-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsolver.py
261 lines (218 loc) · 10.5 KB
/
solver.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
"""Define a solver"""
import torch
import torch.nn as nn
import torch.nn.functional as F
import scipy.special as f
from network import defineNet
from torch import autograd
import copy
import numpy as np
from network import defineNet
from utils.tools import alpha_Adam, kl_loss, compute_grad2
class GANModel():
def __init__(self, config):
self.ngpu = config['ngpu']
self.batch_size = config['g_batch_size']
self.d_batch_size = config['d_batch_size']
self.num = config['gen_nums']
self.lr = config['lr']
self.device = 'cuda:0'
self.z_dim = config['z_dim']
self.max_step = config['max_step']
self.network_name = config['network_name']
self.info_bottle = config['info_bottle']
Generator, Discriminator = defineNet(config['img_size'])
self.G = Generator(num_gens=self.num).to(self.device)
self.D = Discriminator().to(self.device)
if ('cuda' in self.device) and (self.ngpu > 1):
self.G = nn.DataParallel(self.G, list(range(self.ngpu)))
self.D = nn.DataParallel(self.D, list(range(self.ngpu)))
self.optimizer_G = torch.optim.Adam(self.G.parameters(), lr=self.lr, betas=(0.5, 0.999))
self.optimizer_D = torch.optim.Adam(self.D.parameters(), lr=self.lr, betas=(0.5, 0.999))
if self.network_name == "vgan-based":
# Average model
self.G_test = copy.deepcopy(self.G)
self.reg_param = 0.1
self.target_kl= 0.2
self.beta_step = 0.00001
self.z_fixed = torch.randn(self.batch_size*self.num, self.z_dim).to(self.device)
self.optimizer_G = torch.optim.RMSprop(self.G.parameters(), lr=self.lr, alpha=0.99, eps=1e-8)
self.optimizer_D = torch.optim.RMSprop(self.D.parameters(), lr=self.lr, alpha=0.99, eps=1e-8)
self.al_optim = alpha_Adam(beta1=0., beta2 = .9,)
#initialize the Dirichlet parameter alpha
alpha_init = config['alpha_init']
alpha = np.ones([1, self.num])
self.alpha = alpha * alpha_init
alpha_t = np.concatenate(([alpha for i in range(self.batch_size)]), 0)
#initialize the parameter w and gamma
self.w = np.ones([self.batch_size, self.num]) / (self.num)
self.gamma = self.w + alpha_t
def set_input(self, imgs_eachgen, data, y):
"""Prepare data to be sent to the network"""
if self.network_name == "vgan-based":
imgs_eachgen = imgs_eachgen * self.num
z = torch.randn(imgs_eachgen, self.z_dim)
self.z = z.to(self.device)
self.real = data.to(self.device)
self.y = y.to(self.device)
def set_requires_grad(self, nets, requires_grad=False):
"""Start or stop the gradient calculating"""
for param in nets.parameters():
param.requires_grad_(requires_grad)
def forward(self):
"""Forward process"""
fake = self.G(self.z, self.y)
#change images order, like G1 G2...G10, when gpu >= 2
bs, c, h, w = fake.shape
fake = fake.view(bs//self.ngpu, self.ngpu, c, h, w)
fakes = fake.chunk(self.ngpu, 1)
self.fake = torch.cat(fakes, dim=0).view(bs, c, h, w)
def backward_D(self):
"""Calculate the gradient of discriminator"""
self.G.train()
self.D.train()
if self.network_name == 'sngan-based':
x_real = self.real
output = self.D(x_real, self.y).view(-1)
#hine loss
errD_real = torch.mean(F.relu(1. - output))
errD_real.backward()
D_x = output.mean().item()
output = self.D(self.fake.detach(), self.y)
errD_fake = torch.mean(F.relu(1. + output.view(-1)))
errD_fake.backward()
D_G_z1 = output.mean().item()
lossD = errD_real + errD_fake
else:
#vgan-based
#on real data
x_real = self.real
x_real.requires_grad_()
d_real_dict = self.D(x_real, self.y)
d_real = d_real_dict['out']
dloss_real = self.compute_loss(d_real, 1)
dloss_real.backward(retain_graph=True)
reg = 0.
reg += 10. * compute_grad2(d_real, x_real).mean()#gradinent penalty
if self.info_bottle:
mu = d_real_dict['mu']
logstd = d_real_dict['logstd']
kl_real = kl_loss(mu, logstd).mean()
d_acc_real = torch.mean((d_real > 0.5).float())
# On fake data
x_fake = self.fake
x_fake.requires_grad_()
d_fake_dict = self.D(x_fake, self.y)
d_fake = d_fake_dict['out']
dloss_fake = self.compute_loss(d_fake, 0)
if self.info_bottle:
dloss_fake.backward(retain_graph=True)
mu_fake = d_fake_dict['mu']
logstd_fake = d_fake_dict['logstd']
kl_fake = kl_loss(mu_fake, logstd_fake).mean()
avg_kl = 0.5 * (kl_real + kl_fake)
reg += self.reg_param * avg_kl
self.update_beta(avg_kl)
reg.backward()
d_acc_fake = torch.mean((d_fake < 0.5).float())
accuracies = {'real': d_acc_real, 'fake': d_acc_fake}
dloss = (dloss_real + dloss_fake)
clamp_reg_param = max(self.reg_param, 1e-5)
reg_raw = reg / clamp_reg_param
self.loss_D = dloss
D_x, D_G_z1 = dloss_real,dloss_fake
return D_x, D_G_z1
def em_fn(self, dfake):
"""EM step in our algorithm"""
with torch.no_grad():
Dgz = torch.sigmoid(dfake) #1.5 empirically
while True:
# gamma_t = np.mean(self.gamma, axis=0, keepdims=True)
# gamma_ts = np.concatenate([gamma_t for i in range(self.batch_size)], axis=0)
gamma_ts = self.gamma
gamma_sum = np.sum(self.gamma, axis=1, keepdims=True)
gamma_sum = np.concatenate([gamma_sum for i in range(self.num)], axis=1)
D_f = Dgz.view(-1).reshape(-1, self.batch_size // self.ngpu).detach().cpu().numpy()
D_f = np.split(D_f, self.ngpu)
D_ff = np.transpose(np.concatenate([D_f[i] for i in range(self.ngpu)], axis=1))
w_new = D_ff * np.exp(f.digamma(gamma_ts) - f.digamma(gamma_sum))
w_normal = w_new / np.sum(w_new, axis=1, keepdims=True)
gamma_new = self.w + self.alpha
w_error_value = np.sum(np.abs(self.w - w_normal)) / w_normal.size
gamma_error_value = np.sum(np.abs(self.gamma - gamma_new)) / gamma_new.size
if (gamma_error_value < 0.0001) and (w_error_value < 0.0001):
break
else:
self.gamma = gamma_new
self.w = w_normal
def backward_G(self):
"""Calculate the gradient of generator"""
#x_fake = self.G(self.z)
d_fake = self.D(self.fake, self.y)
if self.network_name == "vgan-based":
d_fake = d_fake['out']
self.em_fn(d_fake)
# add the parameter w into loss
w_G = self.w / np.sum(self.w, axis=0, keepdims=True)
w_G = torch.from_numpy(w_G).float().to(self.device)
w_G = torch.reshape(w_G.transpose(1, 0), [-1, 1])
if self.network_name == "vgan-based":
gloss = self.compute_loss(d_fake, 1, w_G)
else:
gloss = - torch.mean((torch.reshape(w_G.transpose(1, 0), [-1, 1])).view(-1) * d_fake.view(-1))
gloss.backward()
D_G_z2 = d_fake.view(-1).mean().item()
return D_G_z2
def optimize_parametersD(self):
"""Optimize the parameters of discriminator"""
self.forward()
self.set_requires_grad(self.D, True)
self.optimizer_D.zero_grad()
D_x, D_G_z1 = self.backward_D()
self.optimizer_D.step()
return D_x, D_G_z1
def optimize_parametersG(self):
"""Optimize the parameters of generator"""
self.set_requires_grad(self.D, False)
self.set_requires_grad(self.G, True)
self.optimizer_G.zero_grad()
self.forward()
D_G_z2 = self.backward_G()
self.optimizer_G.step()
if self.network_name == 'vgan-based':
self.update_average(self.G_test, self.G)
# update parameter alpha
gamma_sum = np.sum(self.gamma, axis=1, keepdims=True)
gamma_sum = np.concatenate([gamma_sum for i in range(self.num)], axis=1)
alpha_lb = np.mean(np.log(f.gamma(np.sum(self.alpha))) - np.sum(np.log(f.gamma(self.alpha))) + \
(np.concatenate([self.alpha for i in range(self.batch_size)], 0) - 1) * (
f.digamma(self.gamma) - f.digamma(gamma_sum)))
alpha_derv = f.digamma(np.sum(self.alpha)) - f.digamma(self.alpha) + \
np.mean((f.digamma(self.gamma) - f.digamma(gamma_sum)), axis=0, keepdims=True)
# print(alpha)
self.alpha = self.al_optim.step(alpha_derv, self.alpha, self.lr)
self.alpha = np.clip(self.alpha, 0.1, np.max(self.alpha))
return D_G_z2
def update_beta(self, avg_kl):
"""Update beta, when use vgan"""
with torch.no_grad():
new_beta = self.reg_param - self.beta_step * (self.target_kl - avg_kl)
new_beta = max(new_beta, 0)
# print('setting beta from %.2f to %.2f' % (self.reg_param, new_beta))
self.reg_param = new_beta
def compute_loss(self, d_out, target, w = torch.Tensor([1])):
"""Return a loss"""
w = w.to(d_out.device)
targets = d_out.new_full(size=d_out.size(), fill_value=target)
loss = F.binary_cross_entropy_with_logits(d_out,targets,reduction='none') * w.view(-1)
# loss = (2*target - 1) * d_out * w
return loss.mean()
def update_average(self, model_tgt, model_src, beta=0.999):
"""Moving average"""
self.set_requires_grad(model_src, False)
self.set_requires_grad(model_tgt, False)
param_dict_src = dict(model_src.named_parameters())
for p_name, p_tgt in model_tgt.named_parameters():
p_src = param_dict_src[p_name]
assert(p_src is not p_tgt)
p_tgt.copy_(beta*p_tgt + (1. - beta)*p_src)