-
Notifications
You must be signed in to change notification settings - Fork 172
/
Copy pathtest_stage_2.py
237 lines (190 loc) · 8.57 KB
/
test_stage_2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
import os,sys
import argparse
from datetime import datetime
from pathlib import Path
from typing import List
import av
import numpy as np
import torch
import torchvision
from diffusers import AutoencoderKL, DDIMScheduler
from diffusers.pipelines.stable_diffusion import StableDiffusionPipeline
from einops import repeat
from omegaconf import OmegaConf
from PIL import Image
from torchvision import transforms
from transformers import CLIPVisionModelWithProjection
import glob
import torch.nn.functional as F
from musepose.models.pose_guider import PoseGuider
from musepose.models.unet_2d_condition import UNet2DConditionModel
from musepose.models.unet_3d import UNet3DConditionModel
from musepose.pipelines.pipeline_pose2vid_long import Pose2VideoPipeline
from musepose.utils.util import get_fps, read_frames, save_videos_grid
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("--config", type=str, default="./configs/test_stage_2.yaml")
parser.add_argument("-W", type=int, default=768, help="Width")
parser.add_argument("-H", type=int, default=768, help="Height")
parser.add_argument("-L", type=int, default=300, help="video frame length")
parser.add_argument("-S", type=int, default=48, help="video slice frame number")
parser.add_argument("-O", type=int, default=4, help="video slice overlap frame number")
parser.add_argument("--cfg", type=float, default=3.5, help="Classifier free guidance")
parser.add_argument("--seed", type=int, default=99)
parser.add_argument("--steps", type=int, default=20, help="DDIM sampling steps")
parser.add_argument("--fps", type=int)
parser.add_argument("--skip", type=int, default=1, help="frame sample rate = (skip+1)")
args = parser.parse_args()
print('Width:', args.W)
print('Height:', args.H)
print('Length:', args.L)
print('Slice:', args.S)
print('Overlap:', args.O)
print('Classifier free guidance:', args.cfg)
print('DDIM sampling steps :', args.steps)
print("skip", args.skip)
return args
def scale_video(video,width,height):
video_reshaped = video.view(-1, *video.shape[2:]) # [batch*frames, channels, height, width]
scaled_video = F.interpolate(video_reshaped, size=(height, width), mode='bilinear', align_corners=False)
scaled_video = scaled_video.view(*video.shape[:2], scaled_video.shape[1], height, width) # [batch, frames, channels, height, width]
return scaled_video
def main():
args = parse_args()
config = OmegaConf.load(args.config)
if config.weight_dtype == "fp16":
weight_dtype = torch.float16
else:
weight_dtype = torch.float32
vae = AutoencoderKL.from_pretrained(
config.pretrained_vae_path,
).to("cuda", dtype=weight_dtype)
reference_unet = UNet2DConditionModel.from_pretrained(
config.pretrained_base_model_path,
subfolder="unet",
).to(dtype=weight_dtype, device="cuda")
inference_config_path = config.inference_config
infer_config = OmegaConf.load(inference_config_path)
denoising_unet = UNet3DConditionModel.from_pretrained_2d(
config.pretrained_base_model_path,
config.motion_module_path,
subfolder="unet",
unet_additional_kwargs=infer_config.unet_additional_kwargs,
).to(dtype=weight_dtype, device="cuda")
pose_guider = PoseGuider(320, block_out_channels=(16, 32, 96, 256)).to(
dtype=weight_dtype, device="cuda"
)
image_enc = CLIPVisionModelWithProjection.from_pretrained(
config.image_encoder_path
).to(dtype=weight_dtype, device="cuda")
sched_kwargs = OmegaConf.to_container(infer_config.noise_scheduler_kwargs)
scheduler = DDIMScheduler(**sched_kwargs)
generator = torch.manual_seed(args.seed)
width, height = args.W, args.H
# load pretrained weights
denoising_unet.load_state_dict(
torch.load(config.denoising_unet_path, map_location="cpu"),
strict=False,
)
reference_unet.load_state_dict(
torch.load(config.reference_unet_path, map_location="cpu"),
)
pose_guider.load_state_dict(
torch.load(config.pose_guider_path, map_location="cpu"),
)
pipe = Pose2VideoPipeline(
vae=vae,
image_encoder=image_enc,
reference_unet=reference_unet,
denoising_unet=denoising_unet,
pose_guider=pose_guider,
scheduler=scheduler,
)
pipe = pipe.to("cuda", dtype=weight_dtype)
date_str = datetime.now().strftime("%Y%m%d")
time_str = datetime.now().strftime("%H%M")
def handle_single(ref_image_path,pose_video_path):
print ('handle===',ref_image_path, pose_video_path)
ref_name = Path(ref_image_path).stem
pose_name = Path(pose_video_path).stem.replace("_kps", "")
ref_image_pil = Image.open(ref_image_path).convert("RGB")
pose_list = []
pose_tensor_list = []
pose_images = read_frames(pose_video_path)
src_fps = get_fps(pose_video_path)
print(f"pose video has {len(pose_images)} frames, with {src_fps} fps")
L = min(args.L, len(pose_images))
pose_transform = transforms.Compose(
[transforms.Resize((height, width)), transforms.ToTensor()]
)
original_width,original_height = 0,0
pose_images = pose_images[::args.skip+1]
print("processing length:", len(pose_images))
src_fps = src_fps // (args.skip + 1)
print("fps", src_fps)
L = L // ((args.skip + 1))
for pose_image_pil in pose_images[: L]:
pose_tensor_list.append(pose_transform(pose_image_pil))
pose_list.append(pose_image_pil)
original_width, original_height = pose_image_pil.size
pose_image_pil = pose_image_pil.resize((width,height))
# repeart the last segment
last_segment_frame_num = (L - args.S) % (args.S - args.O)
repeart_frame_num = (args.S - args.O - last_segment_frame_num) % (args.S - args.O)
for i in range(repeart_frame_num):
pose_list.append(pose_list[-1])
pose_tensor_list.append(pose_tensor_list[-1])
ref_image_tensor = pose_transform(ref_image_pil) # (c, h, w)
ref_image_tensor = ref_image_tensor.unsqueeze(1).unsqueeze(0) # (1, c, 1, h, w)
ref_image_tensor = repeat(ref_image_tensor, "b c f h w -> b c (repeat f) h w", repeat=L)
pose_tensor = torch.stack(pose_tensor_list, dim=0) # (f, c, h, w)
pose_tensor = pose_tensor.transpose(0, 1)
pose_tensor = pose_tensor.unsqueeze(0)
video = pipe(
ref_image_pil,
pose_list,
width,
height,
len(pose_list),
args.steps,
args.cfg,
generator=generator,
context_frames=args.S,
context_stride=1,
context_overlap=args.O,
).videos
m1 = config.pose_guider_path.split('.')[0].split('/')[-1]
m2 = config.motion_module_path.split('.')[0].split('/')[-1]
save_dir_name = f"{time_str}-{args.cfg}-{m1}-{m2}"
save_dir = Path(f"./output/video-{date_str}/{save_dir_name}")
save_dir.mkdir(exist_ok=True, parents=True)
result = scale_video(video[:,:,:L], original_width, original_height)
save_videos_grid(
result,
f"{save_dir}/{ref_name}_{pose_name}_{args.cfg}_{args.steps}_{args.skip}.mp4",
n_rows=1,
fps=src_fps if args.fps is None else args.fps,
)
video = torch.cat([ref_image_tensor, pose_tensor[:,:,:L], video[:,:,:L]], dim=0)
video = scale_video(video, original_width, original_height)
save_videos_grid(
video,
f"{save_dir}/{ref_name}_{pose_name}_{args.cfg}_{args.steps}_{args.skip}_{m1}_{m2}.mp4",
n_rows=3,
fps=src_fps if args.fps is None else args.fps,
)
for ref_image_path_dir in config["test_cases"].keys():
if os.path.isdir(ref_image_path_dir):
ref_image_paths = glob.glob(os.path.join(ref_image_path_dir, '*.jpg'))
else:
ref_image_paths = [ref_image_path_dir]
for ref_image_path in ref_image_paths:
for pose_video_path_dir in config["test_cases"][ref_image_path_dir]:
if os.path.isdir(pose_video_path_dir):
pose_video_paths = glob.glob(os.path.join(pose_video_path_dir, '*.mp4'))
else:
pose_video_paths = [pose_video_path_dir]
for pose_video_path in pose_video_paths:
handle_single(ref_image_path, pose_video_path)
if __name__ == "__main__":
main()