forked from ysmiura/ifcc
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_image.py
202 lines (181 loc) · 9.83 KB
/
train_image.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import argparse
import gzip
import os
import random
import time
import numpy as np
import torch
from sklearn.metrics import roc_auc_score
from tqdm import tqdm
from torch import softmax
from torch.optim import Adam
from torch.optim.lr_scheduler import StepLR
from torch.utils.data import DataLoader
from clinicgen.data.chexpert import CheXpertData
from clinicgen.data.utils import Data
from clinicgen.models.image import ImageClassification
from clinicgen.utils import data_cuda
def eval_model(pbar_vals, outs, epoch, data_n, model, optimizer, scheduler, val_loader, test_loader, bests,
device=None):
for split, data_loader in [('val', val_loader), ('test', test_loader)]:
if data_loader is not None:
scores = eval_split(model, data_loader, device=device)
pbar_vals['{0}_score'.format(split)] = scores[0]
outs[split].write('{0}-{1} {2} {3}\n'.format(epoch, data_n, scores[0], scores[1]))
outs[split].flush()
if split == 'val':
updates = update_bests(bests, scores)
for update in updates:
save_model(os.path.join(args.out, 'model_{0}.dict.gz'.format(update)), epoch, model, optimizer,
scheduler, bests)
def eval_split(model, data_loader, device=None):
with torch.no_grad():
model.eval()
y_true5, y_true14, y_score5, y_score14 = [], [], [], []
for _, inp, targ, _ in data_loader:
inp, _ = data_cuda(inp, targ, device=device, non_blocking=False)
out = model(inp)
probs = softmax(out.permute(0, 2, 1)[:, :, 1:3], dim=-1)
probs = probs.detach().cpu().numpy()
targ = targ.numpy()
for i in range(probs.shape[0]):
for j in range(probs.shape[1]):
true_val = 1 if targ[i][j] == 1 else 0
score_val = probs[i][j][1]
y_true14.append(true_val)
y_score14.append(score_val)
if j == 2 or j == 5 or j == 6 or j == 8 or j == 10:
y_true5.append(true_val)
y_score5.append(score_val)
y_true5 = np.array(y_true5)
y_score5 = np.array(y_score5)
y_true14 = np.array(y_true14)
y_score14 = np.array(y_score14)
rocauc5 = roc_auc_score(y_true5, y_score5, average='macro')
rocauc14 = roc_auc_score(y_true14, y_score14, average='macro')
model.train()
return rocauc5, rocauc14
def main(args):
if not os.path.exists(args.out):
os.makedirs(args.out)
else:
print('ERROR: {0} already exists'.format(args.out))
exit(1)
# Set random seeds
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
# Model configurations
model = ImageClassification(args.model, CheXpertData.NUM_LABELS, CheXpertData.NUM_CLASSES, args.multi_image,
dropout=args.dropout, pretrained=args.pretrained)
if args.cuda:
device = 'gpu'
model = model.cuda()
else:
device = 'cpu'
# Data
t = time.time()
datasets = Data.get_datasets(args.data, args.corpus, None, None, None, None, None, None, None,
multi_image=args.multi_image, img_mode=args.img_trans, img_augment=args.img_augment,
cache_data=args.cache_data, anatomy=args.anatomy, meta=args.splits,
ignore_blank=args.ignore_blank, exclude_ids=args.exclude_ids, filter_reports=False)
nw = 0 if args.cache_data else args.num_workers
train_loader = DataLoader(datasets['train'], batch_size=args.batch_size, shuffle=True, num_workers=nw,
pin_memory=False)
batch_size_test = args.batch_size if args.batch_size_test is None else args.batch_size_test
val_loader = DataLoader(datasets['validation'], batch_size=batch_size_test, shuffle=False, num_workers=nw,
pin_memory=False)
if 'test' in datasets:
test_loader = DataLoader(datasets['test'], batch_size=batch_size_test, shuffle=False, num_workers=nw,
pin_memory=False)
test_size = len(test_loader.dataset.samples)
else:
test_loader, test_size = None, 0
print('Data: train={0}, validation={1}, test={2} (load time {3:.2f}s)'.format(len(train_loader.dataset.samples),
len(val_loader.dataset.samples),
test_size, time.time() - t))
# Train and test processes
optimizer = Adam(model.parameters(), lr=args.lr, betas=(0.9, 0.999))
scheduler = StepLR(optimizer, args.lr_step, args.lr_gamma)
pbar_vals = {'loss': None, 'val_score': None, 'test_score': None}
outs, bests = {}, {'auc5': 0.0, 'auc14': 0.0}
try:
outs['val'] = open(os.path.join(args.out, 'val.txt'), 'w', encoding='utf-8')
outs['test'] = open(os.path.join(args.out, 'test.txt'), 'w', encoding='utf-8')
for epoch in range(args.epochs):
loss_log = []
with tqdm(total=len(train_loader.dataset.samples)) as pbar:
pbar.set_description('Epoch {0}/{1}'.format(epoch + 1, args.epochs))
data_n, eval_interval, tqdm_interval = 0, 0, 0
for _, inp, targ, _ in train_loader:
# Train
loss_val = model.train_step(inp, targ, optimizer, clip_grad=args.clip_grad, device=device)
loss_log.append(loss_val)
# Validation / Test
data_n += inp.shape[0]
eval_interval += inp.shape[0]
if args.eval_interval is not None and eval_interval >= args.eval_interval:
eval_model(pbar_vals, outs, epoch, data_n, model, optimizer, scheduler, val_loader, test_loader,
bests, device)
eval_interval -= args.eval_interval
# Progress updates
tqdm_interval += inp.shape[0]
if args.tqdm_interval is None or tqdm_interval >= args.tqdm_interval:
pbar_vals['loss'] = np.mean(loss_log)
pbar.set_postfix(**pbar_vals)
pbar.update(tqdm_interval)
tqdm_interval -= args.tqdm_interval if args.tqdm_interval is not None else 0
# Epoch end processes
scheduler.step()
eval_model(pbar_vals, outs, epoch, None, model, optimizer, scheduler, val_loader, test_loader, bests,
device)
finally:
for _, out in outs.items():
out.close()
def parse_args():
parser = argparse.ArgumentParser(description='Train a model for image classification')
parser.add_argument('data', type=str, help='A path to clinical data')
parser.add_argument('model', type=str, help='A model name')
parser.add_argument('out', type=str, help='An output path')
parser.add_argument('--anatomy', type=str, default=None, help='A specific anatomy to target')
parser.add_argument('--batch-size', type=int, default=16, help='Batch size')
parser.add_argument('--batch-size-test', type=int, default=None, help='Batch size (test)')
parser.add_argument('--cache-data', type=str, default=None, help='Cache images and texts to memory and disk')
parser.add_argument('--clip-grad', type=float, default=None, help='Clip gradients')
parser.add_argument('--corpus', type=str, default='chexpert', choices=['a', 'chexpert', 'mimic-cxr', 'open-i'], help='Corpus name')
parser.add_argument('--cuda', default=False, action='store_true', help='Use GPU')
parser.add_argument('--dropout', type=float, default=0.0, help='Dropout probability')
parser.add_argument('--epochs', type=int, default=12, help='Epoch num')
parser.add_argument('--eval-interval', type=int, default=None, help='Evaluation interval')
parser.add_argument('--exclude-ids', type=str, default=None, help='IDs to exclude from the data')
parser.add_argument('--ignore-blank', default=False, action='store_true', help='Ignore blank labels')
parser.add_argument('--img-no-augment', dest='img_augment', default=True, action='store_false', help='Do not augment images')
parser.add_argument('--img-trans', type=str, default='pad', help='Image transformation mode')
parser.add_argument('--lr', type=float, default=1e-4, help='Learning rate')
parser.add_argument('--lr-gamma', type=float, default=0.1, help='A learning rate scheduler gamma')
parser.add_argument('--lr-step', type=int, default=16, help='A learning rate scheduler step')
parser.add_argument('--multi-image', type=int, default=2, help='Multi image number')
parser.add_argument('--scratch', dest='pretrained', default=True, action='store_false', help='Train a model from scratch')
parser.add_argument('--seed', type=int, default=1, help='Random seed')
parser.add_argument('--splits', type=str, default=None, help='A path to a file defining splits')
parser.add_argument('--tqdm-interval', type=int, default=None, help='tqdm interval')
return parser.parse_args()
def save_model(path, epoch, model, optimizer, scheduler, bests):
with gzip.open(path, 'wb') as out:
state = {'epoch': epoch, 'model': model.state_dict(), 'optimizer': optimizer.state_dict(),
'scheduler': scheduler.state_dict(), 'bests': bests}
torch.save(state, out)
def update_bests(bests, scores):
updates = []
if scores[0] > bests['auc5']:
bests['auc5'] = scores[0]
updates.append('auc5')
if scores[1] > bests['auc14']:
bests['auc14'] = scores[1]
updates.append('auc14')
return updates
if __name__ == '__main__':
args = parse_args()
main(args)