-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_onnx.py
163 lines (130 loc) · 6.09 KB
/
test_onnx.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import numpy as np
import onnxruntime as rt
from PIL import Image
from PIL import ImageDraw, ImageFont
import colorsys
def get_classes(classes_path):
with open(classes_path, encoding='utf-8') as f:
class_names = f.readlines()
class_names = [c.strip() for c in class_names]
return class_names, len(class_names)
def get_new_img_size(height, width, min_length=600):
if width <= height:
f = float(min_length) / width
resized_height = int(f * height)
resized_width = int(min_length)
else:
f = float(min_length) / height
resized_width = int(f * width)
resized_height = int(min_length)
return resized_height, resized_width
def resize_image(image, min_length):
iw, ih = image.size
h, w = get_new_img_size(ih, iw, min_length=min_length)
new_image = image.resize((w, h), Image.BICUBIC)
return new_image
def cvtColor(image):
if len(np.shape(image)) == 3 and np.shape(image)[2] == 3:
return image
else:
image = image.convert('RGB')
return image
class DecodeBox:
""" This module converts the model's output into the format expected by the coco api"""
def box_cxcywh_to_xyxy(self, x):
x_c, y_c, w, h = x[..., 0], x[..., 1], x[..., 2], x[..., 3]
b = [(x_c - 0.5 * w), (y_c - 0.5 * h),
(x_c + 0.5 * w), (y_c + 0.5 * h)]
return np.stack(b, axis=-1)
def forward(self, outputs, target_sizes, confidence):
out_logits, out_bbox = outputs["pred_logits"], outputs["pred_boxes"]
assert len(out_logits) == len(target_sizes)
assert target_sizes.shape[1] == 2
prob = np.exp(out_logits) / np.exp(out_logits).sum(-1, keepdims=True)
scores = np.max(prob[..., :-1], axis=-1)
labels = np.argmax(prob[..., :-1], axis=-1) # 加1来转换为类别标签(背景类别为0)
# convert to [x0, y0, x1, y1] format
boxes = self.box_cxcywh_to_xyxy(out_bbox)
# and from relative [0, 1] to absolute [0, height] coordinates
img_h, img_w = np.split(target_sizes, target_sizes.shape[1], axis=1)[0], np.split(target_sizes, target_sizes.shape[1], axis=1)[1]
img_h = img_h.astype(float)
img_w = img_w.astype(float)
scale_fct = np.hstack([img_w, img_h, img_w, img_h])
boxes = boxes * scale_fct[:, None, :]
outputs = np.concatenate([
np.expand_dims(boxes[:, :, 1], -1),
np.expand_dims(boxes[:, :, 0], -1),
np.expand_dims(boxes[:, :, 3], -1),
np.expand_dims(boxes[:, :, 2], -1),
np.expand_dims(scores, -1),
np.expand_dims(labels.astype(float), -1),
], -1)
results = []
for output in outputs:
results.append(output[output[:, 4] > confidence])
# results = [{'scores': s, 'labels': l, 'boxes': b} for s, l, b in zip(scores, labels, boxes)]
return results
def preprocess_input(image):
image /= 255.0
image -= np.array([0.485, 0.456, 0.406])
image /= np.array([0.229, 0.224, 0.225])
return image
if __name__ == "__main__":
count = True
confidence = 0.5
min_length = 512
image = Image.open('1.jpg')
image = image.resize((512, 512))
image_shape = np.array([np.shape(image)[0:2]])
image = cvtColor(image)
image_data = resize_image(image, min_length)
image_data = np.expand_dims(np.transpose(preprocess_input(np.array(image_data, dtype='float32')), (2, 0, 1)), 0)
# onnx模型前向推理
sess = rt.InferenceSession('./model_data/models.onnx')
# 模型的输入和输出节点名,可以通过netron查看
input_name = 'images'
outputs_name = ['output', '4556']
# 模型推理:模型输出节点名,模型输入节点名,输入数据(注意节点名的格式!!!!!)
net_outs = sess.run(outputs_name, {input_name: image_data})
# net_outs = {"pred_logits":torch.tensor(net_outs[0]), "pred_boxes":torch.tensor(net_outs[1])}
net_outs = {"pred_logits": net_outs[0], "pred_boxes": net_outs[1]}
bbox_util = DecodeBox()
results = bbox_util.forward(net_outs, image_shape, confidence)
if results[0] is None:
print('NO OBJECT')
else:
_results = results[0]
top_label = np.array(_results[:, 5], dtype='int32')
top_conf = _results[:, 4]
top_boxes = _results[:, :4]
font = ImageFont.truetype(font='model_data/simhei.ttf', size=np.floor(3e-2 * image.size[1] + 0.5).astype('int32'))
thickness = int(max((image.size[0] + image.size[1]) // min_length, 1))
classes_path = 'model_data/coco_classes.txt'
class_names, num_classes = get_classes(classes_path)
hsv_tuples = [(x / num_classes, 1., 1.) for x in range(num_classes)]
colors = list(map(lambda x: colorsys.hsv_to_rgb(*x), hsv_tuples))
colors = list(map(lambda x: (int(x[0] * 255), int(x[1] * 255), int(x[2] * 255)), colors))
for i, c in list(enumerate(top_label)):
predicted_class = class_names[int(c)]
box = top_boxes[i]
score = top_conf[i]
top, left, bottom, right = box
top = max(0, np.floor(top).astype('int32'))
left = max(0, np.floor(left).astype('int32'))
bottom = min(image.size[1], np.floor(bottom).astype('int32'))
right = min(image.size[0], np.floor(right).astype('int32'))
label = '{} {:.2f}'.format(predicted_class, score)
draw = ImageDraw.Draw(image)
label_size = draw.textsize(label, font)
label = label.encode('utf-8')
print(label, top, left, bottom, right)
if top - label_size[1] >= 0:
text_origin = np.array([left, top - label_size[1]])
else:
text_origin = np.array([left, top + 1])
for i in range(thickness):
draw.rectangle([left + i, top + i, right - i, bottom - i], outline=colors[c])
draw.rectangle([tuple(text_origin), tuple(text_origin + label_size)], fill=colors[c])
draw.text(text_origin, str(label, 'UTF-8'), fill=(0, 0, 0), font=font)
del draw
image.save('output.png')