +240,30 @@ def from_parameters_and_templates(cls, params, templates): sparsity = cls(visible_channels=visible_channels, unit_overlap=unit_overlap) return sparsity + @classmethod + def from_templates(cls, params, templates): + """Aggregate variables relevant to sparse representation of templates. + + Parameters + ---------- + params : WobbleParameters + Dataclass object for aggregating the parameters together. + templates : Templates object + + Returns + ------- + sparsity : Sparsity + Dataclass object for aggregating channel sparsity variables together. + """ + visible_channels = templates.sparsity.mask + unit_overlap = np.sum( + np.logical_and(visible_channels[:, np.newaxis, :], visible_channels[np.newaxis, :, :]), axis=2 + ) + unit_overlap = unit_overlap > 0 + unit_overlap = np.repeat(unit_overlap, params.jitter_factor, axis=0) + sparsity = cls(visible_channels=visible_channels, unit_overlap=unit_overlap) + return sparsity + @dataclass class TemplateData: @@ -309,7 +334,7 @@ class WobbleMatch(BaseTemplateMatchingEngine): """ default_params = { - "waveform_extractor": None, + "templates": None, } spike_dtype = [ ("sample_index", "int64"), @@ -336,29 +361,35 @@ def initialize_and_check_kwargs(cls, recording, kwargs): Updated Keyword arguments. """ d = cls.default_params.copy() - required_kwargs_keys = ["nbefore", "nafter", "templates"] + + required_kwargs_keys = ["templates"] for required_key in required_kwargs_keys: assert required_key in kwargs, f"`{required_key}` is a required key in the kwargs" + parameters = kwargs.get("parameters", {}) templates = kwargs["templates"] - templates = templates.astype(np.float32, casting="safe") + assert isinstance(templates, Templates), ( + f"The templates supplied is of type {type(d['templates'])} " f"and must be a Templates" + ) + templates_array = templates.get_dense_templates().astype(np.float32, casting="safe") # Aggregate useful parameters/variables for handy access in downstream functions params = WobbleParameters(**parameters) - template_meta = TemplateMetadata.from_parameters_and_templates(params, templates) - sparsity = Sparsity.from_parameters_and_templates( - params, templates - ) # TODO: replace with spikeinterface sparsity + template_meta = TemplateMetadata.from_parameters_and_templates(params, templates_array) + if not templates.are_templates_sparse(): + sparsity = Sparsity.from_parameters_and_templates(params, templates_array) + else: + sparsity = Sparsity.from_templates(params, templates) # Perform initial computations on templates necessary for computing the objective - sparse_templates = np.where(sparsity.visible_channels[:, np.newaxis, :], templates, 0) + sparse_templates = np.where(sparsity.visible_channels[:, np.newaxis, :], templates_array, 0) temporal, singular, spatial = compress_templates(sparse_templates, params.approx_rank) temporal_jittered = upsample_and_jitter(temporal, params.jitter_factor, template_meta.num_samples) compressed_templates = (temporal, singular, spatial, temporal_jittered) pairwise_convolution = convolve_templates( compressed_templates, params.jitter_factor, params.approx_rank, template_meta.jittered_indices, sparsity ) - norm_squared = compute_template_norm(sparsity.visible_channels, templates) + norm_squared = compute_template_norm(sparsity.visible_channels, templates_array) template_data = TemplateData( compressed_templates=compressed_templates, pairwise_convolution=pairwise_convolution, @@ -370,6 +401,8 @@ def initialize_and_check_kwargs(cls, recording, kwargs): kwargs["template_meta"] = template_meta kwargs["sparsity"] = sparsity kwargs["template_data"] = template_data + kwargs["nbefore"] = templates.nbefore + kwargs["nafter"] = templates.nafter d.update(kwargs) return d diff --git a/src/spikeinterface/sortingcomponents/peak_detection.py b/src/spikeinterface/sortingcomponents/peak_detection.py index f1b7e1b9ef..ac176f0ca0 100644 --- a/src/spikeinterface/sortingcomponents/peak_detection.py +++ b/src/spikeinterface/sortingcomponents/peak_detection.py @@ -397,10 +397,10 @@ def check_params( if noise_levels is None: noise_levels = get_noise_levels(recording, return_scaled=False, **random_chunk_kwargs) - abs_threholds = noise_levels * detect_threshold + abs_thresholds = noise_levels * detect_threshold exclude_sweep_size = int(exclude_sweep_ms * recording.get_sampling_frequency() / 1000.0) - return (peak_sign, abs_threholds, exclude_sweep_size) + return (peak_sign, abs_thresholds, exclude_sweep_size) @classmethod def get_method_margin(cls, *args): @@ -408,12 +408,12 @@ def get_method_margin(cls, *args): return exclude_sweep_size @classmethod - def detect_peaks(cls, traces, peak_sign, abs_threholds, exclude_sweep_size): + def detect_peaks(cls, traces, peak_sign, abs_thresholds, exclude_sweep_size): traces_center = traces[exclude_sweep_size:-exclude_sweep_size, :] length = traces_center.shape[0] if peak_sign in ("pos", "both"): - peak_mask = traces_center > abs_threholds[None, :] + peak_mask = traces_center > abs_thresholds[None, :] for i in range(exclude_sweep_size): peak_mask &= traces_center > traces[i : i + length, :] peak_mask &= ( @@ -424,7 +424,7 @@ def detect_peaks(cls, traces, peak_sign, abs_threholds, exclude_sweep_size): if peak_sign == "both": peak_mask_pos = peak_mask.copy() - peak_mask = traces_center < -abs_threholds[None, :] + peak_mask = traces_center < -abs_thresholds[None, :] for i in range(exclude_sweep_size): peak_mask &= traces_center < traces[i : i + length, :] peak_mask &= ( @@ -489,10 +489,10 @@ def check_params( if noise_levels is None: noise_levels = get_noise_levels(recording, return_scaled=False, **random_chunk_kwargs) - abs_threholds = noise_levels * detect_threshold + abs_thresholds = noise_levels * detect_threshold exclude_sweep_size = int(exclude_sweep_ms * recording.get_sampling_frequency() / 1000.0) - return (peak_sign, abs_threholds, exclude_sweep_size, device, return_tensor) + return (peak_sign, abs_thresholds, exclude_sweep_size, device, return_tensor) @classmethod def get_method_margin(cls, *args): @@ -500,8 +500,10 @@ def get_method_margin(cls, *args): return exclude_sweep_size @classmethod - def detect_peaks(cls, traces, peak_sign, abs_threholds, exclude_sweep_size, device, return_tensor): - sample_inds, chan_inds = _torch_detect_peaks(traces, peak_sign, abs_threholds, exclude_sweep_size, None, device) + def detect_peaks(cls, traces, peak_sign, abs_thresholds, exclude_sweep_size, device, return_tensor): + sample_inds, chan_inds = _torch_detect_peaks( + traces, peak_sign, abs_thresholds, exclude_sweep_size, None, device + ) if not return_tensor: sample_inds = np.array(sample_inds.cpu()) chan_inds = np.array(chan_inds.cpu()) @@ -555,23 +557,23 @@ def get_method_margin(cls, *args): return exclude_sweep_size @classmethod - def detect_peaks(cls, traces, peak_sign, abs_threholds, exclude_sweep_size, neighbours_mask): + def detect_peaks(cls, traces, peak_sign, abs_thresholds, exclude_sweep_size, neighbours_mask): assert HAVE_NUMBA, "You need to install numba" traces_center = traces[exclude_sweep_size:-exclude_sweep_size, :] if peak_sign in ("pos", "both"): - peak_mask = traces_center > abs_threholds[None, :] + peak_mask = traces_center > abs_thresholds[None, :] peak_mask = _numba_detect_peak_pos( - traces, traces_center, peak_mask, exclude_sweep_size, abs_threholds, peak_sign, neighbours_mask + traces, traces_center, peak_mask, exclude_sweep_size, abs_thresholds, peak_sign, neighbours_mask ) if peak_sign in ("neg", "both"): if peak_sign == "both": peak_mask_pos = peak_mask.copy() - peak_mask = traces_center < -abs_threholds[None, :] + peak_mask = traces_center < -abs_thresholds[None, :] peak_mask = _numba_detect_peak_neg( - traces, traces_center, peak_mask, exclude_sweep_size, abs_threholds, peak_sign, neighbours_mask + traces, traces_center, peak_mask, exclude_sweep_size, abs_thresholds, peak_sign, neighbours_mask ) if peak_sign == "both": @@ -641,9 +643,9 @@ def get_method_margin(cls, *args): return exclude_sweep_size @classmethod - def detect_peaks(cls, traces, peak_sign, abs_threholds, exclude_sweep_size, device, return_tensor, neighbor_idxs): + def detect_peaks(cls, traces, peak_sign, abs_thresholds, exclude_sweep_size, device, return_tensor, neighbor_idxs): sample_inds, chan_inds = _torch_detect_peaks( - traces, peak_sign, abs_threholds, exclude_sweep_size, neighbor_idxs, device + traces, peak_sign, abs_thresholds, exclude_sweep_size, neighbor_idxs, device ) if not return_tensor and isinstance(sample_inds, torch.Tensor) and isinstance(chan_inds, torch.Tensor): sample_inds = np.array(sample_inds.cpu()) @@ -655,7 +657,7 @@ def detect_peaks(cls, traces, peak_sign, abs_threholds, exclude_sweep_size, devi @numba.jit(nopython=True, parallel=False) def _numba_detect_peak_pos( - traces, traces_center, peak_mask, exclude_sweep_size, abs_threholds, peak_sign, neighbours_mask + traces, traces_center, peak_mask, exclude_sweep_size, abs_thresholds, peak_sign, neighbours_mask ): num_chans = traces_center.shape[1] for chan_ind in range(num_chans): @@ -680,7 +682,7 @@ def _numba_detect_peak_pos( @numba.jit(nopython=True, parallel=False) def _numba_detect_peak_neg( - traces, traces_center, peak_mask, exclude_sweep_size, abs_threholds, peak_sign, neighbours_mask + traces, traces_center, peak_mask, exclude_sweep_size, abs_thresholds, peak_sign, neighbours_mask ): num_chans = traces_center.shape[1] for chan_ind in range(num_chans): @@ -857,12 +859,12 @@ def check_params( assert peak_sign in ("both", "neg", "pos") if noise_levels is None: noise_levels = get_noise_levels(recording, return_scaled=False, **random_chunk_kwargs) - abs_threholds = noise_levels * detect_threshold + abs_thresholds = noise_levels * detect_threshold exclude_sweep_size = int(exclude_sweep_ms * recording.get_sampling_frequency() / 1000.0) channel_distance = get_channel_distances(recording) neighbours_mask = channel_distance <= radius_um - executor = OpenCLDetectPeakExecutor(abs_threholds, exclude_sweep_size, neighbours_mask, peak_sign) + executor = OpenCLDetectPeakExecutor(abs_thresholds, exclude_sweep_size, neighbours_mask, peak_sign) return (executor,) @@ -879,12 +881,12 @@ def detect_peaks(cls, traces, executor): class OpenCLDetectPeakExecutor: - def __init__(self, abs_threholds, exclude_sweep_size, neighbours_mask, peak_sign): + def __init__(self, abs_thresholds, exclude_sweep_size, neighbours_mask, peak_sign): import pyopencl self.chunk_size = None - self.abs_threholds = abs_threholds.astype("float32") + self.abs_thresholds = abs_thresholds.astype("float32") self.exclude_sweep_size = exclude_sweep_size self.neighbours_mask = neighbours_mask.astype("uint8") self.peak_sign = peak_sign @@ -909,7 +911,7 @@ def create_buffers_and_compile(self, chunk_size): self.neighbours_mask_cl = pyopencl.Buffer( self.ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=self.neighbours_mask ) - self.abs_threholds_cl = pyopencl.Buffer(self.ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=self.abs_threholds) + self.abs_thresholds_cl = pyopencl.Buffer(self.ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=self.abs_thresholds) num_channels = self.neighbours_mask.shape[0] self.traces_cl = pyopencl.Buffer(self.ctx, mf.READ_WRITE, size=int(chunk_size * num_channels * 4)) @@ -935,7 +937,7 @@ def create_buffers_and_compile(self, chunk_size): self.kern_detect_peaks = getattr(self.opencl_prg, "detect_peaks") self.kern_detect_peaks.set_args( - self.traces_cl, self.neighbours_mask_cl, self.abs_threholds_cl, self.peaks_cl, self.num_peaks_cl + self.traces_cl, self.neighbours_mask_cl, self.abs_thresholds_cl, self.peaks_cl, self.num_peaks_cl ) s = self.chunk_size - 2 * self.exclude_sweep_size @@ -989,7 +991,7 @@ def detect_peak(self, traces): //in __global float *traces, __global uchar *neighbours_mask, - __global float *abs_threholds, + __global float *abs_thresholds, //out __global st_peak *peaks, volatile __global int *num_peaks @@ -1023,11 +1025,11 @@ def detect_peak(self, traces): v = traces[index]; if(peak_sign==1){ - if (v>abs_threholds[chan]){peak=1;} + if (v>abs_thresholds[chan]){peak=1;} else {peak=0;} } else if(peak_sign==-1){ - if (v<-abs_threholds[chan]){peak=1;} + if (v<-abs_thresholds[chan]){peak=1;} else {peak=0;} } diff --git a/src/spikeinterface/sortingcomponents/peak_localization.py b/src/spikeinterface/sortingcomponents/peak_localization.py index 20328dda6d..b06f6fac3e 100644 --- a/src/spikeinterface/sortingcomponents/peak_localization.py +++ b/src/spikeinterface/sortingcomponents/peak_localization.py @@ -33,7 +33,7 @@ from .tools import get_prototype_spike -def _run_localization_from_peak_source( +def get_localization_pipeline_nodes( recording, peak_source, method="center_of_mass", ms_before=0.5, ms_after=0.5, **kwargs ): # use by localize_peaks() and compute_spike_locations() @@ -78,10 +78,7 @@ def _run_localization_from_peak_source( LocalizeGridConvolution(recording, parents=[peak_source, extract_dense_waveforms], **method_kwargs), ] - job_name = f"localize peaks using {method}" - peak_locations = run_node_pipeline(recording, pipeline_nodes, job_kwargs, job_name=job_name, squeeze_output=True) - - return peak_locations + return pipeline_nodes def localize_peaks(recording, peaks, method="center_of_mass", ms_before=0.5, ms_after=0.5, **kwargs): @@ -109,10 +106,14 @@ def localize_peaks(recording, peaks, method="center_of_mass", ms_before=0.5, ms_ Array with estimated location for each spike. The dtype depends on the method. ("x", "y") or ("x", "y", "z", "alpha"). """ + _, job_kwargs = split_job_kwargs(kwargs) peak_retriever = PeakRetriever(recording, peaks) - peak_locations = _run_localization_from_peak_source( + pipeline_nodes = get_localization_pipeline_nodes( recording, peak_retriever, method=method, ms_before=ms_before, ms_after=ms_after, **kwargs ) + job_name = f"localize peaks using {method}" + peak_locations = run_node_pipeline(recording, pipeline_nodes, job_kwargs, job_name=job_name, squeeze_output=True) + return peak_locations diff --git a/src/spikeinterface/sortingcomponents/tests/test_benchmark_matching.py b/src/spikeinterface/sortingcomponents/tests/test_benchmark_matching.py deleted file mode 100644 index ad944c921c..0000000000 --- a/src/spikeinterface/sortingcomponents/tests/test_benchmark_matching.py +++ /dev/null @@ -1,179 +0,0 @@ -import pytest -import numpy as np -import pandas as pd -import shutil -import os -from pathlib import Path - -import spikeinterface.core as sc -import spikeinterface.extractors as se -import spikeinterface.preprocessing as spre -from spikeinterface.sortingcomponents.benchmark import benchmark_matching - - -@pytest.fixture(scope="session") -def benchmark_and_kwargs(tmp_path_factory): - recording, sorting = se.toy_example(duration=1, num_channels=2, num_units=2, num_segments=1, firing_rate=10, seed=0) - recording = spre.common_reference(recording, dtype="float32") - we_path = tmp_path_factory.mktemp("waveforms") - sort_path = tmp_path_factory.mktemp("sortings") / ("sorting.npz") - se.NpzSortingExtractor.write_sorting(sorting, sort_path) - sorting = se.NpzSortingExtractor(sort_path) - we = sc.extract_waveforms(recording, sorting, we_path, overwrite=True) - templates = we.get_all_templates() - noise_levels = sc.get_noise_levels(recording, return_scaled=False) - methods_kwargs = { - "tridesclous": dict(waveform_extractor=we, noise_levels=noise_levels), - "wobble": dict(templates=templates, nbefore=we.nbefore, nafter=we.nafter, parameters={"approx_rank": 2}), - } - methods = list(methods_kwargs.keys()) - benchmark = benchmark_matching.BenchmarkMatching(recording, sorting, we, methods, methods_kwargs) - return benchmark, methods_kwargs - - -@pytest.mark.parametrize( - "parameters, parameter_name", - [ - ([1, 10, 100], "num_spikes"), - ([0, 0.5, 1], "fraction_misclassed"), - ([0, 0.5, 1], "fraction_missing"), - ], -) -def test_run_matching_vary_parameter(benchmark_and_kwargs, parameters, parameter_name): - # Arrange - benchmark, methods_kwargs = benchmark_and_kwargs - num_replicates = 2 - - # Act - with benchmark as bmk: - matching_df = bmk.run_matching_vary_parameter(parameters, parameter_name, num_replicates=num_replicates) - - # Assert - assert matching_df.shape[0] == len(parameters) * num_replicates * len(methods_kwargs) - assert matching_df.shape[1] == 6 - - -@pytest.mark.parametrize( - "parameter_name, num_replicates", - [ - ("invalid_parameter_name", 1), - ("num_spikes", -1), - ("num_spikes", 0.5), - ], -) -def test_run_matching_vary_parameter_invalid_inputs(benchmark_and_kwargs, parameter_name, num_replicates): - parameters = [1, 2] - benchmark, methods_kwargs = benchmark_and_kwargs - with benchmark as bmk: - with pytest.raises(ValueError): - bmk.run_matching_vary_parameter(parameters, parameter_name, num_replicates=num_replicates) - - -@pytest.mark.parametrize( - "fraction_misclassed, min_similarity", - [ - (-1, -1), - (2, -1), - (0, 2), - ], -) -def test_run_matching_misclassed_invalid_inputs(benchmark_and_kwargs, fraction_misclassed, min_similarity): - benchmark, methods_kwargs = benchmark_and_kwargs - with benchmark as bmk: - with pytest.raises(ValueError): - bmk.run_matching_misclassed(fraction_misclassed, min_similarity=min_similarity) - - -@pytest.mark.parametrize( - "fraction_missing, snr_threshold", - [ - (-1, 0), - (2, 0), - (0, -1), - ], -) -def test_run_matching_missing_units_invalid_inputs(benchmark_and_kwargs, fraction_missing, snr_threshold): - benchmark, methods_kwargs = benchmark_and_kwargs - with benchmark as bmk: - with pytest.raises(ValueError): - bmk.run_matching_missing_units(fraction_missing, snr_threshold=snr_threshold) - - -def test_compare_all_sortings(benchmark_and_kwargs): - # Arrange - benchmark, methods_kwargs = benchmark_and_kwargs - parameter_name = "num_spikes" - num_replicates = 2 - num_spikes = [1, 10, 100] - rng = np.random.default_rng(0) - sortings, gt_sortings, parameter_values, parameter_names, iter_nums, methods = [], [], [], [], [], [] - for replicate in range(num_replicates): - for spike_num in num_spikes: - for method in list(methods_kwargs.keys()): - len_spike_train = 100 - spike_time_inds = rng.choice(benchmark.recording.get_num_frames(), len_spike_train, replace=False) - unit_ids = rng.choice(benchmark.gt_sorting.get_unit_ids(), len_spike_train, replace=True) - sort_index = np.argsort(spike_time_inds) - spike_time_inds = spike_time_inds[sort_index] - unit_ids = unit_ids[sort_index] - sorting = sc.NumpySorting.from_times_labels( - spike_time_inds, unit_ids, benchmark.recording.sampling_frequency - ) - spike_time_inds = rng.choice(benchmark.recording.get_num_frames(), len_spike_train, replace=False) - unit_ids = rng.choice(benchmark.gt_sorting.get_unit_ids(), len_spike_train, replace=True) - sort_index = np.argsort(spike_time_inds) - spike_time_inds = spike_time_inds[sort_index] - unit_ids = unit_ids[sort_index] - gt_sorting = sc.NumpySorting.from_times_labels( - spike_time_inds, unit_ids, benchmark.recording.sampling_frequency - ) - sortings.append(sorting) - gt_sortings.append(gt_sorting) - parameter_values.append(spike_num) - parameter_names.append(parameter_name) - iter_nums.append(replicate) - methods.append(method) - matching_df = pd.DataFrame( - { - "sorting": sortings, - "gt_sorting": gt_sortings, - "parameter_value": parameter_values, - "parameter_name": parameter_names, - "iter_num": iter_nums, - "method": methods, - } - ) - comparison_from_df = matching_df.copy() - comparison_from_self = matching_df.copy() - comparison_collision = matching_df.copy() - - # Act - benchmark.compare_all_sortings(comparison_from_df, ground_truth="from_df") - benchmark.compare_all_sortings(comparison_from_self, ground_truth="from_self") - benchmark.compare_all_sortings(comparison_collision, collision=True) - - # Assert - for comparison in [comparison_from_df, comparison_from_self, comparison_collision]: - assert comparison.shape[0] == len(num_spikes) * num_replicates * len(methods_kwargs) - assert comparison.shape[1] == 7 - for comp, sorting in zip(comparison["comparison"], comparison["sorting"]): - comp.sorting2 == sorting - for comp, gt_sorting in zip(comparison_from_df["comparison"], comparison["gt_sorting"]): - comp.sorting1 == gt_sorting - for comp in comparison_from_self["comparison"]: - comp.sorting1 == benchmark.gt_sorting - - -def test_compare_all_sortings_invalid_inputs(benchmark_and_kwargs): - benchmark, methods_kwargs = benchmark_and_kwargs - with pytest.raises(ValueError): - benchmark.compare_all_sortings(pd.DataFrame(), ground_truth="invalid") - - -if __name__ == "__main__": - test_run_matching_vary_parameter(benchmark_and_kwargs) - test_run_matching_vary_parameter_invalid_inputs(benchmark_and_kwargs) - test_run_matching_misclassed_invalid_inputs(benchmark_and_kwargs) - test_run_matching_missing_units_invalid_inputs(benchmark_and_kwargs) - test_compare_all_sortings(benchmark_and_kwargs) - test_compare_all_sortings_invalid_inputs(benchmark_and_kwargs) diff --git a/src/spikeinterface/sortingcomponents/tests/test_features_from_peaks.py b/src/spikeinterface/sortingcomponents/tests/test_features_from_peaks.py index 896c4e1e1e..9bc9fd9ab0 100644 --- a/src/spikeinterface/sortingcomponents/tests/test_features_from_peaks.py +++ b/src/spikeinterface/sortingcomponents/tests/test_features_from_peaks.py @@ -26,12 +26,15 @@ def test_features_from_peaks(): **job_kwargs, ) - feature_list = ["amplitude", "ptp", "center_of_mass", "energy"] + feature_list = [ + "amplitude", + "ptp", + "center_of_mass", + ] feature_params = { "amplitude": {"all_channels": False, "peak_sign": "neg"}, "ptp": {"all_channels": False}, "center_of_mass": {"radius_um": 120.0}, - "energy": {"radius_um": 160.0}, } features = compute_features_from_peaks(recording, peaks, feature_list, feature_params=feature_params, **job_kwargs) @@ -45,14 +48,15 @@ def test_features_from_peaks(): # split feature variable job_kwargs["n_jobs"] = 2 - amplitude, ptp, com, energy = compute_features_from_peaks( - recording, peaks, feature_list, feature_params=feature_params, **job_kwargs - ) + ( + amplitude, + ptp, + com, + ) = compute_features_from_peaks(recording, peaks, feature_list, feature_params=feature_params, **job_kwargs) assert amplitude.ndim == 1 # because all_channels=False assert ptp.ndim == 1 # because all_channels=False assert com.ndim == 1 assert "x" in com.dtype.fields - assert energy.ndim == 1 # amplitude and peak to peak with multi channels d = {"all_channels": True} diff --git a/src/spikeinterface/sortingcomponents/tests/test_template_matching.py b/src/spikeinterface/sortingcomponents/tests/test_template_matching.py index 35c7617c47..0e065c5f3f 100644 --- a/src/spikeinterface/sortingcomponents/tests/test_template_matching.py +++ b/src/spikeinterface/sortingcomponents/tests/test_template_matching.py @@ -2,96 +2,85 @@ import numpy as np from pathlib import Path -from spikeinterface import NumpySorting -from spikeinterface import extract_waveforms -from spikeinterface.core import get_noise_levels +from spikeinterface import NumpySorting, create_sorting_analyzer, get_noise_levels, compute_sparsity from spikeinterface.sortingcomponents.matching import find_spikes_from_templates, matching_methods from spikeinterface.sortingcomponents.tests.common import make_dataset -DEBUG = False +job_kwargs = dict(n_jobs=-1, chunk_duration="500ms", progress_bar=True) -def make_waveform_extractor(): - recording, sorting = make_dataset() - waveform_extractor = extract_waveforms( - recording=recording, - sorting=sorting, - folder=None, - mode="memory", - ms_before=1, - ms_after=2.0, - max_spikes_per_unit=500, - return_scaled=False, - n_jobs=1, - chunk_size=30000, - ) - return waveform_extractor +def get_sorting_analyzer(): + recording, sorting = make_dataset() + sorting_analyzer = create_sorting_analyzer(sorting, recording, sparse=False) + sorting_analyzer.compute("random_spikes") + sorting_analyzer.compute("fast_templates", **job_kwargs) + sorting_analyzer.compute("noise_levels") + return sorting_analyzer -@pytest.fixture(name="waveform_extractor", scope="module") -def waveform_extractor_fixture(): - return make_waveform_extractor() +@pytest.fixture(name="sorting_analyzer", scope="module") +def sorting_analyzer_fixture(): + return get_sorting_analyzer() @pytest.mark.parametrize("method", matching_methods.keys()) -def test_find_spikes_from_templates(method, waveform_extractor): - recording = waveform_extractor._recording - waveform = waveform_extractor.get_waveforms(waveform_extractor.unit_ids[0]) - num_waveforms, _, _ = waveform.shape - assert num_waveforms != 0 - method_kwargs_all = {"waveform_extractor": waveform_extractor, "noise_levels": get_noise_levels(recording)} +def test_find_spikes_from_templates(method, sorting_analyzer): + recording = sorting_analyzer.recording + # waveform = waveform_extractor.get_waveforms(waveform_extractor.unit_ids[0]) + # num_waveforms, _, _ = waveform.shape + # assert num_waveforms != 0 + + templates = sorting_analyzer.get_extension("fast_templates").get_data(outputs="Templates") + sparsity = compute_sparsity(sorting_analyzer, method="snr", threshold=0.5) + templates = templates.to_sparse(sparsity) + + noise_levels = sorting_analyzer.get_extension("noise_levels").get_data() + + # sorting_analyzer + method_kwargs_all = {"templates": templates, "noise_levels": noise_levels} method_kwargs = {} - method_kwargs["wobble"] = { - "templates": waveform_extractor.get_all_templates(), - "nbefore": waveform_extractor.nbefore, - "nafter": waveform_extractor.nafter, - } + # method_kwargs["wobble"] = { + # "templates": waveform_extractor.get_all_templates(), + # "nbefore": waveform_extractor.nbefore, + # "nafter": waveform_extractor.nafter, + # } sampling_frequency = recording.get_sampling_frequency() - result = {} - method_kwargs_ = method_kwargs.get(method, {}) method_kwargs_.update(method_kwargs_all) - spikes = find_spikes_from_templates( - recording, method=method, method_kwargs=method_kwargs_, n_jobs=2, chunk_size=1000, progress_bar=True - ) - - result[method] = NumpySorting.from_times_labels(spikes["sample_index"], spikes["cluster_index"], sampling_frequency) - - # debug - if DEBUG: - import matplotlib.pyplot as plt - import spikeinterface.full as si - - plt.ion() - - metrics = si.compute_quality_metrics( - waveform_extractor, - metric_names=["snr"], - load_if_exists=True, - ) - - comparisons = {} - for method in matching_methods.keys(): - comp = si.compare_sorter_to_ground_truth(gt_sorting, result[method]) - comparisons[method] = comp - si.plot_agreement_matrix(comp) - plt.title(method) - si.plot_sorting_performance( - comp, - metrics, - performance_name="accuracy", - metric_name="snr", - ) - plt.title(method) - plt.show() + spikes = find_spikes_from_templates(recording, method=method, method_kwargs=method_kwargs_, **job_kwargs) + + # DEBUG = True + + # if DEBUG: + # import matplotlib.pyplot as plt + # import spikeinterface.full as si + + # sorting_analyzer.compute("waveforms") + # sorting_analyzer.compute("templates") + + # gt_sorting = sorting_analyzer.sorting + + # sorting = NumpySorting.from_times_labels(spikes["sample_index"], spikes["cluster_index"], sampling_frequency) + + # metrics = si.compute_quality_metrics(sorting_analyzer, metric_names=["snr"]) + + # fig, ax = plt.subplots() + # comp = si.compare_sorter_to_ground_truth(gt_sorting, sorting) + # si.plot_agreement_matrix(comp, ax=ax) + # ax.set_title(method) + # plt.show() if __name__ == "__main__": - waveform_extractor = make_waveform_extractor() - method = "naive" - test_find_spikes_from_templates(method, waveform_extractor) + sorting_analyzer = get_sorting_analyzer() + # method = "naive" + # method = "tdc-peeler" + # method = "circus" + # method = "circus-omp-svd" + method = "wobble" + test_find_spikes_from_templates(method, sorting_analyzer) diff --git a/src/spikeinterface/sortingcomponents/tests/test_waveforms/test_waveform_thresholder.py b/src/spikeinterface/sortingcomponents/tests/test_waveforms/test_waveform_thresholder.py index 572e6c36c1..4f55030283 100644 --- a/src/spikeinterface/sortingcomponents/tests/test_waveforms/test_waveform_thresholder.py +++ b/src/spikeinterface/sortingcomponents/tests/test_waveforms/test_waveform_thresholder.py @@ -9,7 +9,7 @@ @pytest.fixture(scope="module") -def extract_waveforms(generated_recording): +def extract_dense_waveforms_node(generated_recording): # Parameters ms_before = 1.0 ms_after = 1.0 @@ -20,16 +20,18 @@ def extract_waveforms(generated_recording): ) -def test_waveform_thresholder_ptp(extract_waveforms, generated_recording, detected_peaks, chunk_executor_kwargs): +def test_waveform_thresholder_ptp( + extract_dense_waveforms_node, generated_recording, detected_peaks, chunk_executor_kwargs +): recording = generated_recording peaks = detected_peaks tresholded_waveforms_ptp = WaveformThresholder( - recording=recording, parents=[extract_waveforms], feature="ptp", threshold=3, return_output=True + recording=recording, parents=[extract_dense_waveforms_node], feature="ptp", threshold=3, return_output=True ) noise_levels = tresholded_waveforms_ptp.noise_levels - pipeline_nodes = [extract_waveforms, tresholded_waveforms_ptp] + pipeline_nodes = [extract_dense_waveforms_node, tresholded_waveforms_ptp] # Extract projected waveforms and compare waveforms, tresholded_waveforms = run_peak_pipeline( recording, peaks, nodes=pipeline_nodes, job_kwargs=chunk_executor_kwargs @@ -39,15 +41,17 @@ def test_waveform_thresholder_ptp(extract_waveforms, generated_recording, detect assert np.all(data[data != 0] > 3) -def test_waveform_thresholder_mean(extract_waveforms, generated_recording, detected_peaks, chunk_executor_kwargs): +def test_waveform_thresholder_mean( + extract_dense_waveforms_node, generated_recording, detected_peaks, chunk_executor_kwargs +): recording = generated_recording peaks = detected_peaks tresholded_waveforms_mean = WaveformThresholder( - recording=recording, parents=[extract_waveforms], feature="mean", threshold=0, return_output=True + recording=recording, parents=[extract_dense_waveforms_node], feature="mean", threshold=0, return_output=True ) - pipeline_nodes = [extract_waveforms, tresholded_waveforms_mean] + pipeline_nodes = [extract_dense_waveforms_node, tresholded_waveforms_mean] # Extract projected waveforms and compare waveforms, tresholded_waveforms = run_peak_pipeline( recording, peaks, nodes=pipeline_nodes, job_kwargs=chunk_executor_kwargs @@ -56,16 +60,18 @@ def test_waveform_thresholder_mean(extract_waveforms, generated_recording, detec assert np.all(tresholded_waveforms.mean(axis=1) >= 0) -def test_waveform_thresholder_energy(extract_waveforms, generated_recording, detected_peaks, chunk_executor_kwargs): +def test_waveform_thresholder_energy( + extract_dense_waveforms_node, generated_recording, detected_peaks, chunk_executor_kwargs +): recording = generated_recording peaks = detected_peaks tresholded_waveforms_energy = WaveformThresholder( - recording=recording, parents=[extract_waveforms], feature="energy", threshold=3, return_output=True + recording=recording, parents=[extract_dense_waveforms_node], feature="energy", threshold=3, return_output=True ) noise_levels = tresholded_waveforms_energy.noise_levels - pipeline_nodes = [extract_waveforms, tresholded_waveforms_energy] + pipeline_nodes = [extract_dense_waveforms_node, tresholded_waveforms_energy] # Extract projected waveforms and compare waveforms, tresholded_waveforms = run_peak_pipeline( recording, peaks, nodes=pipeline_nodes, job_kwargs=chunk_executor_kwargs @@ -75,7 +81,9 @@ def test_waveform_thresholder_energy(extract_waveforms, generated_recording, det assert np.all(data[data != 0] > 3) -def test_waveform_thresholder_operator(extract_waveforms, generated_recording, detected_peaks, chunk_executor_kwargs): +def test_waveform_thresholder_operator( + extract_dense_waveforms_node, generated_recording, detected_peaks, chunk_executor_kwargs +): recording = generated_recording peaks = detected_peaks @@ -83,7 +91,7 @@ def test_waveform_thresholder_operator(extract_waveforms, generated_recording, d tresholded_waveforms_peak = WaveformThresholder( recording=recording, - parents=[extract_waveforms], + parents=[extract_dense_waveforms_node], feature="peak_voltage", threshold=5, operator=operator.ge, @@ -91,11 +99,11 @@ def test_waveform_thresholder_operator(extract_waveforms, generated_recording, d ) noise_levels = tresholded_waveforms_peak.noise_levels - pipeline_nodes = [extract_waveforms, tresholded_waveforms_peak] + pipeline_nodes = [extract_dense_waveforms_node, tresholded_waveforms_peak] # Extract projected waveforms and compare waveforms, tresholded_waveforms = run_peak_pipeline( recording, peaks, nodes=pipeline_nodes, job_kwargs=chunk_executor_kwargs ) - data = tresholded_waveforms[:, extract_waveforms.nbefore, :] / noise_levels + data = tresholded_waveforms[:, extract_dense_waveforms_node.nbefore, :] / noise_levels assert np.all(data[data != 0] <= 5) diff --git a/src/spikeinterface/sortingcomponents/tools.py b/src/spikeinterface/sortingcomponents/tools.py index 794df36bf4..3d7e40da14 100644 --- a/src/spikeinterface/sortingcomponents/tools.py +++ b/src/spikeinterface/sortingcomponents/tools.py @@ -9,6 +9,9 @@ except: HAVE_PSUTIL = False +from spikeinterface.core.sparsity import ChannelSparsity +from spikeinterface.core.template import Templates + from spikeinterface.core.node_pipeline import run_node_pipeline, ExtractSparseWaveforms, PeakRetriever from spikeinterface.core.waveform_tools import extract_waveforms_to_single_buffer from spikeinterface.core.job_tools import split_job_kwargs @@ -100,3 +103,21 @@ def cache_preprocessing(recording, mode="memory", memory_limit=0.5, delete_cache recording = recording.save_to_zarr(**extra_kwargs) return recording + + +def remove_empty_templates(templates): + """ + Clean A Template with sparse representtaion by removing units that have no channel + on the sparsity mask + """ + assert templates.sparsity_mask is not None, "Need sparse Templates object" + not_empty = templates.sparsity_mask.sum(axis=1) > 0 + return Templates( + templates_array=templates.templates_array[not_empty, :, :], + sampling_frequency=templates.sampling_frequency, + nbefore=templates.nbefore, + sparsity_mask=templates.sparsity_mask[not_empty, :], + channel_ids=templates.channel_ids, + unit_ids=templates.unit_ids[not_empty], + probe=templates.probe, + ) diff --git a/src/spikeinterface/sortingcomponents/waveforms/temporal_pca.py b/src/spikeinterface/sortingcomponents/waveforms/temporal_pca.py index 32b79aa7fb..3a16ef1843 100644 --- a/src/spikeinterface/sortingcomponents/waveforms/temporal_pca.py +++ b/src/spikeinterface/sortingcomponents/waveforms/temporal_pca.py @@ -14,7 +14,7 @@ from spikeinterface.postprocessing import compute_principal_components from spikeinterface.core import BaseRecording from spikeinterface.core.sparsity import ChannelSparsity -from spikeinterface import extract_waveforms, NumpySorting +from spikeinterface import NumpySorting, create_sorting_analyzer from spikeinterface.core.job_tools import _shared_job_kwargs_doc from .waveform_utils import to_temporal_representation, from_temporal_representation @@ -138,25 +138,16 @@ def fit( # Creates a numpy sorting object where the spike times are the peak times and the unit ids are the peak channel sorting = NumpySorting.from_peaks(peaks, recording.sampling_frequency, recording.channel_ids) - # Create a waveform extractor - we = extract_waveforms( - recording, - sorting, - ms_before=ms_before, - ms_after=ms_after, - folder=None, - mode="memory", - max_spikes_per_unit=None, - **job_kwargs, - ) - # compute PCA by_channel_global (with sparsity) - sparsity = ChannelSparsity.from_radius(we, radius_um=radius_um) if radius_um else None - pc = compute_principal_components( - we, n_components=n_components, mode="by_channel_global", sparsity=sparsity, whiten=whiten + # TODO alessio, herberto : the fitting is done with a SortingAnalyzer which is a postprocessing object, I think we should not do this for a component + sorting_analyzer = create_sorting_analyzer(sorting, recording, sparse=True) + sorting_analyzer.compute("random_spikes") + sorting_analyzer.compute("waveforms", ms_before=ms_before, ms_after=ms_after) + sorting_analyzer.compute( + "principal_components", n_components=n_components, mode="by_channel_global", whiten=whiten ) + pca_model = sorting_analyzer.get_extension("principal_components").get_pca_model() - pca_model = pc.get_pca_model() params = { "ms_before": ms_before, "ms_after": ms_after, @@ -200,11 +191,18 @@ class TemporalPCAProjection(TemporalPCBaseNode): """ def __init__( - self, recording: BaseRecording, parents: List[PipelineNode], model_folder_path: str, return_output=True + self, + recording: BaseRecording, + parents: List[PipelineNode], + model_folder_path: str, + dtype="float32", + return_output=True, ): TemporalPCBaseNode.__init__( self, recording=recording, parents=parents, return_output=return_output, model_folder_path=model_folder_path ) + self.n_components = self.pca_model.n_components + self.dtype = np.dtype(dtype) def compute(self, traces: np.ndarray, peaks: np.ndarray, waveforms: np.ndarray) -> np.ndarray: """ @@ -227,12 +225,13 @@ def compute(self, traces: np.ndarray, peaks: np.ndarray, waveforms: np.ndarray) """ num_channels = waveforms.shape[2] - - temporal_waveforms = to_temporal_representation(waveforms) - projected_temporal_waveforms = self.pca_model.transform(temporal_waveforms) - projected_waveforms = from_temporal_representation(projected_temporal_waveforms, num_channels) - - return projected_waveforms + if waveforms.shape[0] > 0: + temporal_waveforms = to_temporal_representation(waveforms) + projected_temporal_waveforms = self.pca_model.transform(temporal_waveforms) + projected_waveforms = from_temporal_representation(projected_temporal_waveforms, num_channels) + else: + projected_waveforms = np.zeros((0, self.n_components, num_channels), dtype=self.dtype) + return projected_waveforms.astype(self.dtype, copy=False) class TemporalPCADenoising(TemporalPCBaseNode): @@ -283,9 +282,12 @@ def compute(self, traces: np.ndarray, peaks: np.ndarray, waveforms: np.ndarray) """ num_channels = waveforms.shape[2] - temporal_waveform = to_temporal_representation(waveforms) - projected_temporal_waveforms = self.pca_model.transform(temporal_waveform) - temporal_denoised_waveforms = self.pca_model.inverse_transform(projected_temporal_waveforms) - denoised_waveforms = from_temporal_representation(temporal_denoised_waveforms, num_channels) + if waveforms.shape[0] > 0: + temporal_waveform = to_temporal_representation(waveforms) + projected_temporal_waveforms = self.pca_model.transform(temporal_waveform) + temporal_denoised_waveforms = self.pca_model.inverse_transform(projected_temporal_waveforms) + denoised_waveforms = from_temporal_representation(temporal_denoised_waveforms, num_channels) + else: + denoised_waveforms = np.zeros_like(waveforms) return denoised_waveforms diff --git a/src/spikeinterface/widgets/all_amplitudes_distributions.py b/src/spikeinterface/widgets/all_amplitudes_distributions.py index 1e34f4fdb1..59a69640da 100644 --- a/src/spikeinterface/widgets/all_amplitudes_distributions.py +++ b/src/spikeinterface/widgets/all_amplitudes_distributions.py @@ -6,7 +6,7 @@ from .base import BaseWidget, to_attr from .utils import get_some_colors -from ..core.waveform_extractor import WaveformExtractor +from ..core import SortingAnalyzer class AllAmplitudesDistributionsWidget(BaseWidget): @@ -15,8 +15,8 @@ class AllAmplitudesDistributionsWidget(BaseWidget): Parameters ---------- - waveform_extractor: WaveformExtractor - The input waveform extractor + sorting_analyzer: SortingAnalyzer + The SortingAnalyzer unit_ids: list List of unit ids, default None unit_colors: None or dict @@ -24,26 +24,34 @@ class AllAmplitudesDistributionsWidget(BaseWidget): """ def __init__( - self, waveform_extractor: WaveformExtractor, unit_ids=None, unit_colors=None, backend=None, **backend_kwargs + self, sorting_analyzer: SortingAnalyzer, unit_ids=None, unit_colors=None, backend=None, **backend_kwargs ): - we = waveform_extractor - self.check_extensions(we, "spike_amplitudes") - amplitudes = we.load_extension("spike_amplitudes").get_data(outputs="by_unit") + sorting_analyzer = self.ensure_sorting_analyzer(sorting_analyzer) + self.check_extensions(sorting_analyzer, "spike_amplitudes") - num_segments = we.get_num_segments() + amplitudes = sorting_analyzer.get_extension("spike_amplitudes").get_data() + + num_segments = sorting_analyzer.get_num_segments() if unit_ids is None: - unit_ids = we.unit_ids + unit_ids = sorting_analyzer.unit_ids if unit_colors is None: - unit_colors = get_some_colors(we.unit_ids) + unit_colors = get_some_colors(sorting_analyzer.unit_ids) + + amplitudes_by_units = {} + spikes = sorting_analyzer.sorting.to_spike_vector() + for unit_id in unit_ids: + unit_index = sorting_analyzer.sorting.id_to_index(unit_id) + spike_mask = spikes["unit_index"] == unit_index + amplitudes_by_units[unit_id] = amplitudes[spike_mask] plot_data = dict( unit_ids=unit_ids, unit_colors=unit_colors, num_segments=num_segments, - amplitudes=amplitudes, + amplitudes_by_units=amplitudes_by_units, ) BaseWidget.__init__(self, plot_data, backend=backend, **backend_kwargs) @@ -58,14 +66,9 @@ def plot_matplotlib(self, data_plot, **backend_kwargs): ax = self.ax - unit_amps = [] - for i, unit_id in enumerate(dp.unit_ids): - amps = [] - for segment_index in range(dp.num_segments): - amps.append(dp.amplitudes[segment_index][unit_id]) - amps = np.concatenate(amps) - unit_amps.append(amps) - parts = ax.violinplot(unit_amps, showmeans=False, showmedians=False, showextrema=False) + parts = ax.violinplot( + list(dp.amplitudes_by_units.values()), showmeans=False, showmedians=False, showextrema=False + ) for i, pc in enumerate(parts["bodies"]): color = dp.unit_colors[dp.unit_ids[i]] diff --git a/src/spikeinterface/widgets/amplitudes.py b/src/spikeinterface/widgets/amplitudes.py index 316af1472e..efbf6f3f32 100644 --- a/src/spikeinterface/widgets/amplitudes.py +++ b/src/spikeinterface/widgets/amplitudes.py @@ -6,7 +6,7 @@ from .base import BaseWidget, to_attr from .utils import get_some_colors -from ..core.waveform_extractor import WaveformExtractor +from ..core.sortinganalyzer import SortingAnalyzer class AmplitudesWidget(BaseWidget): @@ -15,7 +15,7 @@ class AmplitudesWidget(BaseWidget): Parameters ---------- - waveform_extractor : WaveformExtractor + sorting_analyzer : SortingAnalyzer The input waveform extractor unit_ids : list or None, default: None List of unit ids @@ -38,7 +38,7 @@ class AmplitudesWidget(BaseWidget): def __init__( self, - waveform_extractor: WaveformExtractor, + sorting_analyzer: SortingAnalyzer, unit_ids=None, unit_colors=None, segment_index=None, @@ -50,10 +50,13 @@ def __init__( backend=None, **backend_kwargs, ): - sorting = waveform_extractor.sorting - self.check_extensions(waveform_extractor, "spike_amplitudes") - sac = waveform_extractor.load_extension("spike_amplitudes") - amplitudes = sac.get_data(outputs="by_unit") + + sorting_analyzer = self.ensure_sorting_analyzer(sorting_analyzer) + + sorting = sorting_analyzer.sorting + self.check_extensions(sorting_analyzer, "spike_amplitudes") + + amplitudes = sorting_analyzer.get_extension("spike_amplitudes").get_data(outputs="by_unit") if unit_ids is None: unit_ids = sorting.unit_ids @@ -68,7 +71,7 @@ def __init__( else: segment_index = 0 amplitudes_segment = amplitudes[segment_index] - total_duration = waveform_extractor.get_num_samples(segment_index) / waveform_extractor.sampling_frequency + total_duration = sorting_analyzer.get_num_samples(segment_index) / sorting_analyzer.sampling_frequency spiketrains_segment = {} for i, unit_id in enumerate(sorting.unit_ids): @@ -98,7 +101,7 @@ def __init__( bins = 100 plot_data = dict( - waveform_extractor=waveform_extractor, + sorting_analyzer=sorting_analyzer, amplitudes=amplitudes_to_plot, unit_ids=unit_ids, unit_colors=unit_colors, @@ -186,7 +189,7 @@ def plot_ipywidgets(self, data_plot, **backend_kwargs): self.next_data_plot = data_plot.copy() cm = 1 / 2.54 - we = data_plot["waveform_extractor"] + we = data_plot["sorting_analyzer"] width_cm = backend_kwargs["width_cm"] height_cm = backend_kwargs["height_cm"] diff --git a/src/spikeinterface/widgets/base.py b/src/spikeinterface/widgets/base.py index db43c004d5..7440c240ce 100644 --- a/src/spikeinterface/widgets/base.py +++ b/src/spikeinterface/widgets/base.py @@ -5,6 +5,9 @@ global default_backend_ default_backend_ = "matplotlib" +from ..core import SortingAnalyzer, BaseSorting +from ..core.waveforms_extractor_backwards_compatibility import MockWaveformExtractor + def get_default_plotter_backend(): """Return the default backend for spikeinterface widgets. @@ -43,6 +46,7 @@ def set_default_plotter_backend(backend): # "controllers": "" }, "ephyviewer": {}, + "spikeinterface_gui": {}, } default_backend_kwargs = { @@ -50,6 +54,7 @@ def set_default_plotter_backend(backend): "sortingview": {"generate_url": True, "display": True, "figlabel": None, "height": None}, "ipywidgets": {"width_cm": 25, "height_cm": 10, "display": True, "controllers": None}, "ephyviewer": {}, + "spikeinterface_gui": {}, } @@ -102,18 +107,40 @@ def do_plot(self): func = getattr(self, f"plot_{self.backend}") func(self.data_plot, **self.backend_kwargs) + @classmethod + def ensure_sorting_analyzer(cls, input): + # internal help to accept both SortingAnalyzer or MockWaveformExtractor for a ploter + if isinstance(input, SortingAnalyzer): + return input + elif isinstance(input, MockWaveformExtractor): + return input.sorting_analyzer + else: + return input + + @classmethod + def ensure_sorting(cls, input): + # internal help to accept both Sorting or SortingAnalyzer or MockWaveformExtractor for a ploter + if isinstance(input, BaseSorting): + return input + elif isinstance(input, SortingAnalyzer): + return input.sorting + elif isinstance(input, MockWaveformExtractor): + return input.sorting_analyzer.sorting + else: + return input + @staticmethod - def check_extensions(waveform_extractor, extensions): + def check_extensions(sorting_analyzer, extensions): if isinstance(extensions, str): extensions = [extensions] error_msg = "" raise_error = False for extension in extensions: - if not waveform_extractor.has_extension(extension): + if not sorting_analyzer.has_extension(extension): raise_error = True error_msg += ( f"The {extension} waveform extension is required for this widget. " - f"Run the `compute_{extension}` to compute it.\n" + f"Run the `sorting_analyzer.compute('{extension}', ...)` to compute it.\n" ) if raise_error: raise Exception(error_msg) diff --git a/src/spikeinterface/widgets/crosscorrelograms.py b/src/spikeinterface/widgets/crosscorrelograms.py index dfc06180ee..6eb565d56a 100644 --- a/src/spikeinterface/widgets/crosscorrelograms.py +++ b/src/spikeinterface/widgets/crosscorrelograms.py @@ -4,7 +4,7 @@ from typing import Union from .base import BaseWidget, to_attr -from ..core.waveform_extractor import WaveformExtractor +from ..core.sortinganalyzer import SortingAnalyzer from ..core.basesorting import BaseSorting from ..postprocessing import compute_correlograms @@ -15,7 +15,7 @@ class CrossCorrelogramsWidget(BaseWidget): Parameters ---------- - waveform_or_sorting_extractor : WaveformExtractor or BaseSorting + sorting_analyzer_or_sorting : SortingAnalyzer or BaseSorting The object to compute/get crosscorrelograms from unit_ids list or None, default: None List of unit ids @@ -23,10 +23,10 @@ class CrossCorrelogramsWidget(BaseWidget): For sortingview backend. Threshold for computing pair-wise cross-correlograms. If template similarity between two units is below this threshold, the cross-correlogram is not displayed window_ms : float, default: 100.0 - Window for CCGs in ms. If correlograms are already computed (e.g. with WaveformExtractor), + Window for CCGs in ms. If correlograms are already computed (e.g. with SortingAnalyzer), this argument is ignored bin_ms : float, default: 1.0 - Bin size in ms. If correlograms are already computed (e.g. with WaveformExtractor), + Bin size in ms. If correlograms are already computed (e.g. with SortingAnalyzer), this argument is ignored hide_unit_selector : bool, default: False For sortingview backend, if True the unit selector is not displayed @@ -36,7 +36,7 @@ class CrossCorrelogramsWidget(BaseWidget): def __init__( self, - waveform_or_sorting_extractor: Union[WaveformExtractor, BaseSorting], + sorting_analyzer_or_sorting: Union[SortingAnalyzer, BaseSorting], unit_ids=None, min_similarity_for_correlograms=0.2, window_ms=100.0, @@ -46,19 +46,21 @@ def __init__( backend=None, **backend_kwargs, ): + sorting_analyzer_or_sorting = self.ensure_sorting_analyzer(sorting_analyzer_or_sorting) + if min_similarity_for_correlograms is None: min_similarity_for_correlograms = 0 similarity = None - if isinstance(waveform_or_sorting_extractor, WaveformExtractor): - sorting = waveform_or_sorting_extractor.sorting - self.check_extensions(waveform_or_sorting_extractor, "correlograms") - ccc = waveform_or_sorting_extractor.load_extension("correlograms") + if isinstance(sorting_analyzer_or_sorting, SortingAnalyzer): + sorting = sorting_analyzer_or_sorting.sorting + self.check_extensions(sorting_analyzer_or_sorting, "correlograms") + ccc = sorting_analyzer_or_sorting.get_extension("correlograms") ccgs, bins = ccc.get_data() if min_similarity_for_correlograms > 0: - self.check_extensions(waveform_or_sorting_extractor, "similarity") - similarity = waveform_or_sorting_extractor.load_extension("similarity").get_data() + self.check_extensions(sorting_analyzer_or_sorting, "template_similarity") + similarity = sorting_analyzer_or_sorting.get_extension("template_similarity").get_data() else: - sorting = waveform_or_sorting_extractor + sorting = sorting_analyzer_or_sorting ccgs, bins = compute_correlograms(sorting, window_ms=window_ms, bin_ms=bin_ms) if unit_ids is None: diff --git a/src/spikeinterface/widgets/peak_activity.py b/src/spikeinterface/widgets/peak_activity.py index 62f0c2d6d1..2339166bfb 100644 --- a/src/spikeinterface/widgets/peak_activity.py +++ b/src/spikeinterface/widgets/peak_activity.py @@ -1,13 +1,9 @@ from __future__ import annotations import numpy as np -from typing import Union -from probeinterface import ProbeGroup from .base import BaseWidget, to_attr -from .utils import get_unit_colors -from ..core.waveform_extractor import WaveformExtractor class PeakActivityMapWidget(BaseWidget): diff --git a/src/spikeinterface/widgets/quality_metrics.py b/src/spikeinterface/widgets/quality_metrics.py index 95446b36c1..3f9ee549be 100644 --- a/src/spikeinterface/widgets/quality_metrics.py +++ b/src/spikeinterface/widgets/quality_metrics.py @@ -1,7 +1,7 @@ from __future__ import annotations from .metrics import MetricsBaseWidget -from ..core.waveform_extractor import WaveformExtractor +from ..core.sortinganalyzer import SortingAnalyzer class QualityMetricsWidget(MetricsBaseWidget): @@ -10,8 +10,8 @@ class QualityMetricsWidget(MetricsBaseWidget): Parameters ---------- - waveform_extractor : WaveformExtractor - The object to compute/get quality metrics from + sorting_analyzer : SortingAnalyzer + The object to get quality metrics from unit_ids: list or None, default: None List of unit ids include_metrics: list or None, default: None @@ -26,7 +26,7 @@ class QualityMetricsWidget(MetricsBaseWidget): def __init__( self, - waveform_extractor: WaveformExtractor, + sorting_analyzer: SortingAnalyzer, unit_ids=None, include_metrics=None, skip_metrics=None, @@ -35,11 +35,11 @@ def __init__( backend=None, **backend_kwargs, ): - self.check_extensions(waveform_extractor, "quality_metrics") - qlc = waveform_extractor.load_extension("quality_metrics") - quality_metrics = qlc.get_data() + sorting_analyzer = self.ensure_sorting_analyzer(sorting_analyzer) + self.check_extensions(sorting_analyzer, "quality_metrics") + quality_metrics = sorting_analyzer.get_extension("quality_metrics").get_data() - sorting = waveform_extractor.sorting + sorting = sorting_analyzer.sorting MetricsBaseWidget.__init__( self, diff --git a/src/spikeinterface/widgets/rasters.py b/src/spikeinterface/widgets/rasters.py index 0e8b902e03..957eaadcc9 100644 --- a/src/spikeinterface/widgets/rasters.py +++ b/src/spikeinterface/widgets/rasters.py @@ -27,6 +27,8 @@ class RasterWidget(BaseWidget): def __init__( self, sorting, segment_index=None, unit_ids=None, time_range=None, color="k", backend=None, **backend_kwargs ): + sorting = self.ensure_sorting(sorting) + if segment_index is None: if sorting.get_num_segments() != 1: raise ValueError("You must provide segment_index=...") diff --git a/src/spikeinterface/widgets/sorting_summary.py b/src/spikeinterface/widgets/sorting_summary.py index 296d854222..24b4ca8022 100644 --- a/src/spikeinterface/widgets/sorting_summary.py +++ b/src/spikeinterface/widgets/sorting_summary.py @@ -11,22 +11,24 @@ from .unit_templates import UnitTemplatesWidget -from ..core import WaveformExtractor +from ..core import SortingAnalyzer class SortingSummaryWidget(BaseWidget): """ - Plots spike sorting summary + Plots spike sorting summary. + This is the main viewer to visualize the final result with several sub view. + This use sortingview (in a web browser) or spikeinterface-gui (with Qt). Parameters ---------- - waveform_extractor : WaveformExtractor - The waveform extractor object + sorting_analyzer : SortingAnalyzer + The SortingAnalyzer object unit_ids : list or None, default: None List of unit ids sparsity : ChannelSparsity or None, default: None Optional ChannelSparsity to apply - If WaveformExtractor is already sparse, the argument is ignored + If SortingAnalyzer is already sparse, the argument is ignored max_amplitudes_per_unit : int or None, default: None Maximum number of spikes per unit for plotting amplitudes. If None, all spikes are plotted @@ -47,7 +49,7 @@ class SortingSummaryWidget(BaseWidget): def __init__( self, - waveform_extractor: WaveformExtractor, + sorting_analyzer: SortingAnalyzer, unit_ids=None, sparsity=None, max_amplitudes_per_unit=None, @@ -58,15 +60,17 @@ def __init__( backend=None, **backend_kwargs, ): - self.check_extensions(waveform_extractor, ["correlograms", "spike_amplitudes", "unit_locations", "similarity"]) - we = waveform_extractor - sorting = we.sorting + sorting_analyzer = self.ensure_sorting_analyzer(sorting_analyzer) + self.check_extensions( + sorting_analyzer, ["correlograms", "spike_amplitudes", "unit_locations", "template_similarity"] + ) + sorting = sorting_analyzer.sorting if unit_ids is None: unit_ids = sorting.get_unit_ids() plot_data = dict( - waveform_extractor=waveform_extractor, + sorting_analyzer=sorting_analyzer, unit_ids=unit_ids, sparsity=sparsity, min_similarity_for_correlograms=min_similarity_for_correlograms, @@ -83,7 +87,7 @@ def plot_sortingview(self, data_plot, **backend_kwargs): from .utils_sortingview import generate_unit_table_view, make_serializable, handle_display_and_url dp = to_attr(data_plot) - we = dp.waveform_extractor + sorting_analyzer = dp.sorting_analyzer unit_ids = dp.unit_ids sparsity = dp.sparsity min_similarity_for_correlograms = dp.min_similarity_for_correlograms @@ -91,7 +95,7 @@ def plot_sortingview(self, data_plot, **backend_kwargs): unit_ids = make_serializable(dp.unit_ids) v_spike_amplitudes = AmplitudesWidget( - we, + sorting_analyzer, unit_ids=unit_ids, max_spikes_per_unit=dp.max_amplitudes_per_unit, hide_unit_selector=True, @@ -100,7 +104,7 @@ def plot_sortingview(self, data_plot, **backend_kwargs): backend="sortingview", ).view v_average_waveforms = UnitTemplatesWidget( - we, + sorting_analyzer, unit_ids=unit_ids, sparsity=sparsity, hide_unit_selector=True, @@ -109,7 +113,7 @@ def plot_sortingview(self, data_plot, **backend_kwargs): backend="sortingview", ).view v_cross_correlograms = CrossCorrelogramsWidget( - we, + sorting_analyzer, unit_ids=unit_ids, min_similarity_for_correlograms=min_similarity_for_correlograms, hide_unit_selector=True, @@ -119,11 +123,21 @@ def plot_sortingview(self, data_plot, **backend_kwargs): ).view v_unit_locations = UnitLocationsWidget( - we, unit_ids=unit_ids, hide_unit_selector=True, generate_url=False, display=False, backend="sortingview" + sorting_analyzer, + unit_ids=unit_ids, + hide_unit_selector=True, + generate_url=False, + display=False, + backend="sortingview", ).view w = TemplateSimilarityWidget( - we, unit_ids=unit_ids, immediate_plot=False, generate_url=False, display=False, backend="sortingview" + sorting_analyzer, + unit_ids=unit_ids, + immediate_plot=False, + generate_url=False, + display=False, + backend="sortingview", ) similarity = w.data_plot["similarity"] @@ -137,7 +151,7 @@ def plot_sortingview(self, data_plot, **backend_kwargs): # unit ids v_units_table = generate_unit_table_view( - dp.waveform_extractor.sorting, dp.unit_table_properties, similarity_scores=similarity_scores + dp.sorting_analyzer.sorting, dp.unit_table_properties, similarity_scores=similarity_scores ) if dp.curation: @@ -167,3 +181,13 @@ def plot_sortingview(self, data_plot, **backend_kwargs): self.view = vv.Splitter(direction="horizontal", item1=vv.LayoutItem(v1), item2=vv.LayoutItem(v2)) self.url = handle_display_and_url(self, self.view, **backend_kwargs) + + def plot_spikeinterface_gui(self, data_plot, **backend_kwargs): + sorting_analyzer = data_plot["sorting_analyzer"] + + import spikeinterface_gui + + app = spikeinterface_gui.mkQApp() + win = spikeinterface_gui.MainWindow(sorting_analyzer) + win.show() + app.exec_() diff --git a/src/spikeinterface/widgets/spike_locations.py b/src/spikeinterface/widgets/spike_locations.py index 736e6193a9..94c9def630 100644 --- a/src/spikeinterface/widgets/spike_locations.py +++ b/src/spikeinterface/widgets/spike_locations.py @@ -4,7 +4,7 @@ from .base import BaseWidget, to_attr from .utils import get_unit_colors -from ..core.waveform_extractor import WaveformExtractor +from ..core.sortinganalyzer import SortingAnalyzer class SpikeLocationsWidget(BaseWidget): @@ -13,8 +13,8 @@ class SpikeLocationsWidget(BaseWidget): Parameters ---------- - waveform_extractor : WaveformExtractor - The object to compute/get spike locations from + sorting_analyzer : SortingAnalyzer + The object to get spike locations from unit_ids : list or None, default: None List of unit ids segment_index : int or None, default: None @@ -40,7 +40,7 @@ class SpikeLocationsWidget(BaseWidget): def __init__( self, - waveform_extractor: WaveformExtractor, + sorting_analyzer: SortingAnalyzer, unit_ids=None, segment_index=None, max_spikes_per_unit=500, @@ -53,15 +53,16 @@ def __init__( backend=None, **backend_kwargs, ): - self.check_extensions(waveform_extractor, "spike_locations") - slc = waveform_extractor.load_extension("spike_locations") - spike_locations = slc.get_data(outputs="by_unit") + sorting_analyzer = self.ensure_sorting_analyzer(sorting_analyzer) + self.check_extensions(sorting_analyzer, "spike_locations") - sorting = waveform_extractor.sorting + spike_locations_by_units = sorting_analyzer.get_extension("spike_locations").get_data(outputs="by_unit") - channel_ids = waveform_extractor.channel_ids - channel_locations = waveform_extractor.get_channel_locations() - probegroup = waveform_extractor.get_probegroup() + sorting = sorting_analyzer.sorting + + channel_ids = sorting_analyzer.channel_ids + channel_locations = sorting_analyzer.get_channel_locations() + probegroup = sorting_analyzer.get_probegroup() if sorting.get_num_segments() > 1: assert segment_index is not None, "Specify segment index for multi-segment object" @@ -74,7 +75,7 @@ def __init__( if unit_ids is None: unit_ids = sorting.unit_ids - all_spike_locs = spike_locations[segment_index] + all_spike_locs = spike_locations_by_units[segment_index] if max_spikes_per_unit is None: spike_locs = all_spike_locs else: diff --git a/src/spikeinterface/widgets/spikes_on_traces.py b/src/spikeinterface/widgets/spikes_on_traces.py index 42fbd623cd..d354a82086 100644 --- a/src/spikeinterface/widgets/spikes_on_traces.py +++ b/src/spikeinterface/widgets/spikes_on_traces.py @@ -7,7 +7,7 @@ from .traces import TracesWidget from ..core import ChannelSparsity from ..core.template_tools import get_template_extremum_channel -from ..core.waveform_extractor import WaveformExtractor +from ..core.sortinganalyzer import SortingAnalyzer from ..core.baserecording import BaseRecording from ..core.basesorting import BaseSorting from ..postprocessing import compute_unit_locations @@ -19,8 +19,8 @@ class SpikesOnTracesWidget(BaseWidget): Parameters ---------- - waveform_extractor : WaveformExtractor - The waveform extractor + sorting_analyzer : SortingAnalyzer + The SortingAnalyzer channel_ids : list or None, default: None The channel ids to display unit_ids : list or None, default: None @@ -31,7 +31,7 @@ class SpikesOnTracesWidget(BaseWidget): List with start time and end time in seconds sparsity : ChannelSparsity or None, default: None Optional ChannelSparsity to apply - If WaveformExtractor is already sparse, the argument is ignored + If SortingAnalyzer is already sparse, the argument is ignored unit_colors : dict or None, default: None If given, a dictionary with unit ids as keys and colors as values If None, then the get_unit_colors() is internally used. (matplotlib backend) @@ -62,7 +62,7 @@ class SpikesOnTracesWidget(BaseWidget): def __init__( self, - waveform_extractor: WaveformExtractor, + sorting_analyzer: SortingAnalyzer, segment_index=None, channel_ids=None, unit_ids=None, @@ -83,8 +83,10 @@ def __init__( backend=None, **backend_kwargs, ): - we = waveform_extractor - sorting: BaseSorting = we.sorting + sorting_analyzer = self.ensure_sorting_analyzer(sorting_analyzer) + self.check_extensions(sorting_analyzer, "unit_locations") + + sorting: BaseSorting = sorting_analyzer.sorting if unit_ids is None: unit_ids = sorting.get_unit_ids() @@ -94,21 +96,22 @@ def __init__( unit_colors = get_unit_colors(sorting) # sparsity is done on all the units even if unit_ids is a few ones because some backend need then all - if waveform_extractor.is_sparse(): - sparsity = waveform_extractor.sparsity + if sorting_analyzer.is_sparse(): + sparsity = sorting_analyzer.sparsity else: if sparsity is None: # in this case, we construct a sparsity dictionary only with the best channel - extremum_channel_ids = get_template_extremum_channel(we) + extremum_channel_ids = get_template_extremum_channel(sorting_analyzer) unit_id_to_channel_ids = {u: [ch] for u, ch in extremum_channel_ids.items()} sparsity = ChannelSparsity.from_unit_id_to_channel_ids( - unit_id_to_channel_ids=unit_id_to_channel_ids, unit_ids=we.unit_ids, channel_ids=we.channel_ids + unit_id_to_channel_ids=unit_id_to_channel_ids, + unit_ids=sorting_analyzer.unit_ids, + channel_ids=sorting_analyzer.channel_ids, ) else: assert isinstance(sparsity, ChannelSparsity) - # get templates - unit_locations = compute_unit_locations(we, outputs="by_unit") + unit_locations = sorting_analyzer.get_extension("unit_locations").get_data(outputs="by_unit") options = dict( segment_index=segment_index, @@ -127,7 +130,7 @@ def __init__( ) plot_data = dict( - waveform_extractor=waveform_extractor, + sorting_analyzer=sorting_analyzer, options=options, unit_ids=unit_ids, sparsity=sparsity, @@ -145,9 +148,9 @@ def plot_matplotlib(self, data_plot, **backend_kwargs): from matplotlib.lines import Line2D dp = to_attr(data_plot) - we = dp.waveform_extractor - recording = we.recording - sorting = we.sorting + sorting_analyzer = dp.sorting_analyzer + recording = sorting_analyzer.recording + sorting = sorting_analyzer.sorting # first plot time series traces_widget = TracesWidget(recording, **dp.options, backend="matplotlib", **backend_kwargs) @@ -210,7 +213,10 @@ def plot_matplotlib(self, data_plot, **backend_kwargs): vspacing = traces_widget.data_plot["vspacing"] traces = traces_widget.data_plot["list_traces"][0] - waveform_idxs = spike_frames_to_plot[:, None] + np.arange(-we.nbefore, we.nafter) - frame_range[0] + # TODO find a better way + nbefore = 30 + nafter = 60 + waveform_idxs = spike_frames_to_plot[:, None] + np.arange(-nbefore, nafter) - frame_range[0] waveform_idxs = np.clip(waveform_idxs, 0, len(traces_widget.data_plot["times"]) - 1) times = traces_widget.data_plot["times"][waveform_idxs] @@ -242,7 +248,7 @@ def plot_ipywidgets(self, data_plot, **backend_kwargs): self.next_data_plot = data_plot.copy() dp = to_attr(data_plot) - we = dp.waveform_extractor + sorting_analyzer = dp.sorting_analyzer ratios = [0.2, 0.8] @@ -253,7 +259,9 @@ def plot_ipywidgets(self, data_plot, **backend_kwargs): width_cm = backend_kwargs["width_cm"] # plot timeseries - self._traces_widget = TracesWidget(we.recording, **dp.options, backend="ipywidgets", **backend_kwargs_ts) + self._traces_widget = TracesWidget( + sorting_analyzer.recording, **dp.options, backend="ipywidgets", **backend_kwargs_ts + ) self.ax = self._traces_widget.ax self.axes = self._traces_widget.axes self.figure = self._traces_widget.figure diff --git a/src/spikeinterface/widgets/template_metrics.py b/src/spikeinterface/widgets/template_metrics.py index 4789176ced..b80c863e75 100644 --- a/src/spikeinterface/widgets/template_metrics.py +++ b/src/spikeinterface/widgets/template_metrics.py @@ -1,7 +1,7 @@ from __future__ import annotations from .metrics import MetricsBaseWidget -from ..core.waveform_extractor import WaveformExtractor +from ..core.sortinganalyzer import SortingAnalyzer class TemplateMetricsWidget(MetricsBaseWidget): @@ -10,8 +10,8 @@ class TemplateMetricsWidget(MetricsBaseWidget): Parameters ---------- - waveform_extractor : WaveformExtractor - The object to compute/get template metrics from + sorting_analyzer : SortingAnalyzer + The object to get quality metrics from unit_ids : list or None, default: None List of unit ids include_metrics : list or None, default: None @@ -26,7 +26,7 @@ class TemplateMetricsWidget(MetricsBaseWidget): def __init__( self, - waveform_extractor: WaveformExtractor, + sorting_analyzer: SortingAnalyzer, unit_ids=None, include_metrics=None, skip_metrics=None, @@ -35,11 +35,11 @@ def __init__( backend=None, **backend_kwargs, ): - self.check_extensions(waveform_extractor, "template_metrics") - tmc = waveform_extractor.load_extension("template_metrics") - template_metrics = tmc.get_data() + sorting_analyzer = self.ensure_sorting_analyzer(sorting_analyzer) + self.check_extensions(sorting_analyzer, "template_metrics") + template_metrics = sorting_analyzer.get_extension("template_metrics").get_data() - sorting = waveform_extractor.sorting + sorting = sorting_analyzer.sorting MetricsBaseWidget.__init__( self, diff --git a/src/spikeinterface/widgets/template_similarity.py b/src/spikeinterface/widgets/template_similarity.py index fe4db0cc6d..b469d9901f 100644 --- a/src/spikeinterface/widgets/template_similarity.py +++ b/src/spikeinterface/widgets/template_similarity.py @@ -3,7 +3,7 @@ import numpy as np from .base import BaseWidget, to_attr -from ..core.waveform_extractor import WaveformExtractor +from ..core.sortinganalyzer import SortingAnalyzer class TemplateSimilarityWidget(BaseWidget): @@ -12,8 +12,8 @@ class TemplateSimilarityWidget(BaseWidget): Parameters ---------- - waveform_extractor : WaveformExtractor - The object to compute/get template similarity from + sorting_analyzer : SortingAnalyzer + The object to get template similarity from unit_ids : list or None, default: None List of unit ids default: None display_diagonal_values : bool, default: False @@ -29,7 +29,7 @@ class TemplateSimilarityWidget(BaseWidget): def __init__( self, - waveform_extractor: WaveformExtractor, + sorting_analyzer: SortingAnalyzer, unit_ids=None, cmap="viridis", display_diagonal_values=False, @@ -38,11 +38,13 @@ def __init__( backend=None, **backend_kwargs, ): - self.check_extensions(waveform_extractor, "similarity") - tsc = waveform_extractor.load_extension("similarity") + sorting_analyzer = self.ensure_sorting_analyzer(sorting_analyzer) + self.check_extensions(sorting_analyzer, "template_similarity") + + tsc = sorting_analyzer.get_extension("template_similarity") similarity = tsc.get_data().copy() - sorting = waveform_extractor.sorting + sorting = sorting_analyzer.sorting if unit_ids is None: unit_ids = sorting.unit_ids else: diff --git a/src/spikeinterface/widgets/tests/test_widgets.py b/src/spikeinterface/widgets/tests/test_widgets.py index 9c32f772e3..6c15e1dbf6 100644 --- a/src/spikeinterface/widgets/tests/test_widgets.py +++ b/src/spikeinterface/widgets/tests/test_widgets.py @@ -2,7 +2,6 @@ import pytest import os from pathlib import Path -import shutil if __name__ != "__main__": import matplotlib @@ -13,27 +12,15 @@ from spikeinterface import ( - load_extractor, - extract_waveforms, - load_waveforms, - download_dataset, compute_sparsity, generate_ground_truth_recording, + create_sorting_analyzer, ) -import spikeinterface.extractors as se + import spikeinterface.widgets as sw import spikeinterface.comparison as sc from spikeinterface.preprocessing import scale -from spikeinterface.postprocessing import ( - compute_correlograms, - compute_spike_amplitudes, - compute_spike_locations, - compute_unit_locations, - compute_template_metrics, - compute_template_similarity, -) -from spikeinterface.qualitymetrics import compute_quality_metrics if hasattr(pytest, "global_test_folder"): @@ -47,94 +34,87 @@ class TestWidgets(unittest.TestCase): - @classmethod - def _delete_widget_folders(cls): - for name in ( - "recording", - "sorting", - "we_dense", - "we_sparse", - ): - if (cache_folder / name).is_dir(): - shutil.rmtree(cache_folder / name) @classmethod def setUpClass(cls): - cls._delete_widget_folders() - - if (cache_folder / "recording").is_dir() and (cache_folder / "sorting").is_dir(): - cls.recording = load_extractor(cache_folder / "recording") - cls.sorting = load_extractor(cache_folder / "sorting") - else: - recording, sorting = generate_ground_truth_recording( - durations=[30.0], - sampling_frequency=28000.0, - num_channels=32, - num_units=10, - generate_probe_kwargs=dict( - num_columns=2, - xpitch=20, - ypitch=20, - contact_shapes="circle", - contact_shape_params={"radius": 6}, - ), - generate_sorting_kwargs=dict(firing_rates=10.0, refractory_period_ms=4.0), - noise_kwargs=dict(noise_level=5.0, strategy="on_the_fly"), - seed=2205, - ) - # cls.recording = recording.save(folder=cache_folder / "recording") - # cls.sorting = sorting.save(folder=cache_folder / "sorting") - cls.recording = recording - cls.sorting = sorting + + recording, sorting = generate_ground_truth_recording( + durations=[30.0], + sampling_frequency=28000.0, + num_channels=32, + num_units=10, + generate_probe_kwargs=dict( + num_columns=2, + xpitch=20, + ypitch=20, + contact_shapes="circle", + contact_shape_params={"radius": 6}, + ), + generate_sorting_kwargs=dict(firing_rates=10.0, refractory_period_ms=4.0), + noise_kwargs=dict(noise_level=5.0, strategy="on_the_fly"), + seed=2205, + ) + # cls.recording = recording.save(folder=cache_folder / "recording") + # cls.sorting = sorting.save(folder=cache_folder / "sorting") + cls.recording = recording + cls.sorting = sorting cls.num_units = len(cls.sorting.get_unit_ids()) - if (cache_folder / "we_dense").is_dir(): - cls.we_dense = load_waveforms(cache_folder / "we_dense") - else: - cls.we_dense = extract_waveforms( - recording=cls.recording, sorting=cls.sorting, folder=None, mode="memory", sparse=False - ) - metric_names = ["snr", "isi_violation", "num_spikes"] - _ = compute_spike_amplitudes(cls.we_dense) - _ = compute_unit_locations(cls.we_dense) - _ = compute_spike_locations(cls.we_dense) - _ = compute_quality_metrics(cls.we_dense, metric_names=metric_names) - _ = compute_template_metrics(cls.we_dense) - _ = compute_correlograms(cls.we_dense) - _ = compute_template_similarity(cls.we_dense) + extensions_to_compute = dict( + waveforms=dict(), + templates=dict(), + noise_levels=dict(), + spike_amplitudes=dict(), + unit_locations=dict(), + spike_locations=dict(), + quality_metrics=dict(metric_names=["snr", "isi_violation", "num_spikes"]), + template_metrics=dict(), + correlograms=dict(), + template_similarity=dict(), + ) + job_kwargs = dict(n_jobs=-1) + + # create dense + cls.sorting_analyzer_dense = create_sorting_analyzer(cls.sorting, cls.recording, format="memory", sparse=False) + cls.sorting_analyzer_dense.compute("random_spikes") + cls.sorting_analyzer_dense.compute(extensions_to_compute, **job_kwargs) sw.set_default_plotter_backend("matplotlib") # make sparse waveforms - cls.sparsity_radius = compute_sparsity(cls.we_dense, method="radius", radius_um=50) - cls.sparsity_strict = compute_sparsity(cls.we_dense, method="radius", radius_um=20) - cls.sparsity_large = compute_sparsity(cls.we_dense, method="radius", radius_um=80) - cls.sparsity_best = compute_sparsity(cls.we_dense, method="best_channels", num_channels=5) - if (cache_folder / "we_sparse").is_dir(): - cls.we_sparse = load_waveforms(cache_folder / "we_sparse") - else: - cls.we_sparse = cls.we_dense.save(folder=cache_folder / "we_sparse", sparsity=cls.sparsity_radius) + cls.sparsity_radius = compute_sparsity(cls.sorting_analyzer_dense, method="radius", radius_um=50) + cls.sparsity_strict = compute_sparsity(cls.sorting_analyzer_dense, method="radius", radius_um=20) + cls.sparsity_large = compute_sparsity(cls.sorting_analyzer_dense, method="radius", radius_um=80) + cls.sparsity_best = compute_sparsity(cls.sorting_analyzer_dense, method="best_channels", num_channels=5) + + # create sparse + cls.sorting_analyzer_sparse = create_sorting_analyzer( + cls.sorting, cls.recording, format="memory", sparsity=cls.sparsity_radius + ) + cls.sorting_analyzer_sparse.compute("random_spikes") + cls.sorting_analyzer_sparse.compute(extensions_to_compute, **job_kwargs) - cls.skip_backends = ["ipywidgets", "ephyviewer"] + cls.skip_backends = ["ipywidgets", "ephyviewer", "spikeinterface_gui"] + # cls.skip_backends = ["ipywidgets", "ephyviewer", "sortingview"] if ON_GITHUB and not KACHERY_CLOUD_SET: cls.skip_backends.append("sortingview") print(f"Widgets tests: skipping backends - {cls.skip_backends}") - cls.backend_kwargs = {"matplotlib": {}, "sortingview": {}, "ipywidgets": {"display": False}} + cls.backend_kwargs = { + "matplotlib": {}, + "sortingview": {}, + "ipywidgets": {"display": False}, + "spikeinterface_gui": {}, + } cls.gt_comp = sc.compare_sorter_to_ground_truth(cls.sorting, cls.sorting) from spikeinterface.sortingcomponents.peak_detection import detect_peaks - cls.peaks = detect_peaks(cls.recording, method="locally_exclusive") - - @classmethod - def tearDownClass(cls): - del cls.recording, cls.sorting, cls.peaks, cls.gt_comp, cls.we_sparse, cls.we_dense - # cls._delete_widget_folders() + cls.peaks = detect_peaks(cls.recording, method="locally_exclusive", **job_kwargs) def test_plot_traces(self): possible_backends = list(sw.TracesWidget.get_possible_backends()) @@ -173,32 +153,38 @@ def test_plot_traces(self): **self.backend_kwargs[backend], ) + def test_plot_spikes_on_traces(self): + possible_backends = list(sw.SpikesOnTracesWidget.get_possible_backends()) + for backend in possible_backends: + if backend not in self.skip_backends: + sw.plot_spikes_on_traces(self.sorting_analyzer_dense, backend=backend, **self.backend_kwargs[backend]) + def test_plot_unit_waveforms(self): possible_backends = list(sw.UnitWaveformsWidget.get_possible_backends()) for backend in possible_backends: if backend not in self.skip_backends: - sw.plot_unit_waveforms(self.we_dense, backend=backend, **self.backend_kwargs[backend]) + sw.plot_unit_waveforms(self.sorting_analyzer_dense, backend=backend, **self.backend_kwargs[backend]) unit_ids = self.sorting.unit_ids[:6] sw.plot_unit_waveforms( - self.we_dense, + self.sorting_analyzer_dense, sparsity=self.sparsity_radius, unit_ids=unit_ids, backend=backend, **self.backend_kwargs[backend], ) sw.plot_unit_waveforms( - self.we_dense, + self.sorting_analyzer_dense, sparsity=self.sparsity_best, unit_ids=unit_ids, backend=backend, **self.backend_kwargs[backend], ) sw.plot_unit_waveforms( - self.we_sparse, unit_ids=unit_ids, backend=backend, **self.backend_kwargs[backend] + self.sorting_analyzer_sparse, unit_ids=unit_ids, backend=backend, **self.backend_kwargs[backend] ) # extra sparsity sw.plot_unit_waveforms( - self.we_sparse, + self.sorting_analyzer_sparse, sparsity=self.sparsity_strict, unit_ids=unit_ids, backend=backend, @@ -207,7 +193,7 @@ def test_plot_unit_waveforms(self): # test "larger" sparsity with self.assertRaises(AssertionError): sw.plot_unit_waveforms( - self.we_sparse, + self.sorting_analyzer_sparse, sparsity=self.sparsity_large, unit_ids=unit_ids, backend=backend, @@ -220,11 +206,11 @@ def test_plot_unit_templates(self): if backend not in self.skip_backends: print(f"Testing backend {backend}") print("Dense") - sw.plot_unit_templates(self.we_dense, backend=backend, **self.backend_kwargs[backend]) + sw.plot_unit_templates(self.sorting_analyzer_dense, backend=backend, **self.backend_kwargs[backend]) unit_ids = self.sorting.unit_ids[:6] print("Dense + radius") sw.plot_unit_templates( - self.we_dense, + self.sorting_analyzer_dense, sparsity=self.sparsity_radius, unit_ids=unit_ids, backend=backend, @@ -232,7 +218,7 @@ def test_plot_unit_templates(self): ) print("Dense + best") sw.plot_unit_templates( - self.we_dense, + self.sorting_analyzer_dense, sparsity=self.sparsity_best, unit_ids=unit_ids, backend=backend, @@ -241,7 +227,7 @@ def test_plot_unit_templates(self): # test different shadings print("Sparse") sw.plot_unit_templates( - self.we_sparse, + self.sorting_analyzer_sparse, unit_ids=unit_ids, templates_percentile_shading=None, backend=backend, @@ -249,7 +235,7 @@ def test_plot_unit_templates(self): ) print("Sparse2") sw.plot_unit_templates( - self.we_sparse, + self.sorting_analyzer_sparse, unit_ids=unit_ids, # templates_percentile_shading=None, scale=10, @@ -259,7 +245,7 @@ def test_plot_unit_templates(self): # test different shadings print("Sparse3") sw.plot_unit_templates( - self.we_sparse, + self.sorting_analyzer_sparse, unit_ids=unit_ids, backend=backend, templates_percentile_shading=None, @@ -268,7 +254,7 @@ def test_plot_unit_templates(self): ) print("Sparse4") sw.plot_unit_templates( - self.we_sparse, + self.sorting_analyzer_sparse, unit_ids=unit_ids, templates_percentile_shading=0.1, backend=backend, @@ -276,7 +262,7 @@ def test_plot_unit_templates(self): ) print("Extra sparsity") sw.plot_unit_templates( - self.we_sparse, + self.sorting_analyzer_sparse, sparsity=self.sparsity_strict, unit_ids=unit_ids, templates_percentile_shading=[1, 10, 90, 99], @@ -286,7 +272,7 @@ def test_plot_unit_templates(self): # test "larger" sparsity with self.assertRaises(AssertionError): sw.plot_unit_templates( - self.we_sparse, + self.sorting_analyzer_sparse, sparsity=self.sparsity_large, unit_ids=unit_ids, backend=backend, @@ -294,7 +280,7 @@ def test_plot_unit_templates(self): ) if backend != "sortingview": sw.plot_unit_templates( - self.we_sparse, + self.sorting_analyzer_sparse, unit_ids=unit_ids, templates_percentile_shading=[1, 5, 25, 75, 95, 99], backend=backend, @@ -304,7 +290,7 @@ def test_plot_unit_templates(self): # sortingview doesn't support more than 2 shadings with self.assertRaises(AssertionError): sw.plot_unit_templates( - self.we_sparse, + self.sorting_analyzer_sparse, unit_ids=unit_ids, templates_percentile_shading=[1, 5, 25, 75, 95, 99], backend=backend, @@ -316,17 +302,19 @@ def test_plot_unit_waveforms_density_map(self): for backend in possible_backends: if backend not in self.skip_backends: unit_ids = self.sorting.unit_ids[:2] + + # on dense + sw.plot_unit_waveforms_density_map( + self.sorting_analyzer_dense, unit_ids=unit_ids, backend=backend, **self.backend_kwargs[backend] + ) + # on sparse sw.plot_unit_waveforms_density_map( - self.we_dense, unit_ids=unit_ids, backend=backend, **self.backend_kwargs[backend] + self.sorting_analyzer_sparse, unit_ids=unit_ids, backend=backend, **self.backend_kwargs[backend] ) - def test_plot_unit_waveforms_density_map_sparsity_radius(self): - possible_backends = list(sw.UnitWaveformDensityMapWidget.get_possible_backends()) - for backend in possible_backends: - if backend not in self.skip_backends: - unit_ids = self.sorting.unit_ids[:2] + # externals parsity sw.plot_unit_waveforms_density_map( - self.we_dense, + self.sorting_analyzer_dense, sparsity=self.sparsity_radius, same_axis=False, unit_ids=unit_ids, @@ -334,13 +322,9 @@ def test_plot_unit_waveforms_density_map_sparsity_radius(self): **self.backend_kwargs[backend], ) - def test_plot_unit_waveforms_density_map_sparsity_None_same_axis(self): - possible_backends = list(sw.UnitWaveformDensityMapWidget.get_possible_backends()) - for backend in possible_backends: - if backend not in self.skip_backends: - unit_ids = self.sorting.unit_ids[:2] + # on sparse with same_axis sw.plot_unit_waveforms_density_map( - self.we_sparse, + self.sorting_analyzer_sparse, sparsity=None, same_axis=True, unit_ids=unit_ids, @@ -362,7 +346,7 @@ def test_plot_autocorrelograms(self): **self.backend_kwargs[backend], ) - def test_plot_crosscorrelogram(self): + def test_plot_crosscorrelograms(self): possible_backends = list(sw.CrossCorrelogramsWidget.get_possible_backends()) for backend in possible_backends: if backend not in self.skip_backends: @@ -383,12 +367,12 @@ def test_plot_crosscorrelogram(self): **self.backend_kwargs[backend], ) sw.plot_crosscorrelograms( - self.we_sparse, + self.sorting_analyzer_sparse, backend=backend, **self.backend_kwargs[backend], ) sw.plot_crosscorrelograms( - self.we_sparse, + self.sorting_analyzer_sparse, min_similarity_for_correlograms=0.6, backend=backend, **self.backend_kwargs[backend], @@ -412,18 +396,20 @@ def test_plot_amplitudes(self): possible_backends = list(sw.AmplitudesWidget.get_possible_backends()) for backend in possible_backends: if backend not in self.skip_backends: - sw.plot_amplitudes(self.we_dense, backend=backend, **self.backend_kwargs[backend]) - unit_ids = self.we_dense.unit_ids[:4] - sw.plot_amplitudes(self.we_dense, unit_ids=unit_ids, backend=backend, **self.backend_kwargs[backend]) + sw.plot_amplitudes(self.sorting_analyzer_dense, backend=backend, **self.backend_kwargs[backend]) + unit_ids = self.sorting_analyzer_dense.unit_ids[:4] + sw.plot_amplitudes( + self.sorting_analyzer_dense, unit_ids=unit_ids, backend=backend, **self.backend_kwargs[backend] + ) sw.plot_amplitudes( - self.we_dense, + self.sorting_analyzer_dense, unit_ids=unit_ids, plot_histograms=True, backend=backend, **self.backend_kwargs[backend], ) sw.plot_amplitudes( - self.we_sparse, + self.sorting_analyzer_sparse, unit_ids=unit_ids, plot_histograms=True, backend=backend, @@ -434,12 +420,12 @@ def test_plot_all_amplitudes_distributions(self): possible_backends = list(sw.AllAmplitudesDistributionsWidget.get_possible_backends()) for backend in possible_backends: if backend not in self.skip_backends: - unit_ids = self.we_dense.unit_ids[:4] + unit_ids = self.sorting_analyzer_dense.unit_ids[:4] sw.plot_all_amplitudes_distributions( - self.we_dense, unit_ids=unit_ids, backend=backend, **self.backend_kwargs[backend] + self.sorting_analyzer_dense, unit_ids=unit_ids, backend=backend, **self.backend_kwargs[backend] ) sw.plot_all_amplitudes_distributions( - self.we_sparse, unit_ids=unit_ids, backend=backend, **self.backend_kwargs[backend] + self.sorting_analyzer_sparse, unit_ids=unit_ids, backend=backend, **self.backend_kwargs[backend] ) def test_plot_unit_locations(self): @@ -447,10 +433,10 @@ def test_plot_unit_locations(self): for backend in possible_backends: if backend not in self.skip_backends: sw.plot_unit_locations( - self.we_dense, with_channel_ids=True, backend=backend, **self.backend_kwargs[backend] + self.sorting_analyzer_dense, with_channel_ids=True, backend=backend, **self.backend_kwargs[backend] ) sw.plot_unit_locations( - self.we_sparse, with_channel_ids=True, backend=backend, **self.backend_kwargs[backend] + self.sorting_analyzer_sparse, with_channel_ids=True, backend=backend, **self.backend_kwargs[backend] ) def test_plot_spike_locations(self): @@ -458,59 +444,72 @@ def test_plot_spike_locations(self): for backend in possible_backends: if backend not in self.skip_backends: sw.plot_spike_locations( - self.we_dense, with_channel_ids=True, backend=backend, **self.backend_kwargs[backend] + self.sorting_analyzer_dense, with_channel_ids=True, backend=backend, **self.backend_kwargs[backend] ) sw.plot_spike_locations( - self.we_sparse, with_channel_ids=True, backend=backend, **self.backend_kwargs[backend] + self.sorting_analyzer_sparse, with_channel_ids=True, backend=backend, **self.backend_kwargs[backend] ) def test_plot_similarity(self): possible_backends = list(sw.TemplateSimilarityWidget.get_possible_backends()) for backend in possible_backends: if backend not in self.skip_backends: - sw.plot_template_similarity(self.we_dense, backend=backend, **self.backend_kwargs[backend]) - sw.plot_template_similarity(self.we_sparse, backend=backend, **self.backend_kwargs[backend]) + sw.plot_template_similarity( + self.sorting_analyzer_dense, backend=backend, **self.backend_kwargs[backend] + ) + sw.plot_template_similarity( + self.sorting_analyzer_sparse, backend=backend, **self.backend_kwargs[backend] + ) def test_plot_quality_metrics(self): possible_backends = list(sw.QualityMetricsWidget.get_possible_backends()) for backend in possible_backends: if backend not in self.skip_backends: - sw.plot_quality_metrics(self.we_dense, backend=backend, **self.backend_kwargs[backend]) - sw.plot_quality_metrics(self.we_sparse, backend=backend, **self.backend_kwargs[backend]) + sw.plot_quality_metrics(self.sorting_analyzer_dense, backend=backend, **self.backend_kwargs[backend]) + sw.plot_quality_metrics(self.sorting_analyzer_sparse, backend=backend, **self.backend_kwargs[backend]) def test_plot_template_metrics(self): possible_backends = list(sw.TemplateMetricsWidget.get_possible_backends()) for backend in possible_backends: if backend not in self.skip_backends: - sw.plot_template_metrics(self.we_dense, backend=backend, **self.backend_kwargs[backend]) - sw.plot_template_metrics(self.we_sparse, backend=backend, **self.backend_kwargs[backend]) + sw.plot_template_metrics(self.sorting_analyzer_dense, backend=backend, **self.backend_kwargs[backend]) + sw.plot_template_metrics(self.sorting_analyzer_sparse, backend=backend, **self.backend_kwargs[backend]) def test_plot_unit_depths(self): possible_backends = list(sw.UnitDepthsWidget.get_possible_backends()) for backend in possible_backends: if backend not in self.skip_backends: - sw.plot_unit_depths(self.we_dense, backend=backend, **self.backend_kwargs[backend]) - sw.plot_unit_depths(self.we_sparse, backend=backend, **self.backend_kwargs[backend]) + sw.plot_unit_depths(self.sorting_analyzer_dense, backend=backend, **self.backend_kwargs[backend]) + sw.plot_unit_depths(self.sorting_analyzer_sparse, backend=backend, **self.backend_kwargs[backend]) def test_plot_unit_summary(self): possible_backends = list(sw.UnitSummaryWidget.get_possible_backends()) for backend in possible_backends: if backend not in self.skip_backends: sw.plot_unit_summary( - self.we_dense, self.we_dense.sorting.unit_ids[0], backend=backend, **self.backend_kwargs[backend] + self.sorting_analyzer_dense, + self.sorting_analyzer_dense.sorting.unit_ids[0], + backend=backend, + **self.backend_kwargs[backend], ) sw.plot_unit_summary( - self.we_sparse, self.we_sparse.sorting.unit_ids[0], backend=backend, **self.backend_kwargs[backend] + self.sorting_analyzer_sparse, + self.sorting_analyzer_sparse.sorting.unit_ids[0], + backend=backend, + **self.backend_kwargs[backend], ) def test_plot_sorting_summary(self): possible_backends = list(sw.SortingSummaryWidget.get_possible_backends()) for backend in possible_backends: if backend not in self.skip_backends: - sw.plot_sorting_summary(self.we_dense, backend=backend, **self.backend_kwargs[backend]) - sw.plot_sorting_summary(self.we_sparse, backend=backend, **self.backend_kwargs[backend]) + sw.plot_sorting_summary(self.sorting_analyzer_dense, backend=backend, **self.backend_kwargs[backend]) + sw.plot_sorting_summary(self.sorting_analyzer_sparse, backend=backend, **self.backend_kwargs[backend]) sw.plot_sorting_summary( - self.we_sparse, sparsity=self.sparsity_strict, backend=backend, **self.backend_kwargs[backend] + self.sorting_analyzer_sparse, + sparsity=self.sparsity_strict, + backend=backend, + **self.backend_kwargs[backend], ) def test_plot_agreement_matrix(self): @@ -541,7 +540,7 @@ def test_plot_unit_probe_map(self): possible_backends = list(sw.UnitProbeMapWidget.get_possible_backends()) for backend in possible_backends: if backend not in self.skip_backends: - sw.plot_unit_probe_map(self.we_dense) + sw.plot_unit_probe_map(self.sorting_analyzer_dense) def test_plot_unit_presence(self): possible_backends = list(sw.UnitPresenceWidget.get_possible_backends()) @@ -583,26 +582,28 @@ def test_plot_multicomparison(self): # mytest.test_plot_unit_summary() # mytest.test_plot_all_amplitudes_distributions() # mytest.test_plot_traces() + # mytest.test_plot_spikes_on_traces() # mytest.test_plot_unit_waveforms() - # mytest.test_plot_unit_templates() - mytest.test_plot_unit_waveforms() + mytest.test_plot_unit_templates() # mytest.test_plot_unit_depths() - # mytest.test_plot_unit_templates() - # mytest.test_plot_unit_summary() - # mytest.test_crosscorrelogram() - # mytest.test_isi_distribution() - # mytest.test_unit_locations() - # mytest.test_quality_metrics() - # mytest.test_template_metrics() - # mytest.test_amplitudes() + # mytest.test_plot_autocorrelograms() + # mytest.test_plot_crosscorrelograms() + # mytest.test_plot_isi_distribution() + # mytest.test_plot_unit_locations() + # mytest.test_plot_spike_locations() + # mytest.test_plot_similarity() + # mytest.test_plot_quality_metrics() + # mytest.test_plot_template_metrics() + # mytest.test_plot_amplitudes() # mytest.test_plot_agreement_matrix() # mytest.test_plot_confusion_matrix() # mytest.test_plot_probe_map() # mytest.test_plot_rasters() # mytest.test_plot_unit_probe_map() # mytest.test_plot_unit_presence() + # mytest.test_plot_peak_activity() # mytest.test_plot_multicomparison() - - TestWidgets.tearDownClass() - + # mytest.test_plot_sorting_summary() plt.show() + + # TestWidgets.tearDownClass() diff --git a/src/spikeinterface/widgets/unit_depths.py b/src/spikeinterface/widgets/unit_depths.py index 7ca585f9d3..c5fe3e05e8 100644 --- a/src/spikeinterface/widgets/unit_depths.py +++ b/src/spikeinterface/widgets/unit_depths.py @@ -16,8 +16,8 @@ class UnitDepthsWidget(BaseWidget): Parameters ---------- - waveform_extractor : WaveformExtractor - The input waveform extractor + sorting_analyzer : SortingAnalyzer + The SortingAnalyzer object unit_colors : dict or None, default: None If given, a dictionary with unit ids as keys and colors as values depth_axis : int, default: 1 @@ -27,25 +27,27 @@ class UnitDepthsWidget(BaseWidget): """ def __init__( - self, waveform_extractor, unit_colors=None, depth_axis=1, peak_sign="neg", backend=None, **backend_kwargs + self, sorting_analyzer, unit_colors=None, depth_axis=1, peak_sign="neg", backend=None, **backend_kwargs ): - we = waveform_extractor - unit_ids = we.sorting.unit_ids + + sorting_analyzer = self.ensure_sorting_analyzer(sorting_analyzer) + + unit_ids = sorting_analyzer.sorting.unit_ids if unit_colors is None: - unit_colors = get_unit_colors(we.sorting) + unit_colors = get_unit_colors(sorting_analyzer.sorting) colors = [unit_colors[unit_id] for unit_id in unit_ids] - self.check_extensions(waveform_extractor, "unit_locations") - ulc = waveform_extractor.load_extension("unit_locations") + self.check_extensions(sorting_analyzer, "unit_locations") + ulc = sorting_analyzer.get_extension("unit_locations") unit_locations = ulc.get_data(outputs="numpy") unit_depths = unit_locations[:, depth_axis] - unit_amplitudes = get_template_extremum_amplitude(we, peak_sign=peak_sign) + unit_amplitudes = get_template_extremum_amplitude(sorting_analyzer, peak_sign=peak_sign) unit_amplitudes = np.abs([unit_amplitudes[unit_id] for unit_id in unit_ids]) - num_spikes = we.sorting.count_num_spikes_per_unit(outputs="array") + num_spikes = sorting_analyzer.sorting.count_num_spikes_per_unit(outputs="array") plot_data = dict( unit_depths=unit_depths, diff --git a/src/spikeinterface/widgets/unit_locations.py b/src/spikeinterface/widgets/unit_locations.py index 3fe2688ce1..3329c2183c 100644 --- a/src/spikeinterface/widgets/unit_locations.py +++ b/src/spikeinterface/widgets/unit_locations.py @@ -7,7 +7,7 @@ from .base import BaseWidget, to_attr from .utils import get_unit_colors -from ..core.waveform_extractor import WaveformExtractor +from ..core.sortinganalyzer import SortingAnalyzer class UnitLocationsWidget(BaseWidget): @@ -16,8 +16,8 @@ class UnitLocationsWidget(BaseWidget): Parameters ---------- - waveform_extractor : WaveformExtractor - The object to compute/get unit locations from + sorting_analyzer : SortingAnalyzer + The SortingAnalyzer that must contains "unit_locations" extension unit_ids : list or None, default: None List of unit ids with_channel_ids : bool, default: False @@ -37,7 +37,7 @@ class UnitLocationsWidget(BaseWidget): def __init__( self, - waveform_extractor: WaveformExtractor, + sorting_analyzer: SortingAnalyzer, unit_ids=None, with_channel_ids=False, unit_colors=None, @@ -48,15 +48,17 @@ def __init__( backend=None, **backend_kwargs, ): - self.check_extensions(waveform_extractor, "unit_locations") - ulc = waveform_extractor.load_extension("unit_locations") + sorting_analyzer = self.ensure_sorting_analyzer(sorting_analyzer) + + self.check_extensions(sorting_analyzer, "unit_locations") + ulc = sorting_analyzer.get_extension("unit_locations") unit_locations = ulc.get_data(outputs="by_unit") - sorting = waveform_extractor.sorting + sorting = sorting_analyzer.sorting - channel_ids = waveform_extractor.channel_ids - channel_locations = waveform_extractor.get_channel_locations() - probegroup = waveform_extractor.get_probegroup() + channel_ids = sorting_analyzer.channel_ids + channel_locations = sorting_analyzer.get_channel_locations() + probegroup = sorting_analyzer.get_probegroup() if unit_colors is None: unit_colors = get_unit_colors(sorting) @@ -127,11 +129,11 @@ def plot_matplotlib(self, data_plot, **backend_kwargs): if dp.plot_all_units: unit_colors = {} unit_ids = dp.all_unit_ids - for unit in dp.all_unit_ids: - if unit not in dp.unit_ids: - unit_colors[unit] = "gray" + for unit_id in dp.all_unit_ids: + if unit_id not in dp.unit_ids: + unit_colors[unit_id] = "gray" else: - unit_colors[unit] = dp.unit_colors[unit] + unit_colors[unit_id] = dp.unit_colors[unit_id] else: unit_ids = dp.unit_ids unit_colors = dp.unit_colors @@ -139,13 +141,13 @@ def plot_matplotlib(self, data_plot, **backend_kwargs): patches = [ Ellipse( - (unit_locations[unit]), - color=unit_colors[unit], - zorder=5 if unit in dp.unit_ids else 3, - alpha=0.9 if unit in dp.unit_ids else 0.5, + (unit_locations[unit_id]), + color=unit_colors[unit_id], + zorder=5 if unit_id in dp.unit_ids else 3, + alpha=0.9 if unit_id in dp.unit_ids else 0.5, **ellipse_kwargs, ) - for i, unit in enumerate(unit_ids) + for unit_ind, unit_id in enumerate(unit_ids) ] for p in patches: self.ax.add_patch(p) diff --git a/src/spikeinterface/widgets/unit_presence.py b/src/spikeinterface/widgets/unit_presence.py index fa6f3c69f7..746868b89d 100644 --- a/src/spikeinterface/widgets/unit_presence.py +++ b/src/spikeinterface/widgets/unit_presence.py @@ -33,6 +33,8 @@ def __init__( backend=None, **backend_kwargs, ): + sorting = self.ensure_sorting(sorting) + if segment_index is None: nseg = sorting.get_num_segments() if nseg != 1: diff --git a/src/spikeinterface/widgets/unit_probe_map.py b/src/spikeinterface/widgets/unit_probe_map.py index e1439e7356..034a0bda49 100644 --- a/src/spikeinterface/widgets/unit_probe_map.py +++ b/src/spikeinterface/widgets/unit_probe_map.py @@ -8,7 +8,8 @@ from .base import BaseWidget, to_attr # from .utils import get_unit_colors -from ..core.waveform_extractor import WaveformExtractor +from ..core.sortinganalyzer import SortingAnalyzer +from ..core.template_tools import _get_dense_templates_array class UnitProbeMapWidget(BaseWidget): @@ -19,7 +20,7 @@ class UnitProbeMapWidget(BaseWidget): Parameters ---------- - waveform_extractor: WaveformExtractor + sorting_analyzer: SortingAnalyzer unit_ids: list List of unit ids. channel_ids: list @@ -32,7 +33,7 @@ class UnitProbeMapWidget(BaseWidget): def __init__( self, - waveform_extractor, + sorting_analyzer, unit_ids=None, channel_ids=None, animated=None, @@ -41,15 +42,17 @@ def __init__( backend=None, **backend_kwargs, ): + sorting_analyzer = self.ensure_sorting_analyzer(sorting_analyzer) + if unit_ids is None: - unit_ids = waveform_extractor.sorting.unit_ids + unit_ids = sorting_analyzer.unit_ids self.unit_ids = unit_ids if channel_ids is None: - channel_ids = waveform_extractor.recording.channel_ids + channel_ids = sorting_analyzer.channel_ids self.channel_ids = channel_ids data_plot = dict( - waveform_extractor=waveform_extractor, + sorting_analyzer=sorting_analyzer, unit_ids=unit_ids, channel_ids=channel_ids, animated=animated, @@ -73,15 +76,19 @@ def plot_matplotlib(self, data_plot, **backend_kwargs): self.figure, self.axes, self.ax = make_mpl_figure(**backend_kwargs) - we = dp.waveform_extractor - probe = we.get_probe() + sorting_analyzer = dp.sorting_analyzer + probe = sorting_analyzer.get_probe() probe_shape_kwargs = dict(facecolor="w", edgecolor="k", lw=0.5, alpha=1.0) + templates = _get_dense_templates_array(sorting_analyzer, return_scaled=True) + templates = templates[sorting_analyzer.sorting.ids_to_indices(dp.unit_ids), :, :] + all_poly_contact = [] for i, unit_id in enumerate(dp.unit_ids): ax = self.axes.flatten()[i] - template = we.get_template(unit_id) + # template = we.get_template(unit_id) + template = templates[i, :, :] # static if dp.animated: contacts_values = np.zeros(template.shape[1]) @@ -116,7 +123,8 @@ def plot_matplotlib(self, data_plot, **backend_kwargs): def animate_func(frame): for i, unit_id in enumerate(self.unit_ids): - template = we.get_template(unit_id) + # template = we.get_template(unit_id) + template = templates[i, :, :] contacts_values = np.abs(template[frame, :]) poly_contact = all_poly_contact[i] poly_contact.set_array(contacts_values) diff --git a/src/spikeinterface/widgets/unit_summary.py b/src/spikeinterface/widgets/unit_summary.py index cef09e29a7..ea6476784e 100644 --- a/src/spikeinterface/widgets/unit_summary.py +++ b/src/spikeinterface/widgets/unit_summary.py @@ -21,22 +21,22 @@ class UnitSummaryWidget(BaseWidget): Parameters ---------- - waveform_extractor : WaveformExtractor - The waveform extractor object + sorting_analyzer : SortingAnalyzer + The SortingAnalyzer object unit_id : int or str The unit id to plot the summary of unit_colors : dict or None, default: None If given, a dictionary with unit ids as keys and colors as values, sparsity : ChannelSparsity or None, default: None Optional ChannelSparsity to apply. - If WaveformExtractor is already sparse, the argument is ignored + If SortingAnalyzer is already sparse, the argument is ignored """ # possible_backends = {} def __init__( self, - waveform_extractor, + sorting_analyzer, unit_id, unit_colors=None, sparsity=None, @@ -44,13 +44,14 @@ def __init__( backend=None, **backend_kwargs, ): - we = waveform_extractor + + sorting_analyzer = self.ensure_sorting_analyzer(sorting_analyzer) if unit_colors is None: - unit_colors = get_unit_colors(we.sorting) + unit_colors = get_unit_colors(sorting_analyzer.sorting) plot_data = dict( - we=we, + sorting_analyzer=sorting_analyzer, unit_id=unit_id, unit_colors=unit_colors, sparsity=sparsity, @@ -65,7 +66,7 @@ def plot_matplotlib(self, data_plot, **backend_kwargs): dp = to_attr(data_plot) unit_id = dp.unit_id - we = dp.we + sorting_analyzer = dp.sorting_analyzer unit_colors = dp.unit_colors sparsity = dp.sparsity @@ -82,20 +83,25 @@ def plot_matplotlib(self, data_plot, **backend_kwargs): fig = self.figure nrows = 2 ncols = 3 - if we.has_extension("correlograms") or we.has_extension("spike_amplitudes"): + if sorting_analyzer.has_extension("correlograms") or sorting_analyzer.has_extension("spike_amplitudes"): ncols += 1 - if we.has_extension("spike_amplitudes"): + if sorting_analyzer.has_extension("spike_amplitudes"): nrows += 1 gs = fig.add_gridspec(nrows, ncols) - if we.has_extension("unit_locations"): + if sorting_analyzer.has_extension("unit_locations"): ax1 = fig.add_subplot(gs[:2, 0]) # UnitLocationsPlotter().do_plot(dp.plot_data_unit_locations, ax=ax1) w = UnitLocationsWidget( - we, unit_ids=[unit_id], unit_colors=unit_colors, plot_legend=False, backend="matplotlib", ax=ax1 + sorting_analyzer, + unit_ids=[unit_id], + unit_colors=unit_colors, + plot_legend=False, + backend="matplotlib", + ax=ax1, ) - unit_locations = we.load_extension("unit_locations").get_data(outputs="by_unit") + unit_locations = sorting_analyzer.get_extension("unit_locations").get_data(outputs="by_unit") unit_location = unit_locations[unit_id] x, y = unit_location[0], unit_location[1] ax1.set_xlim(x - 80, x + 80) @@ -106,7 +112,7 @@ def plot_matplotlib(self, data_plot, **backend_kwargs): ax2 = fig.add_subplot(gs[:2, 1]) w = UnitWaveformsWidget( - we, + sorting_analyzer, unit_ids=[unit_id], unit_colors=unit_colors, plot_templates=True, @@ -121,7 +127,7 @@ def plot_matplotlib(self, data_plot, **backend_kwargs): ax3 = fig.add_subplot(gs[:2, 2]) UnitWaveformDensityMapWidget( - we, + sorting_analyzer, unit_ids=[unit_id], unit_colors=unit_colors, use_max_channel=True, @@ -131,10 +137,10 @@ def plot_matplotlib(self, data_plot, **backend_kwargs): ) ax3.set_ylabel(None) - if we.has_extension("correlograms"): + if sorting_analyzer.has_extension("correlograms"): ax4 = fig.add_subplot(gs[:2, 3]) AutoCorrelogramsWidget( - we, + sorting_analyzer, unit_ids=[unit_id], unit_colors=unit_colors, backend="matplotlib", @@ -144,12 +150,12 @@ def plot_matplotlib(self, data_plot, **backend_kwargs): ax4.set_title(None) ax4.set_yticks([]) - if we.has_extension("spike_amplitudes"): + if sorting_analyzer.has_extension("spike_amplitudes"): ax5 = fig.add_subplot(gs[2, :3]) ax6 = fig.add_subplot(gs[2, 3]) axes = np.array([ax5, ax6]) AmplitudesWidget( - we, + sorting_analyzer, unit_ids=[unit_id], unit_colors=unit_colors, plot_legend=False, diff --git a/src/spikeinterface/widgets/unit_templates.py b/src/spikeinterface/widgets/unit_templates.py index a39d5e0f0c..1350bb71a5 100644 --- a/src/spikeinterface/widgets/unit_templates.py +++ b/src/spikeinterface/widgets/unit_templates.py @@ -50,7 +50,7 @@ def plot_sortingview(self, data_plot, **backend_kwargs): v_average_waveforms = vv.AverageWaveforms(average_waveforms=aw_items, channel_locations=locations) if not dp.hide_unit_selector: - v_units_table = generate_unit_table_view(dp.waveform_extractor.sorting) + v_units_table = generate_unit_table_view(dp.sorting_analyzer.sorting) self.view = vv.Box( direction="horizontal", diff --git a/src/spikeinterface/widgets/unit_waveforms.py b/src/spikeinterface/widgets/unit_waveforms.py index 83e9f583f1..ab415ae2f0 100644 --- a/src/spikeinterface/widgets/unit_waveforms.py +++ b/src/spikeinterface/widgets/unit_waveforms.py @@ -5,9 +5,9 @@ from .base import BaseWidget, to_attr from .utils import get_unit_colors -from ..core import ChannelSparsity -from ..core.waveform_extractor import WaveformExtractor +from ..core import ChannelSparsity, SortingAnalyzer from ..core.basesorting import BaseSorting +from ..core.template_tools import _get_dense_templates_array class UnitWaveformsWidget(BaseWidget): @@ -16,8 +16,8 @@ class UnitWaveformsWidget(BaseWidget): Parameters ---------- - waveform_extractor : WaveformExtractor - The input waveform extractor + sorting_analyzer : SortingAnalyzer + The SortingAnalyzer channel_ids: list or None, default: None The channel ids to display unit_ids : list or None, default: None @@ -26,7 +26,7 @@ class UnitWaveformsWidget(BaseWidget): If True, templates are plotted over the waveforms sparsity : ChannelSparsity or None, default: None Optional ChannelSparsity to apply - If WaveformExtractor is already sparse, the argument is ignored + If SortingAnalyzer is already sparse, the argument is ignored set_title : bool, default: True Create a plot title with the unit number if True plot_channels : bool, default: False @@ -77,7 +77,7 @@ class UnitWaveformsWidget(BaseWidget): def __init__( self, - waveform_extractor: WaveformExtractor, + sorting_analyzer: SortingAnalyzer, channel_ids=None, unit_ids=None, plot_waveforms=True, @@ -104,26 +104,29 @@ def __init__( backend=None, **backend_kwargs, ): - we = waveform_extractor - sorting: BaseSorting = we.sorting + + sorting_analyzer = self.ensure_sorting_analyzer(sorting_analyzer) + sorting: BaseSorting = sorting_analyzer.sorting if unit_ids is None: unit_ids = sorting.unit_ids if channel_ids is None: - channel_ids = we.channel_ids + channel_ids = sorting_analyzer.channel_ids if unit_colors is None: unit_colors = get_unit_colors(sorting) - channel_locations = we.get_channel_locations()[we.channel_ids_to_indices(channel_ids)] + channel_locations = sorting_analyzer.get_channel_locations()[ + sorting_analyzer.channel_ids_to_indices(channel_ids) + ] extra_sparsity = False - if waveform_extractor.is_sparse(): + if sorting_analyzer.is_sparse(): if sparsity is None: - sparsity = waveform_extractor.sparsity + sparsity = sorting_analyzer.sparsity else: # assert provided sparsity is a subset of waveform sparsity - combined_mask = np.logical_or(we.sparsity.mask, sparsity.mask) - assert np.all(np.sum(combined_mask, 1) - np.sum(we.sparsity.mask, 1) == 0), ( + combined_mask = np.logical_or(sorting_analyzer.sparsity.mask, sparsity.mask) + assert np.all(np.sum(combined_mask, 1) - np.sum(sorting_analyzer.sparsity.mask, 1) == 0), ( "The provided 'sparsity' needs to include only the sparse channels " "used to extract waveforms (for example, by using a smaller 'radius_um')." ) @@ -131,36 +134,47 @@ def __init__( else: if sparsity is None: # in this case, we construct a dense sparsity - unit_id_to_channel_ids = {u: we.channel_ids for u in we.unit_ids} + unit_id_to_channel_ids = {u: sorting_analyzer.channel_ids for u in sorting_analyzer.unit_ids} sparsity = ChannelSparsity.from_unit_id_to_channel_ids( - unit_id_to_channel_ids=unit_id_to_channel_ids, unit_ids=we.unit_ids, channel_ids=we.channel_ids + unit_id_to_channel_ids=unit_id_to_channel_ids, + unit_ids=sorting_analyzer.unit_ids, + channel_ids=sorting_analyzer.channel_ids, ) else: assert isinstance(sparsity, ChannelSparsity), "'sparsity' should be a ChannelSparsity object!" # get templates - templates = we.get_all_templates(unit_ids=unit_ids) - templates_shading = self._get_template_shadings(we, unit_ids, templates_percentile_shading) + ext = sorting_analyzer.get_extension("templates") + assert ext is not None, "plot_waveforms() need extension 'templates'" + templates = ext.get_templates(unit_ids=unit_ids, operator="average") + + templates_shading = self._get_template_shadings(sorting_analyzer, unit_ids, templates_percentile_shading) xvectors, y_scale, y_offset, delta_x = get_waveforms_scales( - waveform_extractor, templates, channel_locations, x_offset_units + sorting_analyzer, templates, channel_locations, x_offset_units ) wfs_by_ids = {} if plot_waveforms: + wf_ext = sorting_analyzer.get_extension("waveforms") + assert wf_ext is not None, "plot_waveforms() need extension 'waveforms'" for unit_id in unit_ids: + unit_index = list(sorting.unit_ids).index(unit_id) if not extra_sparsity: - if waveform_extractor.is_sparse(): - wfs = we.get_waveforms(unit_id) + if sorting_analyzer.is_sparse(): + # wfs = we.get_waveforms(unit_id) + wfs = wf_ext.get_waveforms_one_unit(unit_id, force_dense=False) else: - wfs = we.get_waveforms(unit_id, sparsity=sparsity) + # wfs = we.get_waveforms(unit_id, sparsity=sparsity) + wfs = wf_ext.get_waveforms_one_unit(unit_id) + wfs = wfs[:, :, sparsity.mask[unit_index]] else: # in this case we have to slice the waveform sparsity based on the extra sparsity - unit_index = list(sorting.unit_ids).index(unit_id) # first get the sparse waveforms - wfs = we.get_waveforms(unit_id) + # wfs = we.get_waveforms(unit_id) + wfs = wf_ext.get_waveforms_one_unit(unit_id, force_dense=False) # find additional slice to apply to sparse waveforms - (wfs_sparse_indices,) = np.nonzero(waveform_extractor.sparsity.mask[unit_index]) + (wfs_sparse_indices,) = np.nonzero(sorting_analyzer.sparsity.mask[unit_index]) (extra_sparse_indices,) = np.nonzero(sparsity.mask[unit_index]) (extra_slice,) = np.nonzero(np.isin(wfs_sparse_indices, extra_sparse_indices)) # apply extra sparsity @@ -168,8 +182,8 @@ def __init__( wfs_by_ids[unit_id] = wfs plot_data = dict( - waveform_extractor=waveform_extractor, - sampling_frequency=waveform_extractor.sampling_frequency, + sorting_analyzer=sorting_analyzer, + sampling_frequency=sorting_analyzer.sampling_frequency, unit_ids=unit_ids, channel_ids=channel_ids, sparsity=sparsity, @@ -243,6 +257,7 @@ def plot_matplotlib(self, data_plot, **backend_kwargs): if len(wfs) > dp.max_spikes_per_unit: random_idxs = np.random.permutation(len(wfs))[: dp.max_spikes_per_unit] wfs = wfs[random_idxs] + wfs = wfs * dp.y_scale + dp.y_offset[None, :, chan_inds] wfs_flat = wfs.swapaxes(1, 2).reshape(wfs.shape[0], -1).T @@ -333,7 +348,7 @@ def plot_ipywidgets(self, data_plot, **backend_kwargs): self.next_data_plot = data_plot.copy() cm = 1 / 2.54 - self.we = we = data_plot["waveform_extractor"] + self.sorting_analyzer = data_plot["sorting_analyzer"] width_cm = backend_kwargs["width_cm"] height_cm = backend_kwargs["height_cm"] @@ -402,10 +417,12 @@ def plot_ipywidgets(self, data_plot, **backend_kwargs): if backend_kwargs["display"]: display(self.widget) - def _get_template_shadings(self, we, unit_ids, templates_percentile_shading): - templates = we.get_all_templates(unit_ids=unit_ids) + def _get_template_shadings(self, sorting_analyzer, unit_ids, templates_percentile_shading): + ext = sorting_analyzer.get_extension("templates") + templates = ext.get_templates(unit_ids=unit_ids, operator="average") + if templates_percentile_shading is None: - templates_std = we.get_all_templates(unit_ids=unit_ids, mode="std") + templates_std = ext.get_templates(unit_ids=unit_ids, operator="std") templates_shading = [templates - templates_std, templates + templates_std] else: if isinstance(templates_percentile_shading, (int, float)): @@ -419,7 +436,8 @@ def _get_template_shadings(self, we, unit_ids, templates_percentile_shading): ), "'templates_percentile_shading' should be a have an even number of elements." templates_shading = [] for percentile in templates_percentile_shading: - template_percentile = we.get_all_templates(unit_ids=unit_ids, mode="percentile", percentile=percentile) + template_percentile = ext.get_templates(unit_ids=unit_ids, operator="percentile", percentile=percentile) + templates_shading.append(template_percentile) return templates_shading @@ -434,18 +452,26 @@ def _update_plot(self, change): hide_axis = self.hide_axis_button.value do_shading = self.template_shading_button.value + wf_ext = self.sorting_analyzer.get_extension("waveforms") + templates_ext = self.sorting_analyzer.get_extension("templates") + templates = templates_ext.get_templates(unit_ids=unit_ids, operator="average") + # matplotlib next_data_plot dict update at each call data_plot = self.next_data_plot data_plot["unit_ids"] = unit_ids - data_plot["templates"] = self.we.get_all_templates(unit_ids=unit_ids) - templates_shadings = self._get_template_shadings(self.we, unit_ids, data_plot["templates_percentile_shading"]) + data_plot["templates"] = templates + templates_shadings = self._get_template_shadings( + self.sorting_analyzer, unit_ids, data_plot["templates_percentile_shading"] + ) data_plot["templates_shading"] = templates_shadings data_plot["same_axis"] = same_axis data_plot["plot_templates"] = plot_templates data_plot["do_shading"] = do_shading data_plot["scale"] = self.scaler.value if data_plot["plot_waveforms"]: - data_plot["wfs_by_ids"] = {unit_id: self.we.get_waveforms(unit_id) for unit_id in unit_ids} + data_plot["wfs_by_ids"] = { + unit_id: wf_ext.get_waveforms_one_unit(unit_id, force_dense=False) for unit_id in unit_ids + } # TODO option for plot_legend @@ -469,7 +495,7 @@ def _update_plot(self, change): ax.axis("off") # update probe plot - channel_locations = self.we.get_channel_locations() + channel_locations = self.sorting_analyzer.get_channel_locations() self.ax_probe.plot( channel_locations[:, 0], channel_locations[:, 1], ls="", marker="o", color="gray", markersize=2, alpha=0.5 ) @@ -496,7 +522,7 @@ def _update_plot(self, change): fig_probe.canvas.flush_events() -def get_waveforms_scales(we, templates, channel_locations, x_offset_units=False): +def get_waveforms_scales(sorting_analyzer, templates, channel_locations, x_offset_units=False): """ Return scales and x_vector for templates plotting """ @@ -522,7 +548,10 @@ def get_waveforms_scales(we, templates, channel_locations, x_offset_units=False) y_offset = channel_locations[:, 1][None, :] - xvect = delta_x * (np.arange(we.nsamples) - we.nbefore) / we.nsamples * 0.7 + nbefore = sorting_analyzer.get_extension("waveforms").nbefore + nsamples = templates.shape[1] + + xvect = delta_x * (np.arange(nsamples) - nbefore) / nsamples * 0.7 if x_offset_units: ch_locs = channel_locations diff --git a/src/spikeinterface/widgets/unit_waveforms_density_map.py b/src/spikeinterface/widgets/unit_waveforms_density_map.py index 631600c919..41c77f59fa 100644 --- a/src/spikeinterface/widgets/unit_waveforms_density_map.py +++ b/src/spikeinterface/widgets/unit_waveforms_density_map.py @@ -14,15 +14,15 @@ class UnitWaveformDensityMapWidget(BaseWidget): Parameters ---------- - waveform_extractor : WaveformExtractor - The waveformextractor for calculating waveforms + sorting_analyzer : SortingAnalyzer + The SortingAnalyzer for calculating waveforms channel_ids : list or None, default: None The channel ids to display unit_ids : list or None, default: None List of unit ids sparsity : ChannelSparsity or None, default: None Optional ChannelSparsity to apply - If WaveformExtractor is already sparse, the argument is ignored + If SortingAnalyzer is already sparse, the argument is ignored use_max_channel : bool, default: False Use only the max channel peak_sign : "neg" | "pos" | "both", default: "neg" @@ -37,7 +37,7 @@ class UnitWaveformDensityMapWidget(BaseWidget): def __init__( self, - waveform_extractor, + sorting_analyzer, channel_ids=None, unit_ids=None, sparsity=None, @@ -48,36 +48,39 @@ def __init__( backend=None, **backend_kwargs, ): - we = waveform_extractor + sorting_analyzer = self.ensure_sorting_analyzer(sorting_analyzer) if channel_ids is None: - channel_ids = we.channel_ids + channel_ids = sorting_analyzer.channel_ids if unit_ids is None: - unit_ids = we.unit_ids + unit_ids = sorting_analyzer.unit_ids if unit_colors is None: - unit_colors = get_unit_colors(we.sorting) + unit_colors = get_unit_colors(sorting_analyzer.sorting) if use_max_channel: assert len(unit_ids) == 1, " UnitWaveformDensity : use_max_channel=True works only with one unit" - max_channels = get_template_extremum_channel(we, mode="extremum", peak_sign=peak_sign, outputs="index") + max_channels = get_template_extremum_channel( + sorting_analyzer, mode="extremum", peak_sign=peak_sign, outputs="index" + ) # sparsity is done on all the units even if unit_ids is a few ones because some backends need them all - if waveform_extractor.is_sparse(): - assert sparsity is None, "UnitWaveformDensity WaveformExtractor is already sparse" - used_sparsity = waveform_extractor.sparsity + if sorting_analyzer.is_sparse(): + assert sparsity is None, "UnitWaveformDensity SortingAnalyzer is already sparse" + used_sparsity = sorting_analyzer.sparsity elif sparsity is not None: assert isinstance(sparsity, ChannelSparsity), "'sparsity' should be a ChannelSparsity object!" used_sparsity = sparsity else: # in this case, we construct a dense sparsity - used_sparsity = ChannelSparsity.create_dense(we) + used_sparsity = ChannelSparsity.create_dense(sorting_analyzer) channel_inds = used_sparsity.unit_id_to_channel_indices # bins - templates = we.get_all_templates(unit_ids=unit_ids) + # templates = we.get_all_templates(unit_ids=unit_ids) + templates = sorting_analyzer.get_extension("templates").get_templates(unit_ids=unit_ids) bin_min = np.min(templates) * 1.3 bin_max = np.max(templates) * 1.3 bin_size = (bin_max - bin_min) / 100 @@ -87,16 +90,23 @@ def __init__( if same_axis: all_hist2d = None # channel union across units - unit_inds = we.sorting.ids_to_indices(unit_ids) + unit_inds = sorting_analyzer.sorting.ids_to_indices(unit_ids) (shared_chan_inds,) = np.nonzero(np.sum(used_sparsity.mask[unit_inds, :], axis=0)) else: all_hist2d = {} - for unit_index, unit_id in enumerate(unit_ids): + wf_ext = sorting_analyzer.get_extension("waveforms") + for i, unit_id in enumerate(unit_ids): + unit_index = sorting_analyzer.sorting.id_to_index(unit_id) chan_inds = channel_inds[unit_id] # this have already the sparsity - wfs = we.get_waveforms(unit_id, sparsity=sparsity) + # wfs = we.get_waveforms(unit_id, sparsity=sparsity) + + wfs = wf_ext.get_waveforms_one_unit(unit_id, force_dense=False) + if sparsity is not None: + # external sparsity + wfs = wfs[:, :, sparsity.mask[unit_index, :]] if use_max_channel: chan_ind = max_channels[unit_id] @@ -136,16 +146,17 @@ def __init__( # plot median templates_flat = {} - for unit_index, unit_id in enumerate(unit_ids): + for i, unit_id in enumerate(unit_ids): + unit_index = sorting_analyzer.sorting.id_to_index(unit_id) chan_inds = channel_inds[unit_id] - template = templates[unit_index, :, chan_inds] + template = templates[i, :, chan_inds] template_flat = template.flatten() templates_flat[unit_id] = template_flat plot_data = dict( unit_ids=unit_ids, unit_colors=unit_colors, - channel_ids=we.channel_ids, + channel_ids=sorting_analyzer.channel_ids, channel_inds=channel_inds, same_axis=same_axis, bin_min=bin_min,