-
Notifications
You must be signed in to change notification settings - Fork 30
/
Copy pathrun_synthesis_sdxl.py
83 lines (63 loc) · 3.09 KB
/
run_synthesis_sdxl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import os
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from tqdm import tqdm
from einops import rearrange, repeat
from omegaconf import OmegaConf
from diffusers import DDIMScheduler, DiffusionPipeline
from masactrl.diffuser_utils import MasaCtrlPipeline
from masactrl.masactrl_utils import AttentionBase
from masactrl.masactrl_utils import regiter_attention_editor_diffusers
from masactrl.masactrl import MutualSelfAttentionControl
from torchvision.utils import save_image
from torchvision.io import read_image
from pytorch_lightning import seed_everything
torch.cuda.set_device(0) # set the GPU device
# Note that you may add your Hugging Face token to get access to the models
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
model_path = "stabilityai/stable-diffusion-xl-base-1.0"
# model_path = "Linaqruf/animagine-xl"
scheduler = DDIMScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", clip_sample=False, set_alpha_to_one=False)
model = DiffusionPipeline.from_pretrained(model_path, scheduler=scheduler).to(device)
def consistent_synthesis():
seed = 42
seed_everything(seed)
out_dir_ori = "./workdir/masactrl_exp/oldman_smiling"
os.makedirs(out_dir_ori, exist_ok=True)
prompts = [
"A portrait of an old man, facing camera, best quality",
"A portrait of an old man, facing camera, smiling, best quality",
]
# inference the synthesized image with MasaCtrl
# TODO: note that the hyper paramerter of MasaCtrl for SDXL may be not optimal
STEP = 4
LAYER_LIST = [44, 54, 64] # run the synthesis with MasaCtrl at three different layer configs
# initialize the noise map
start_code = torch.randn([1, 4, 128, 128], device=device)
# start_code = None
start_code = start_code.expand(len(prompts), -1, -1, -1)
# inference the synthesized image without MasaCtrl
editor = AttentionBase()
regiter_attention_editor_diffusers(model, editor)
image_ori = model(prompts, latents=start_code, guidance_scale=7.5).images
for LAYER in LAYER_LIST:
# hijack the attention module
editor = MutualSelfAttentionControl(STEP, LAYER, model_type="SDXL")
regiter_attention_editor_diffusers(model, editor)
# inference the synthesized image
image_masactrl = model(prompts, latents=start_code, guidance_scale=7.5).images
sample_count = len(os.listdir(out_dir_ori))
out_dir = os.path.join(out_dir_ori, f"sample_{sample_count}")
os.makedirs(out_dir, exist_ok=True)
image_ori[0].save(os.path.join(out_dir, f"source_step{STEP}_layer{LAYER}.png"))
image_ori[1].save(os.path.join(out_dir, f"without_step{STEP}_layer{LAYER}.png"))
image_masactrl[-1].save(os.path.join(out_dir, f"masactrl_step{STEP}_layer{LAYER}.png"))
with open(os.path.join(out_dir, f"prompts.txt"), "w") as f:
for p in prompts:
f.write(p + "\n")
f.write(f"seed: {seed}\n")
print("Syntheiszed images are saved in", out_dir)
if __name__ == "__main__":
consistent_synthesis()