-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathtrain_kitti.py
228 lines (182 loc) · 8.99 KB
/
train_kitti.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
import os
import warnings
from argparse import ArgumentParser
import torch
import torch.nn as nn
import torch.optim as optim
from ignite.contrib.handlers import ProgressBar
from ignite.contrib.handlers.tensorboard_logger import *
from ignite.engine import Events, Engine
from ignite.metrics import RunningAverage, Loss, ConfusionMatrix, IoU
from ignite.utils import convert_tensor
from torch.utils.data import DataLoader
from lilanet.datasets import KITTI, Normalize, Compose, RandomHorizontalFlip
from lilanet.datasets.transforms import ToTensor
from lilanet.model import LiLaNet
from lilanet.utils import save
def get_data_loaders(data_dir, batch_size, val_batch_size, num_workers):
normalize = Normalize(mean=KITTI.mean(), std=KITTI.std())
transforms = Compose([
RandomHorizontalFlip(),
ToTensor(),
normalize
])
val_transforms = Compose([
ToTensor(),
normalize
])
train_loader = DataLoader(KITTI(root=data_dir, split='train', transform=transforms),
batch_size=batch_size, shuffle=True, num_workers=num_workers, pin_memory=True)
val_loader = DataLoader(KITTI(root=data_dir, split='val', transform=val_transforms),
batch_size=val_batch_size, shuffle=False, num_workers=num_workers, pin_memory=True)
return train_loader, val_loader
def run(args):
if args.seed is not None:
torch.manual_seed(args.seed)
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
num_classes = KITTI.num_classes()
model = LiLaNet(num_classes)
device_count = torch.cuda.device_count()
if device_count > 1:
print("Using %d GPU(s)" % device_count)
model = nn.DataParallel(model)
args.batch_size = device_count * args.batch_size
args.val_batch_size = device_count * args.val_batch_size
model = model.to(device)
train_loader, val_loader = get_data_loaders(args.dataset_dir, args.batch_size, args.val_batch_size,
args.num_workers)
criterion = nn.CrossEntropyLoss(weight=KITTI.class_weights()).to(device)
optimizer = optim.Adam(model.parameters(), lr=args.lr)
if args.resume:
if os.path.isfile(args.resume):
print("Loading checkpoint '{}'".format(args.resume))
checkpoint = torch.load(args.resume)
args.start_epoch = checkpoint['epoch']
model.load_state_dict(checkpoint['model'])
optimizer.load_state_dict(checkpoint['optimizer'])
print("Loaded checkpoint '{}' (Epoch {})".format(args.resume, checkpoint['epoch']))
else:
print("No checkpoint found at '{}'".format(args.resume))
def _prepare_batch(batch, non_blocking=True):
distance, reflectivity, target = batch
return (convert_tensor(distance, device=device, non_blocking=non_blocking),
convert_tensor(reflectivity, device=device, non_blocking=non_blocking),
convert_tensor(target, device=device, non_blocking=non_blocking))
def _update(engine, batch):
model.train()
if engine.state.iteration % args.grad_accum == 0:
optimizer.zero_grad()
distance, reflectivity, target = _prepare_batch(batch)
pred = model(distance, reflectivity)
loss = criterion(pred, target) / args.grad_accum
loss.backward()
if engine.state.iteration % args.grad_accum == 0:
optimizer.step()
return loss.item()
trainer = Engine(_update)
# attach running average metrics
RunningAverage(output_transform=lambda x: x).attach(trainer, 'loss')
# attach progress bar
pbar = ProgressBar(persist=True)
pbar.attach(trainer, metric_names=['loss'])
def _inference(engine, batch):
model.eval()
with torch.no_grad():
distance, reflectivity, target = _prepare_batch(batch)
pred = model(distance, reflectivity)
return pred, target
evaluator = Engine(_inference)
cm = ConfusionMatrix(num_classes)
IoU(cm, ignore_index=0).attach(evaluator, 'IoU')
Loss(criterion).attach(evaluator, 'loss')
pbar2 = ProgressBar(persist=True, desc='Eval Epoch')
pbar2.attach(evaluator)
def _global_step_transform(engine, event_name):
if trainer.state is not None:
return trainer.state.iteration
else:
return 1
tb_logger = TensorboardLogger(args.log_dir)
tb_logger.attach(trainer,
log_handler=OutputHandler(tag='training',
metric_names=['loss']),
event_name=Events.ITERATION_COMPLETED)
tb_logger.attach(evaluator,
log_handler=OutputHandler(tag='validation',
metric_names=['loss', 'IoU'],
global_step_transform=_global_step_transform),
event_name=Events.EPOCH_COMPLETED)
@trainer.on(Events.STARTED)
def initialize(engine):
if args.resume:
engine.state.epoch = args.start_epoch
@evaluator.on(Events.EPOCH_COMPLETED)
def save_checkpoint(engine):
epoch = trainer.state.epoch if trainer.state is not None else 1
iou = engine.state.metrics['IoU'] * 100.0
mean_iou = iou.mean()
name = 'epoch{}_mIoU={:.1f}.pth'.format(epoch, mean_iou)
file = {'model': model.state_dict(), 'epoch': epoch, 'optimizer': optimizer.state_dict(),
'args': args}
save(file, args.output_dir, 'checkpoint_{}'.format(name))
save(model.state_dict(), args.output_dir, 'model_{}'.format(name))
@trainer.on(Events.EPOCH_COMPLETED)
def run_validation(engine):
pbar.log_message("Start Validation - Epoch: [{}/{}]".format(engine.state.epoch, engine.state.max_epochs))
evaluator.run(val_loader)
metrics = evaluator.state.metrics
loss = metrics['loss']
iou = metrics['IoU'] * 100.0
mean_iou = iou.mean()
iou_text = ', '.join(['{}: {:.1f}'.format(KITTI.classes[i + 1].name, v) for i, v in enumerate(iou.tolist())])
pbar.log_message("Validation results - Epoch: [{}/{}]: Loss: {:.2e}\n IoU: {}\n mIoU: {:.1f}"
.format(engine.state.epoch, engine.state.max_epochs, loss, iou_text, mean_iou))
@trainer.on(Events.EXCEPTION_RAISED)
def handle_exception(engine, e):
if isinstance(e, KeyboardInterrupt) and (engine.state.iteration > 1):
engine.terminate()
warnings.warn("KeyboardInterrupt caught. Exiting gracefully.")
name = 'epoch{}_exception.pth'.format(trainer.state.epoch)
file = {'model': model.state_dict(), 'epoch': trainer.state.epoch, 'optimizer': optimizer.state_dict(),
'args': args}
save(file, args.output_dir, 'checkpoint_{}'.format(name))
save(model.state_dict(), args.output_dir, 'model_{}'.format(name))
else:
raise e
if args.eval_on_start:
print("Start validation")
evaluator.run(val_loader, max_epochs=1)
print("Start training")
trainer.run(train_loader, max_epochs=args.epochs)
tb_logger.close()
if __name__ == '__main__':
parser = ArgumentParser('LiLaNet with PyTorch')
parser.add_argument('--batch-size', type=int, default=10,
help='input batch size for training')
parser.add_argument('--val-batch-size', type=int, default=10,
help='input batch size for validation')
parser.add_argument('--num-workers', type=int, default=4,
help='number of workers')
parser.add_argument('--epochs', type=int, default=200,
help='number of epochs to train')
parser.add_argument('--lr', type=float, default=1e-3,
help='learning rate')
parser.add_argument('--seed', type=int, default=123,
help='manual seed')
parser.add_argument('--output-dir', default='checkpoints',
help='directory to save model checkpoints')
parser.add_argument('--resume', type=str, metavar='PATH',
help='path to latest checkpoint (default: none)')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
help='manual epoch number (useful on restarts)')
parser.add_argument('--log-interval', type=int, default=10,
help='how many batches to wait before logging training status')
parser.add_argument("--log-dir", type=str, default="logs",
help="log directory for Tensorboard log output")
parser.add_argument("--dataset-dir", type=str, default="data/kitti",
help="location of the dataset")
parser.add_argument("--eval-on-start", type=bool, default=False,
help="evaluate before training")
parser.add_argument('--grad-accum', type=int, default=1,
help='grad accumulation')
run(parser.parse_args())