forked from nnrepo/LSM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathReadouts.cpp
113 lines (91 loc) · 3.63 KB
/
Readouts.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
#include "Readouts.h"
Readout::Readout(LSM *lsm, Training *training, unsigned int samplingInterval)
: _lsm(lsm),
_training(training),
_samplingInterval(samplingInterval) {
}
MatrixXd Readout::trainData(unsigned int layerIndex) {
//Filter the data
Eigen::MatrixXd beforeFilter = _lsm->_layers[layerIndex].makeMatrix(_lsm->_firings);
Eigen::MatrixXd filter = _lsm->filter(layerIndex);
Eigen::MatrixXd sampled(filter.rows(), filter.cols()/_samplingInterval);
for( unsigned i = 0; i < filter.cols()/_samplingInterval; i++ ) {
sampled.col(i) = filter.col(i*_samplingInterval);
}
#ifdef DEBUG__4
cout << endl << "Before filtering" << endl << beforeFilter;
cout << endl << "After filtering" << endl << filter << endl;
#endif
VectorXd trainingVector = _training->generateOutputVector(_samplingInterval);
#ifdef DEBUG__4
cout << endl << "Training vector" << endl << trainingVector;
#endif
_solution = train(sampled, trainingVector);
MatrixXd solved = sampled.transpose() * _solution;
return solved;
}
double Readout::getError(MatrixXd solved) {
VectorXd trainingVector = _training->generateOutputVector(_samplingInterval);
MatrixXd checkResult = solved - trainingVector;
#ifdef DEBUG__4
cout << endl << "After evaluation: " << endl << checkResult << endl;
#endif
double fit = checkResult.squaredNorm()/checkResult.rows();
return fit;
}
JacobiReadout::JacobiReadout(LSM *lsm, Training *training, unsigned int samplingInterval)
: Readout(lsm, training, samplingInterval) {
}
VectorXd JacobiReadout::train(Eigen::MatrixXd filter, VectorXd trainingVector) {
#ifdef DEBUG__1
cout << "Training least squares with svd" << endl;
#endif
VectorXd solution = filter.jacobiSvd(ComputeThinU | ComputeThinV).solve(trainingVector);
return solution;
}
CholeskyReadout::CholeskyReadout(LSM *lsm, Training *training, unsigned int samplingInterval)
: Readout(lsm, training, samplingInterval) {
}
VectorXd CholeskyReadout::train(Eigen::MatrixXd filter, VectorXd trainingVector) {
#ifdef DEBUG__1
cout << "Training least squares with choleski" << endl;
#endif
VectorXd solution = filter.transpose().colPivHouseholderQr().solve(trainingVector);
return solution;
}
NormalEquationsReadout::NormalEquationsReadout(LSM *lsm, Training *training, unsigned int samplingInterval)
: Readout(lsm, training, samplingInterval) {
}
VectorXd NormalEquationsReadout::train(Eigen::MatrixXd filter, VectorXd trainingVector) {
#ifdef DEBUG__1
cout << "Training least squares with normal equations" << endl;
#endif
VectorXd solution = (filter.transpose() * filter).ldlt().solve(filter.transpose() * trainingVector);
return solution;
}
BLASLeastSquares::BLASLeastSquares(LSM *lsm, Training *training, unsigned int samplingInterval)
: Readout(lsm, training, samplingInterval) {
}
VectorXd BLASLeastSquares::train(Eigen::MatrixXd filter, VectorXd trainingVector) {
#ifdef DEBUG__1
cout << "Training least squares with normal equations" << endl;
#endif
MatrixXd mat(3,3);
mat << 3, 1, 3, 1, 5, 9, 2, 6, 5;
VectorXd vec(3);
vec << -1, -1, 1;
cout << mat;
cout << endl << vec << endl;
VectorXd solution = (mat.transpose() * mat).ldlt().solve(mat.transpose() * vec);
cout << solution << endl;
VectorXd solution2 = mat.colPivHouseholderQr().solve(vec);
cout << solution2 << endl;
cout << mat * solution2 << endl;
// double data[12];
// MatrixXd solution2 = Map<Matrix<double,4,3,RowMajor>>(m);
// Map<MatrixXd>( data, solution2.cols(), solution2.rows() ) = solution2.transpose();
// cout << solution2;
// MatrixXd solution = Map<Matrix<double, 4, 1>>(y);
// cout << solution;
return solution.col(0);
}