-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathvisualize.py
72 lines (63 loc) · 2.87 KB
/
visualize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import json
import matplotlib.pyplot as plt
import sys
import os
from collections import OrderedDict
class visualize_mmdetection():
def __init__(self, path):
self.log = open(path)
self.dict_list = list()
self.loss_rpn_bbox = list()
self.loss_rpn_cls = list()
self.loss_bbox = list()
self.loss_cls = list()
self.loss = list()
self.acc = list()
def load_data(self):
for line in self.log:
info = json.loads(line)
self.dict_list.append(info)
for i in range(1, len(self.dict_list)):
for value, key in dict(self.dict_list[i]).items():
# ------------find key for every iter-------------------#
loss_rpn_cls_value = dict(self.dict_list[i])['loss_rpn_cls']
loss_rpn_bbox_value = dict(self.dict_list[i])['loss_rpn_bbox']
loss_bbox_value = dict(self.dict_list[i])['loss_bbox']
loss_cls_value = dict(self.dict_list[i])['loss_cls']
loss_value = dict(self.dict_list[i])['loss']
acc_value = dict(self.dict_list[i])['acc']
# -------------list append------------------------------#
self.loss_rpn_cls.append(loss_rpn_cls_value)
self.loss_rpn_bbox.append(loss_rpn_bbox_value)
self.loss_bbox.append(loss_bbox_value)
self.loss_cls.append(loss_cls_value)
self.loss.append(loss_value)
self.acc.append(acc_value)
# -------------clear repeated value---------------------#
self.loss_rpn_cls = list(OrderedDict.fromkeys(self.loss_rpn_cls))
self.loss_rpn_bbox = list(OrderedDict.fromkeys(self.loss_rpn_bbox))
self.loss_bbox = list(OrderedDict.fromkeys(self.loss_bbox))
self.loss_cls = list(OrderedDict.fromkeys(self.loss_cls))
self.loss = list(OrderedDict.fromkeys(self.loss))
self.acc = list(OrderedDict.fromkeys(self.acc))
def show_chart(self):
plt.rcParams.update({'font.size': 15})
plt.figure(figsize=(20, 20))
plt.subplot(321, title='loss_rpn_cls', ylabel='loss')
plt.plot(self.loss_rpn_cls)
plt.subplot(322, title='loss_rpn_bbox', ylabel='loss')
plt.plot(self.loss_rpn_bbox)
plt.subplot(323, title='loss_cls', ylabel='loss')
plt.plot(self.loss_cls)
plt.subplot(324, title='loss_bbox', ylabel='loss')
plt.plot(self.loss_bbox)
plt.subplot(325, title='total loss', ylabel='loss')
plt.plot(self.loss)
plt.subplot(326, title='accuracy', ylabel='accuracy')
plt.plot(self.acc)
plt.suptitle((sys.argv[1][5:] + "\n training result"), fontsize=30)
plt.savefig(('output/' + sys.argv[1][5:] + '_result.png'))
if __name__ == '__main__':
x = visualize_mmdetection(sys.argv[1])
x.load_data()
x.show_chart()