-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
33 lines (26 loc) · 1.56 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
from __future__ import print_function
import argparse
import os
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Run an image classification experiment')
parser.add_argument('--dataset', type=str, default='cifar10', help='Dataset name')
parser.add_argument('--batch_size', default=64, type=int, help='Batch size')
parser.add_argument('--nb_epoch', default=30, type=int, help='Number of epochs')
parser.add_argument('--depth', type=int, default=7, help='Network depth')
parser.add_argument('--nb_dense_block', type=int, default=1, help='Number of dense blocks')
parser.add_argument('--nb_filter', type=int, default=16, help='Initial number of conv filters')
parser.add_argument('--growth_rate', type=int, default=12, help='Number of new filters added by conv layers')
parser.add_argument('--dropout_rate', type=float, default=0.2, help='Dropout rate')
parser.add_argument('--learning_rate', type=float, default=1E-3, help='Learning rate')
parser.add_argument('--weight_decay', type=float, default=1E-4, help='L2 regularization on weights')
args = parser.parse_args()
print("Network configuration:")
for name, value in parser.parse_args()._get_kwargs():
print(name, value)
list_dir = ["./log", "./trained_models"]
for d in list_dir:
if not os.path.exists(d):
os.makedirs(d)
import nn
nn.run(args.dataset, args.batch_size, args.nb_epoch, args.depth, args.nb_dense_block, args.nb_filter, args.growth_rate,
args.dropout_rate, args.learning_rate, args.weight_decay)