-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathlosses.py
35 lines (28 loc) · 1.3 KB
/
losses.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
"""
Functions to compute loss objectives of FedX.
"""
import torch
from utils import F
def nt_xent(x1, x2, t=0.1):
"""Contrastive loss objective function"""
x1 = F.normalize(x1, dim=1)
x2 = F.normalize(x2, dim=1)
batch_size = x1.size(0)
out = torch.cat([x1, x2], dim=0)
sim_matrix = torch.exp(torch.mm(out, out.t().contiguous()) / t)
mask = (torch.ones_like(sim_matrix) - torch.eye(2 * batch_size, device=sim_matrix.device)).bool()
sim_matrix = sim_matrix.masked_select(mask).view(2 * batch_size, -1)
pos_sim = torch.exp(torch.sum(x1 * x2, dim=-1) / t)
pos_sim = torch.cat([pos_sim, pos_sim], dim=0)
loss = (-torch.log(pos_sim / sim_matrix.sum(dim=-1))).mean()
return loss
def js_loss(x1, x2, xa, t=0.1, t2=0.01):
"""Relational loss objective function"""
pred_sim1 = torch.mm(F.normalize(x1, dim=1), F.normalize(xa, dim=1).t())
inputs1 = F.log_softmax(pred_sim1 / t, dim=1)
pred_sim2 = torch.mm(F.normalize(x2, dim=1), F.normalize(xa, dim=1).t())
inputs2 = F.log_softmax(pred_sim2 / t, dim=1)
target_js = (F.softmax(pred_sim1 / t2, dim=1) + F.softmax(pred_sim2 / t2, dim=1)) / 2
js_loss1 = F.kl_div(inputs1, target_js, reduction="batchmean")
js_loss2 = F.kl_div(inputs2, target_js, reduction="batchmean")
return (js_loss1 + js_loss2) / 2.0