forked from stepfun-ai/Step-Audio
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtokenizer.py
197 lines (173 loc) · 6.92 KB
/
tokenizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
import io
import threading
import time
import os
import numpy as np
import torch
import torchaudio
import onnxruntime
import whisper
from funasr_detach import AutoModel
from utils import resample_audio, energy_norm_fn, trim_silence
class StepAudioTokenizer:
def __init__(
self,
encoder_path,
):
funasr_model_path = os.path.join(
encoder_path,
"dengcunqin/speech_paraformer-large_asr_nat-zh-cantonese-en-16k-vocab8501-online",
)
kms_path = os.path.join(encoder_path, "linguistic_tokenizer.npy")
cosy_tokenizer_path = os.path.join(encoder_path, "speech_tokenizer_v1.onnx")
self.funasr_model = AutoModel(model=funasr_model_path, model_revision="master")
self.kms = torch.tensor(np.load(kms_path))
providers = ["CUDAExecutionProvider"]
session_option = onnxruntime.SessionOptions()
session_option.graph_optimization_level = (
onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
)
session_option.intra_op_num_threads = 1
self.ort_session = onnxruntime.InferenceSession(
cosy_tokenizer_path, sess_options=session_option, providers=providers
)
self.chunk_size = [0, 4, 5]
self.encoder_chunk_look_back = 4
self.decoder_chunk_look_back = 1
self.vq02_sessions = {}
self.vq02_lock = threading.Lock()
self.vq06_lock = threading.Lock()
def __call__(self, audio, sr):
_, vq02, vq06 = self.wav2token(audio, sr, False)
text = self.merge_vq0206_to_token_str(vq02, vq06)
return text
def preprocess_wav(self, audio, sample_rate, enable_trim=True, energy_norm=True):
audio = resample_audio(audio, sample_rate, 16000)
if energy_norm:
audio = energy_norm_fn(audio)
if enable_trim:
audio = audio.cpu().numpy().squeeze(0)
audio = trim_silence(audio, 16000)
audio = torch.from_numpy(audio)
audio = audio.unsqueeze(0)
return audio
def wav2token(self, audio, sample_rate, enable_trim=True, energy_norm=True):
audio = self.preprocess_wav(
audio, sample_rate, enable_trim=enable_trim, energy_norm=energy_norm
)
vq02_ori = self.get_vq02_code(audio)
vq02 = [int(x) + 65536 for x in vq02_ori]
vq06_ori = self.get_vq06_code(audio)
vq06 = [int(x) + 65536 + 1024 for x in vq06_ori]
chunk = 1
chunk_nums = min(len(vq06) // (3 * chunk), len(vq02) // (2 * chunk))
speech_tokens = []
for idx in range(chunk_nums):
speech_tokens += vq02[idx * chunk * 2 : (idx + 1) * chunk * 2]
speech_tokens += vq06[idx * chunk * 3 : (idx + 1) * chunk * 3]
return speech_tokens, vq02_ori, vq06_ori
def get_vq02_code(self, audio, session_id=None, is_final=True):
_tmp_wav = io.BytesIO()
torchaudio.save(_tmp_wav, audio, 16000, format="wav")
_tmp_wav.seek(0)
with self.vq02_lock:
cache = {}
if session_id in self.vq02_sessions:
cache = self.vq02_sessions[session_id].get("cache", {})
res, new_cache = self.funasr_model.infer_encoder(
input=[_tmp_wav],
chunk_size=self.chunk_size,
encoder_chunk_look_back=self.encoder_chunk_look_back,
decoder_chunk_look_back=self.decoder_chunk_look_back,
device=0,
is_final=is_final,
cache=cache,
)
c_list = []
for j, res_ in enumerate(res):
feat = res_["enc_out"]
if len(feat) > 0:
c_list = self.dump_label([feat], self.kms)[0]
if is_final:
if session_id in self.vq02_sessions:
self.vq02_sessions.pop(session_id)
else:
if isinstance(session_id, str) and len(session_id) > 0:
self.vq02_sessions[session_id] = {
"cache": new_cache,
"update_time": time.time(),
}
return c_list
def get_vq06_code(self, audio):
def split_audio(audio, chunk_duration=480000):
start = 0
chunks = []
while start < len(audio):
end = min(start + chunk_duration, len(audio))
chunk = audio[start:end]
if len(chunk) < 480:
pass
else:
chunks.append(chunk)
start = end
return chunks
with self.vq06_lock:
audio = audio.squeeze(0)
chunk_audios = split_audio(audio, chunk_duration=30 * 16000) # 最大支持30s
speech_tokens = []
for chunk in chunk_audios:
duration = round(chunk.shape[0] / 16000, 2)
feat = whisper.log_mel_spectrogram(chunk, n_mels=128)
feat = feat.unsqueeze(0)
feat_len = np.array([feat.shape[2]], dtype=np.int32)
chunk_token = (
self.ort_session.run(
None,
{
self.ort_session.get_inputs()[0]
.name: feat.detach()
.cpu()
.numpy(),
self.ort_session.get_inputs()[1].name: feat_len,
},
)[0]
.flatten()
.tolist()
)
assert abs(len(chunk_token) - duration * 25) <= 2
speech_tokens += chunk_token
return speech_tokens
def kmean_cluster(self, samples, means):
dists = torch.cdist(samples, means)
indices = dists.argmin(dim=1).cpu().numpy()
return indices.tolist()
def dump_label(self, samples, mean):
dims = samples[0].shape[-1]
x_lens = [x.shape[1] for x in samples]
total_len = sum(x_lens)
x_sel = torch.FloatTensor(1, total_len, dims)
start_len = 0
for sample in samples:
sample_len = sample.shape[1]
end_len = start_len + sample_len
x_sel[:, start_len:end_len] = sample
start_len = end_len
dense_x = x_sel.squeeze(0)
indices = self.kmean_cluster(dense_x, mean)
indices_list = []
start_len = 0
for x_len in x_lens:
end_len = start_len + end_len
indices_list.append(indices[start_len:end_len])
return indices_list
def merge_vq0206_to_token_str(self, vq02, vq06):
_vq06 = [1024 + x for x in vq06]
result = []
i = 0
j = 0
while i < len(vq02) - 1 and j < len(_vq06) - 2:
sublist = vq02[i : i + 2] + _vq06[j : j + 3]
result.extend(sublist)
i += 2
j += 3
return "".join([f"<audio_{x}>" for x in result])