-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
142 lines (133 loc) · 4.21 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import torch.nn as nn
import torch.nn.functional as F
dropout_value = 0.05
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
# Input Block
self.convblock1 = nn.Sequential(
nn.Conv2d(
in_channels=1, out_channels=4, kernel_size=(3, 3), padding=0, bias=False
),
nn.BatchNorm2d(4),
nn.ReLU(),
nn.Dropout(dropout_value),
) # output_size = 26, RF = 3
# CONVOLUTION BLOCK 1
self.convblock2 = nn.Sequential(
nn.Conv2d(
in_channels=4, out_channels=4, kernel_size=(3, 3), padding=0, bias=False
),
nn.BatchNorm2d(4),
nn.ReLU(),
nn.Dropout(dropout_value),
) # output_size = 24, RF = 5
self.convblock3 = nn.Sequential(
nn.Conv2d(
in_channels=4, out_channels=8, kernel_size=(3, 3), padding=0, bias=False
),
nn.BatchNorm2d(8),
nn.ReLU(),
nn.Dropout(dropout_value),
) # output_size = 22, RF = 7
# TRANSITION BLOCK 1
self.pool1 = nn.MaxPool2d(2, 2) # output_size = 11, RF = 8
self.convblock4 = nn.Sequential(
nn.Conv2d(
in_channels=8, out_channels=8, kernel_size=(1, 1), padding=0, bias=False
),
nn.BatchNorm2d(8),
nn.ReLU(),
nn.Dropout(dropout_value),
) # output_size = 11, RF = 8
# CONVOLUTION BLOCK 2
self.convblock5 = nn.Sequential(
nn.Conv2d(
in_channels=8,
out_channels=16,
kernel_size=(3, 3),
padding=0,
bias=False,
),
nn.BatchNorm2d(16),
nn.ReLU(),
nn.Dropout(dropout_value),
) # output_size = 9, RF = 12
self.convblock6 = nn.Sequential(
nn.Conv2d(
in_channels=16,
out_channels=16,
kernel_size=(3, 3),
padding=0,
bias=False,
),
nn.BatchNorm2d(16),
nn.ReLU(),
nn.Dropout(dropout_value),
) # output_size = 7, RF = 16
# OUTPUT BLOCK
self.convblock7 = nn.Sequential(
nn.Conv2d(
in_channels=16,
out_channels=16,
kernel_size=(3, 3),
padding=1,
bias=False,
),
nn.BatchNorm2d(16),
nn.ReLU(),
nn.Dropout(dropout_value),
) # output_size = 7, RF = 20
self.convblock7a = nn.Sequential(
nn.Conv2d(
in_channels=16,
out_channels=16,
kernel_size=(3, 3),
padding=1,
bias=False,
),
nn.BatchNorm2d(16),
nn.ReLU(),
nn.Dropout(dropout_value),
) # output_size = 7, RF = 24
self.convblock7b = nn.Sequential(
nn.Conv2d(
in_channels=16,
out_channels=16,
kernel_size=(3, 3),
padding=1,
bias=False,
),
nn.BatchNorm2d(16),
nn.ReLU(),
nn.Dropout(dropout_value),
) # output_size = 7, RF = 28
self.convblock8 = nn.Sequential(
nn.Conv2d(
in_channels=16,
out_channels=10,
kernel_size=(1, 1),
padding=0,
bias=False,
),
# nn.BatchNorm2d(10),
# nn.ReLU(),
# nn.Dropout(dropout_value)
) # output_size = 7, RF = 28
self.gap = nn.Sequential(
nn.AvgPool2d(kernel_size=7),
) # output_size = 1, RF = 38
def forward(self, x):
x = self.convblock1(x)
x = self.convblock2(x)
x = self.convblock3(x)
x = self.pool1(x)
x = self.convblock4(x)
x = self.convblock5(x)
x = self.convblock6(x)
x = self.convblock7(x)
x = self.convblock7a(x)
x = self.convblock8(x)
x = self.gap(x)
x = x.view(-1, 10)
return F.log_softmax(x, dim=-1)