forked from Liberxue/cqf
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmonte_carlo.rs
156 lines (142 loc) · 5.08 KB
/
monte_carlo.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
extern crate rand;
use crate::models::{OptionParameters, OptionPricingModel};
use rand::Rng;
use rand_distr::StandardNormal;
/// A Monte Carlo simulation model for pricing European call and put options.
pub struct MonteCarloModel {
/// The number of simulations to run for the Monte Carlo method.
pub simulations: usize,
/// The epsilon value used for finite difference calculations in Greeks.
pub epsilon: f64,
}
impl OptionPricingModel for MonteCarloModel {
/// Calculates the price of a European call option using Monte Carlo simulation.
///
/// # Arguments
///
/// * `params` - The parameters for the option.
///
/// # Returns
///
/// Returns the estimated price of the European call option.
fn call_price(&self, params: &OptionParameters) -> f64 {
let mut rng = rand::thread_rng();
let mut payoff_sum = 0.0;
for _ in 0..self.simulations {
let z: f64 = rng.sample(StandardNormal);
let st = params.s
* ((params.r - 0.5 * params.sigma.powi(2)) * params.t
+ params.sigma * params.t.sqrt() * z)
.exp();
payoff_sum += (st - params.k).max(0.0);
}
(payoff_sum / self.simulations as f64) * (-params.r * params.t).exp()
}
/// Calculates the price of a European put option using Monte Carlo simulation.
///
/// # Arguments
///
/// * `params` - The parameters for the option.
///
/// # Returns
///
/// Returns the estimated price of the European put option.
fn put_price(&self, params: &OptionParameters) -> f64 {
let mut rng = rand::thread_rng();
let mut payoff_sum = 0.0;
for _ in 0..self.simulations {
let z: f64 = rng.sample(StandardNormal);
let st = params.s
* ((params.r - 0.5 * params.sigma.powi(2)) * params.t
+ params.sigma * params.t.sqrt() * z)
.exp();
payoff_sum += (params.k - st).max(0.0);
}
(payoff_sum / self.simulations as f64) * (-params.r * params.t).exp()
}
/// Calculates the Delta of the option using Monte Carlo simulation.
///
/// # Arguments
///
/// * `params` - The parameters for the option.
///
/// # Returns
///
/// Returns the estimated Delta of the option.
fn delta(&self, params: &OptionParameters) -> f64 {
let mut new_params = params.clone();
new_params.s = params.s + self.epsilon;
let price_up = self.call_price(&new_params);
new_params.s = params.s - self.epsilon;
let price_down = self.call_price(&new_params);
(price_up - price_down) / (2.0 * self.epsilon)
}
/// Calculates the Gamma of the option using Monte Carlo simulation.
///
/// # Arguments
///
/// * `params` - The parameters for the option.
///
/// # Returns
///
/// Returns the estimated Gamma of the option.
fn gamma(&self, params: &OptionParameters) -> f64 {
let mut new_params = params.clone();
new_params.s = params.s + self.epsilon;
let delta_up = self.delta(&new_params);
new_params.s = params.s - self.epsilon;
let delta_down = self.delta(&new_params);
(delta_up - delta_down) / (2.0 * self.epsilon)
}
/// Calculates the Vega of the option using Monte Carlo simulation.
///
/// # Arguments
///
/// * `params` - The parameters for the option.
///
/// # Returns
///
/// Returns the estimated Vega of the option.
fn vega(&self, params: &OptionParameters) -> f64 {
let mut new_params = params.clone();
new_params.sigma = params.sigma + self.epsilon;
let price_up = self.call_price(&new_params);
new_params.sigma = params.sigma - self.epsilon;
let price_down = self.call_price(&new_params);
(price_up - price_down) / (2.0 * self.epsilon)
}
/// Calculates the Theta of the option using Monte Carlo simulation.
///
/// # Arguments
///
/// * `params` - The parameters for the option.
///
/// # Returns
///
/// Returns the estimated Theta of the option.
fn theta(&self, params: &OptionParameters) -> f64 {
let day_epsilon = 1.0 / 365.0; // One day
let mut new_params = params.clone();
let price_now = self.call_price(params);
new_params.t = params.t - day_epsilon;
let price_future = self.call_price(&new_params);
(price_future - price_now) / day_epsilon
}
/// Calculates the Rho of the option using Monte Carlo simulation.
///
/// # Arguments
///
/// * `params` - The parameters for the option.
///
/// # Returns
///
/// Returns the estimated Rho of the option.
fn rho(&self, params: &OptionParameters) -> f64 {
let mut new_params = params.clone();
new_params.r = params.r + self.epsilon;
let price_up = self.call_price(&new_params);
new_params.r = params.r - self.epsilon;
let price_down = self.call_price(&new_params);
(price_up - price_down) / (2.0 * self.epsilon)
}
}