Skip to content

Latest commit

 

History

History
642 lines (574 loc) · 25.9 KB

README.md

File metadata and controls

642 lines (574 loc) · 25.9 KB

EMSAFormer: Efficient Multi-Task Scene Analysis with RGB-D Transformers

This repository contains the code to our paper "EMSAFormer: Efficient Multi-Task Scene Analysis with RGB-D Transformers" (IEEE Xplore, arXiv)

EMSAFormer builds on top of our previous work, EMSANet, to efficiently perform tasks such as semantic and instance segmentation (panoptic segmentation), instance orientation estimation, and scene classification. In EMSAFormer, we replaced the dual CNN-based encoder of EMSANet with a single Swin Transformer.

model architecture

The repository includes code for training, evaluating, and applying our network. We also provide code for exporting the model to the ONNX format. Additionally, we have implemented a custom TensorRT extension, based on NVIDIA's FasterTransformer extension, for accelerating inference.

License and Citations

The source code is published under Apache 2.0 license, see license file for details.

If you use the source code or the network weights, please cite the following paper (IEEE Xplore, arXiv):

Fischedick, S., Seichter, D., Schmidt, R., Rabes, L., Gross, H.-M. Efficient Multi-Task Scene Analysis with RGB-D Transformers, in IEEE International Joint Conference on Neural Networks (IJCNN), pp. 1-10, 2023.

BibTeX
@inproceedings{emsaformer2023ijcnn,  
  title={{Efficient Multi-Task Scene Analysis with RGB-D Transformers}},
  author={Fischedick, S{\"o}hnke and Seichter, Daniel and Schmidt, Robin and Rabes, Leonard and Gross, Horst-Michael},
  booktitle={IEEE International Joint Conference on Neural Networks (IJCNN)},
  year={2023},
  pages={1-10},
  doi={10.1109/IJCNN54540.2023.10191977}
}

@article{emsaformer2023,
  title={Efficient {Multi-Task} Scene Analysis with {RGB-D} Transformers},
  author={S{\"o}hnke B. Fischedick and Daniel Seichter and Robin Schmidt and Leonard Rabes and Horst-Michael Gross},
  journal={arXiv preprint arXiv:2306.05242},
  year={2023}
}

Note that the preprint was accepted to be published in IEEE International Joint Conference on Neural Networks (IJCNN) 2023.

Content

Installation

  1. Clone repository:

    # do not forget the '--recursive'
    git clone --recursive https://github.com/TUI-NICR/EMSAFormer
    
    # navigate to the cloned directory (required for installing some dependencies and to run the scripts later)
    cd EMSAFormer
  2. Create conda environment and install all dependencies:

    # option 1: create conda environment from provided YAML file with Python 3.11.0 and PyTorch 2.3 (latest tested version)
    
    conda env create -f emsaformer_environment_pytorch_2_3.yml
    conda activate emsaformer
    # option 2: create conda environment from provided YAML file with Python 3.8.16 and PyTorch 2.0 (original publication)
    
    conda env create -f emsaformer_environment_pytorch_2_0.yml
    conda activate emsaformer
    # option 3: create new conda environment manually (original publication)
    
    conda create -n emsaformer python=3.8 anaconda
    conda activate emsaformer
    
    # remaining conda dependencies
    # note: PyTorch 2.0+ works as well
    conda install pytorch==2.0.0 torchvision==0.15.0 torchaudio==2.0.0 pytorch-cuda=11.7 -c pytorch -c nvidia
    
    # remaining pip dependencies
    python -m pip install 'opencv-python==4.2.0.34'    # newer versions may work as well
    python -m pip install torchmetrics==0.10.2
    python -m pip install wandb==0.14.2
  3. Install submodule packages:

    # dataset package
    python -m pip install -e "./lib/nicr-scene-analysis-datasets[withpreparation]"
    
    # multitask scene analysis package
    python -m pip install -e "./lib/nicr-multitask-scene-analysis"
  4. Prepare datasets:
    We trained our networks on NYUv2, SUNRGB-D, and ScanNet.

    Please follow the instructions given in ./lib/nicr-scene-analysis-datasets or HERE to prepare the datasets. In the following, we assume that they are stored at ./datasets

    Use --instances-version emsanet when preparing the SUNRGB-D dataset to reproduce reported results. See notes in evaluation section for more details.

Results & Weights

We provide the weights for our selected EMSAFormer-SwinV2-T-128-Multi-Aug (with a modified SwinV2-T backbone) on NYUv2, SUNRGB-D, and ScanNet:

Dataset Model mIoU mIoU* PQ RQ SQ MAAE bAcc  FPS (50W/30W)** URL
NYUv2 (test) SwinV2-T-128-Multi-Aug 51.06 51.76 43.28 52.48 81.43 18.26 78.80 36.5 / 25.6 Download
SwinV2-T-128-Multi-Aug (Sem(SegFormer)) 50.23 51.34 43.41 52.23 81.75 18.94 77.70 39.1 / 27.3 Download
SUNRGB-D (test) SwinV2-T-128-Multi-Aug 48.52 45.12 50.08 59.08 84.68 15.32 62.01 36.5 / 25.6 Download
SwinV2-T-128-Multi-Aug (Sem(SegFormer)) 48.61 45.79 51.70 60.12 84.65 14.00 61.97 39.1 / 27.3 Download
ScanNet (test) SwinV2-T-128-Multi-Aug 63.78 61.93 49.70 59.15 83.31 *** 48.82 36.5 / 25.6 Download
SwinV2-T-128-Multi-Aug (Sem(SegFormer)) 64.75 62.66 51.18 61.01 83.20 *** 49.69 39.1 / 27.3 Download

* This mIoU is after merging the semantic and instance segmentation to the panoptic segmentation. Since merging is focused on instances, the mIoU might change slightly compared to the one obtained from semantic decoder.
** We report the FPS for an NVIDIA Jetson AGX Orin (Jetpack 5.1.1, TensorRT 8.5.2, Float16) without postprocessing (as it is not optimized so far). Note that we only report the inference time for NYUv2 in our paper as it has the same or more classes than the other datasets. Thus, the FPS for the other datasets can be slightly higher. The performance is reported with a measured power consumption of 50W and 30W.
*** Orientations are not available for ScanNet

The checkpoints denoted by "(Sem(SegFormer))" use a smaller MLP-based decoder for performing semantic segmentation, instead of the EMSANet decoder.
Download and extract the models to ./trained_models.

Evaluation

To reproduce results for the full multi-task approach, use main.py together with --validation-only.

Note that building the model correctly depends on the respective dataset and the tasks the model was trained on.

NYUv2

To evaluate on NYUv2 with EMSANet decoder (for semantic segmentation), run:

python main.py \
    --dataset nyuv2 \
    --dataset-path ./datasets/nyuv2 \
    --tasks semantic scene instance orientation \
    --enable-panoptic \
    --input-modalities rgbd \
    --rgbd-encoder-backbone swin-multi-t-v2-128 \
    --encoder-normalization layernorm \
    --no-pretrained-backbone \
    --semantic-decoder emsanet \
    --semantic-encoder-decoder-fusion swin-ln-add \
    --semantic-decoder-n-channels 512 256 128 \
    --semantic-decoder-upsampling learned-3x3-zeropad \
    --weights-filepath ./trained_models/nyuv2/nyuv2_swin_multi_t_v2_128_emsanet_decoder.pth \
    --checkpointing-metrics valid_semantic_miou bacc mae_gt_deg panoptic_deeplab_semantic_miou panoptic_all_deeplab_pq \
    --validation-batch-size 4 \
    --validation-only \
    --skip-sanity-check \
    --wandb-mode disabled
Validation results:
{
...
'valid_instance_all_with_gt_deeplab_pq': tensor(0.5906, dtype=torch.float64),
...
'valid_orientation_mae_gt_deg': tensor(20.0162, dtype=torch.float64),
...
'valid_panoptic_all_with_gt_deeplab_pq': tensor(0.4341, dtype=torch.float64),
...
'valid_panoptic_all_with_gt_deeplab_rq': tensor(0.5253, dtype=torch.float64),
...
'valid_panoptic_all_with_gt_deeplab_sq': tensor(0.8175, dtype=torch.float64),
...
'valid_panoptic_deeplab_semantic_miou': tensor(0.5176),
...
'valid_panoptic_mae_deeplab_deg': tensor(18.2569, dtype=torch.float64),
...
'valid_scene_bacc': tensor(0.7880),
...
'valid_semantic_miou': tensor(0.5106),
...
}

To evaluate on NYUv2 with MLP-based decoder (for semantic segmentation), run:

python main.py \
    --dataset nyuv2 \
    --dataset-path ./datasets/nyuv2 \
    --tasks semantic scene instance orientation \
    --enable-panoptic \
    --input-modalities rgbd \
    --rgbd-encoder-backbone swin-multi-t-v2-128 \
    --encoder-normalization layernorm \
    --no-pretrained-backbone \
    --semantic-decoder segformermlp \
    --semantic-encoder-decoder-fusion swin-ln-select \
    --semantic-decoder-n-channels 256 128 64 64 \
    --semantic-decoder-upsampling bilinear \
    --weights-filepath ./trained_models/nyuv2/nyuv2_swin_multi_t_v2_128_segformermlp_decoder.pth \
    --checkpointing-metrics valid_semantic_miou bacc mae_gt_deg panoptic_deeplab_semantic_miou panoptic_all_deeplab_pq \
    --validation-batch-size 4 \
    --validation-only \
    --skip-sanity-check \
    --wandb-mode disabled
Validation results:
{
...
'valid_instance_all_with_gt_deeplab_pq': tensor(0.5875, dtype=torch.float64),
...
'valid_orientation_mae_gt_deg': tensor(20.9530, dtype=torch.float64),
...
'valid_panoptic_all_with_gt_deeplab_pq': tensor(0.4341, dtype=torch.float64),
...
'valid_panoptic_all_with_gt_deeplab_rq': tensor(0.5253, dtype=torch.float64),
...
'valid_panoptic_all_with_gt_deeplab_sq': tensor(0.8175, dtype=torch.float64),
...
'valid_panoptic_deeplab_semantic_miou': tensor(0.5134),
...
'valid_panoptic_mae_deeplab_deg': tensor(18.9417, dtype=torch.float64),
...
'valid_scene_bacc': tensor(0.7770),
...
'valid_semantic_miou': tensor(0.5023),
...
}

SUNRGB-D

We refactored and updated instance annotation creation from 3D boxes for SUNRGB-D in nicr-scene-analysis-datasets == 0.6.0. The resulting annotations feature a lot of more instances; however, it is also changing the ground truth for the evaluation below. For more details and a comparison between both versions, we refer to our follow-up work Panoptic Mapping(GitHub, arXiv) that proposes the refined annotations. To reproduce reported EMSANet paper results either use nicr-scene-analysis-datasets >= 0.7.0 and prepare the SUNRGB-D dataset with --instances-version emsanet (or go back with both reposities and use nicr-scene-analysis-datasets <= 0.6.0). For backward compatibility, i.e., to still be able to load a SUNRGB-D dataset prepared with nicr-scene-analysis-datasets < 0.7.0, you can pass --sunrgbd-instances-version anyold to main.py; however, use this only if you know what you are doing!
We recommend re-preparing the SUNRGB-D dataset with nicr-scene-analysis-datasets >= 0.7.0 as described above to avoid any confusion.

To evaluate on SUNRGB-D with EMSANet decoder (for semantic segmentation), run:

python main.py \
    --dataset sunrgbd \
    --dataset-path ./datasets/sunrgbd \
    --sunrgbd-instances-version emsanet \
    --sunrgbd-depth-do-not-force-mm \
    --tasks semantic scene instance orientation \
    --enable-panoptic \
    --input-modalities rgbd \
    --rgbd-encoder-backbone swin-multi-t-v2-128 \
    --encoder-normalization layernorm \
    --no-pretrained-backbone \
    --semantic-decoder emsanet \
    --semantic-encoder-decoder-fusion swin-ln-add \
    --semantic-decoder-n-channels 512 256 128 \
    --semantic-decoder-upsampling learned-3x3-zeropad \
    --weights-filepath ./trained_models/sunrgbd/sunrgbd_swin_multi_t_v2_128_emsanet_decoder.pth \
    --checkpointing-metrics valid_semantic_miou bacc mae_gt_deg panoptic_deeplab_semantic_miou panoptic_all_deeplab_pq \
    --validation-batch-size 4 \
    --validation-only \
    --skip-sanity-check \
    --wandb-mode disabled
Validation results:
{
...
'valid_instance_all_with_gt_deeplab_pq': tensor(0.6114, dtype=torch.float64),
...
'valid_orientation_mae_gt_deg': tensor(16.9858, dtype=torch.float64),
...
'valid_panoptic_all_with_gt_deeplab_pq': tensor(0.5082, dtype=torch.float64),
...
'valid_panoptic_all_with_gt_deeplab_rq': tensor(0.5908, dtype=torch.float64),
...
'valid_panoptic_all_with_gt_deeplab_sq': tensor(0.8469, dtype=torch.float64),
...
'valid_panoptic_deeplab_semantic_miou': tensor(0.4512),
...
'valid_panoptic_mae_deeplab_deg': tensor(15.3224, dtype=torch.float64),
...
'valid_scene_bacc': tensor(0.6201),
...
'valid_semantic_miou': tensor(0.4852),
...
}

To evaluate on SUNRGB-D with MLP-based decoder (for semantic segmentation), run:

python main.py \
    --dataset sunrgbd \
    --dataset-path ./datasets/sunrgbd \
    --sunrgbd-instances-version emsanet \
    --sunrgbd-depth-do-not-force-mm \
    --tasks semantic scene instance orientation \
    --enable-panoptic \
    --input-modalities rgbd \
    --rgbd-encoder-backbone swin-multi-t-v2-128 \
    --encoder-normalization layernorm \
    --no-pretrained-backbone \
    --semantic-decoder segformermlp \
    --semantic-encoder-decoder-fusion swin-ln-select \
    --semantic-decoder-n-channels 256 128 64 64 \
    --semantic-decoder-upsampling bilinear \
    --weights-filepath ./trained_models/sunrgbd/sunrgbd_swin_multi_t_v2_128_segformermlp_decoder.pth \
    --checkpointing-metrics valid_semantic_miou bacc mae_gt_deg panoptic_deeplab_semantic_miou panoptic_all_deeplab_pq \
    --validation-batch-size 4 \
    --validation-only \
    --skip-sanity-check \
    --wandb-mode disabled
Validation results:
{
...
'valid_instance_all_with_gt_deeplab_pq': tensor(0.6120, dtype=torch.float64),
...
'valid_orientation_mae_gt_deg': tensor(15.9133, dtype=torch.float64),
...
'valid_panoptic_all_with_gt_deeplab_pq': tensor(0.5170, dtype=torch.float64),
...
'valid_panoptic_all_with_gt_deeplab_rq': tensor(0.6012, dtype=torch.float64),
...
'valid_panoptic_all_with_gt_deeplab_sq': tensor(0.8465, dtype=torch.float64),
...
'valid_panoptic_deeplab_semantic_miou': tensor(0.4579),
...
'valid_panoptic_mae_deeplab_deg': tensor(13.9994, dtype=torch.float64),
...
'valid_scene_bacc': tensor(0.6197),
...
'valid_semantic_miou': tensor(0.4861),
...
}

ScanNet

To evaluate on ScanNet with EMSANet decoder (for semantic segmentation), run:

python main.py \
    --dataset scannet \
    --dataset-path ./datasets/scannet \
    --scannet-semantic-n-classes 20 \
    --tasks semantic scene instance \
    --enable-panoptic \
    --input-modalities rgbd \
    --rgbd-encoder-backbone swin-multi-t-v2-128 \
    --encoder-normalization layernorm \
    --no-pretrained-backbone \
    --semantic-decoder emsanet \
    --semantic-encoder-decoder-fusion swin-ln-add \
    --semantic-decoder-n-channels 512 256 128 \
    --semantic-decoder-upsampling learned-3x3-zeropad \
    --weights-filepath ./trained_models/scannet/scannet_swin_multi_t_v2_128_emsanet_decoder.pth \
    --checkpointing-metrics valid_semantic_miou bacc mae_gt_deg panoptic_deeplab_semantic_miou panoptic_all_deeplab_pq \
    --validation-batch-size 4 \
    --validation-only \
    --skip-sanity-check \
    --wandb-mode disabled
Validation results:
{
...
'valid_instance_all_with_gt_deeplab_pq': tensor(0.6669, dtype=torch.float64),
...
'valid_panoptic_all_with_gt_deeplab_pq': tensor(0.4970, dtype=torch.float64),
...
'valid_panoptic_all_with_gt_deeplab_rq': tensor(0.5915, dtype=torch.float64),
...
'valid_panoptic_all_with_gt_deeplab_sq': tensor(0.8331, dtype=torch.float64),
...
'valid_panoptic_deeplab_semantic_miou': tensor(0.6193),
...
'valid_scene_bacc': tensor(0.4882),
...
'valid_semantic_miou': tensor(0.6378),
...
}

To evaluate on ScanNet with MLP-based decoder (for semantic segmentation), run:

python main.py \
    --dataset scannet \
    --dataset-path ./datasets/scannet \
    --scannet-semantic-n-classes 20 \
    --tasks semantic scene instance \
    --enable-panoptic \
    --input-modalities rgbd \
    --rgbd-encoder-backbone swin-multi-t-v2-128 \
    --encoder-normalization layernorm \
    --no-pretrained-backbone \
    --semantic-decoder segformermlp \
    --semantic-encoder-decoder-fusion swin-ln-select \
    --semantic-decoder-n-channels 256 128 64 64 \
    --semantic-decoder-upsampling bilinear \
    --weights-filepath ./trained_models/scannet/scannet_swin_multi_t_v2_128_segformermlp_decoder.pth \
    --checkpointing-metrics valid_semantic_miou bacc mae_gt_deg panoptic_deeplab_semantic_miou panoptic_all_deeplab_pq \
    --validation-batch-size 4 \
    --validation-only \
    --skip-sanity-check \
    --wandb-mode disabled
Validation results:
{
...
'valid_instance_all_with_gt_deeplab_pq': tensor(0.6771, dtype=torch.float64),
...
'valid_panoptic_all_with_gt_deeplab_pq': tensor(0.5118, dtype=torch.float64),
...
'valid_panoptic_all_with_gt_deeplab_rq': tensor(0.6101, dtype=torch.float64),
...
'valid_panoptic_all_with_gt_deeplab_sq': tensor(0.8320, dtype=torch.float64),
...
'valid_panoptic_deeplab_semantic_miou': tensor(0.6266),
...
'valid_scene_bacc': tensor(0.4969),
...
'valid_semantic_miou': tensor(0.6475),
...
}

Inference

We provide scripts for inference on both samples drawn from one of our used datasets (main.py with additional arguments) and samples located in ./samples (inference_samples.py).

Note that building the model correctly depends on the respective dataset the model was trained on.

Dataset Inference

To run inference on a dataset with the full multi-task approach, use main.py together with --validation-only and --visualize-validation. By default the visualized outputs are written to a newly created directory next to the weights. However, you can also specify the output path with --visualization-output-path.

Example: To apply EMSAFormer trained on NYUv2 to samples from NYUv2, run:

python main.py \
    --dataset nyuv2 \
    --dataset-path ./datasets/nyuv2 \
    --tasks semantic scene instance orientation \
    --enable-panoptic \
    --input-modalities rgbd \
    --rgbd-encoder-backbone swin-multi-t-v2-128 \
    --encoder-normalization layernorm \
    --no-pretrained-backbone \
    --semantic-decoder segformermlp \
    --semantic-encoder-decoder-fusion swin-ln-select \
    --semantic-decoder-n-channels 256 128 64 64 \
    --semantic-decoder-upsampling bilinear \
    --weights-filepath ./trained_models/nyuv2/nyuv2_swin_multi_t_v2_128_segformermlp_decoder.pth \
    --checkpointing-metrics valid_semantic_miou bacc mae_gt_deg panoptic_deeplab_semantic_miou panoptic_all_deeplab_pq \
    --validation-batch-size 4 \
    --validation-only \
    --visualize-validation \
    --visualization-output-path ./visualized_outputs/nyuv2 \
    --skip-sanity-check \
    --wandb-mode disabled

Similarly, the same can be applied to SUNRGB-D and ScanNet (see parameters in evaluation section).

Note that the inference_dataset.py script can be used to predict on the test data of ScanNet and write the results in the format which is required for the official evaluation servers.

Sample Inference

Use inference_samples.py to apply a trained model to the sample from a Kinect v2 given in ./samples.

Note that the dataset argument is required to determine the correct dataset configuration (classes, colors, ...) and to build the model correctly. However, you do not need to prepare the respective dataset. Furthermore, depending on the given depth images and the used dataset for training, an additional depth scaling might be necessary. The provided example depth image is in millimeters (1m equals to a depth value of 1000).

python inference_samples.py \
    --dataset sunrgbd \
    --sunrgbd-depth-do-not-force-mm \
    --tasks semantic scene instance orientation \
    --enable-panoptic \
    --raw-depth \
    --depth-max 8000 \
    --depth-scale 8 \
    --instance-offset-distance-threshold 40 \
    --weights-filepath ./trained_models/sunrgbd/sunrgbd_swin_multi_t_v2_128_segformermlp_decoder.pth \
    --show-results

img

Note that the model was not trained on that kind of incomplete depth images.

Note that the --instance-offset-distance-threshold argument is used to assign an instance ID of 0 to pixels if they have a distance greater than 40 pixels from the nearest center. During panoptic merging, these pixels are assigned to the void class.

Time Inference

To reproduce the timings on an NVIDIA Jetson AGX Orin 32GB, a custom TensorRT extension, based on NVIDIA's FasterTransformer, is required. Additionally, some modifications for the ONNX export are required to allow the export of arbitrary Swin-Transformer-based models.

Please follow the instructions given in tensorrt_swin/README.md to build the proposed extension. Subsequently, you can run inference_time.bash to reproduce the reported timings (see table above).

Below, we compare the inference timings of the EMSAFormer with PyTorch and with TensorRT on the NVIDIA Jetson AGX Orin 32GB.

Note that our custom TensorRT extension also works with newer TensorRT versions. For more details, we refer to the tensorrt_swin/README.md.

Training

Use main.py to train EMSAformer on NYUv2, SUNRGB-D, ScanNet, or any other dataset that you implemented following the implementation of the provided datasets.

Note that training our EMSAFormer with our selected SwinV2-T-128-Multi-Aug as encoder requires pretrained weights. You can download our pretrained weights on ImageNet from Link.

Note that we trained all models on NVIDIA A100-SXM4-40GB GPUs with batch size of 8. However, training the full multi-task approach requires ~25GB of VRAM, so a smaller GPU may not work. We did not observe any great boost from larger batch sizes.

Example: Train our full multi-task EMSAFormer with MLP-based decoder (for semantic segmentation) on NYUv2:

python main.py \
    --results-basepath ./results \
    --dataset nyuv2 \
    --dataset-path ./datasets/nyuv2 \
    --input-modalities rgbd \
    --tasks semantic scene instance orientation \
    --enable-panoptic \
    --tasks-weighting 1.0 0.25 2.0 0.5 \
    --instance-weighting 2 1 \
    --rgbd-encoder-backbone swin-multi-t-v2-128 \
    --encoder-normalization layernorm \
    --rgbd-encoder-backbone-pretrained-weights-filepath ./trained_models/imagenet/swin_multi_t_v2_128.pth \
    --validation-batch-size 16 \
    --validation-skip 0.0 \
    --checkpointing-skip 0.8 \
    --checkpointing-best-only \
    --checkpointing-metrics valid_semantic_miou bacc mae_gt_deg panoptic_deeplab_semantic_miou panoptic_all_with_gt_deeplab_pq \
    --batch-size 8 \
    --learning-rate 0.03 \
    --wandb-mode disabled

To reproduce the results reported in our EMSANet paper for SUNRGB-D, make sure to prepare and use the correct dataset version for SUNRGB-D (see note in evaluation section).

For more options, we refer to ./emsaformer/args.py or simply run:

python main.py --help

Changelog

July 19, 2024

  • add more recent and thinned-out environment (emsaformer_environment_pytorch_2_3.yml) with Python 3.11 and latest tested PyTorch 2.3
  • add support for MPS device (see --device mps argument in main.py):
    • only tested for inference
    • might be slower as not all instance postprocessing operations are supported yet (we use some CPU fallbacks)
  • add support for CPU device (see --device cpu argument in main.py)
  • add disable-progress-bars argument to main.py
  • fix bug in visualization (only with MPS/CPU device)
  • visualize ground truth in fullres as well
  • visualize semantic and instance of ground-truth panoptic separately
  • some doc string fixes
  • dump instance meta dicts as well when visualizing validation
  • small fix in dataset path parsing (do not force lower case)
  • individual subset selection with --subset-train parameter in main.py
  • add possibility to visualize side outputs during validation
  • enable weight loading for single-task semantic (similar to ESANet) from
  • enable loading weights from (pre-)training with orientation task multi-task checkpoint (e.g., trained EMSANet)
  • bump lib/nicr-scene-analysis-datasets to version 0.7.0
  • bump lib/nicr-multitask-scene-analysis to version 0.2.3

June 02, 2023

  • initial code release for original publication