-
Notifications
You must be signed in to change notification settings - Fork 1.5k
/
Copy pathdemo_tensorflow.py
78 lines (64 loc) · 2.9 KB
/
demo_tensorflow.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import sys
import numpy as np
import tensorflow as tf
from tensorflow.python.platform import gfile
import cv2
from tool.utils import post_processing, load_class_names, plot_boxes_cv2
def demo_tensorflow(tfpb_file="./weight/yolov4.pb", image_path=None, print_sensor_name=False):
graph_name = 'yolov4'
tf.compat.v1.disable_eager_execution()
with tf.compat.v1.Session() as persisted_sess:
print("loading graph...")
with gfile.FastGFile(tfpb_file, 'rb') as f:
graph_def = tf.compat.v1.GraphDef()
graph_def.ParseFromString(f.read())
persisted_sess.graph.as_default()
tf.import_graph_def(graph_def, name=graph_name)
# print all sensor_name
if print_sensor_name:
tensor_name_list = [tensor.name for tensor in tf.compat.v1.get_default_graph().as_graph_def().node]
for tensor_name in tensor_name_list:
print(tensor_name)
inp = persisted_sess.graph.get_tensor_by_name(graph_name + '/' + 'input:0')
print(inp.shape)
out1 = persisted_sess.graph.get_tensor_by_name(graph_name + '/' + 'output_1:0')
out2 = persisted_sess.graph.get_tensor_by_name(graph_name + '/' + 'output_2:0')
out3 = persisted_sess.graph.get_tensor_by_name(graph_name + '/' + 'output_3:0')
print(out1.shape, out2.shape, out3.shape)
# image_src = np.random.rand(1, 3, 608, 608).astype(np.float32) # input image
# Input
image_src = cv2.imread(image_path)
resized = cv2.resize(image_src, (inp.shape[2], inp.shape[3]), interpolation=cv2.INTER_LINEAR)
img_in = cv2.cvtColor(resized, cv2.COLOR_BGR2RGB)
img_in = np.transpose(img_in, (2, 0, 1)).astype(np.float32)
img_in = np.expand_dims(img_in, axis=0)
img_in /= 255.0
print("Shape of the network input: ", img_in.shape)
feed_dict = {inp: img_in}
outputs = persisted_sess.run([out1, out2, out3], feed_dict)
print(outputs[0].shape)
print(outputs[1].shape)
print(outputs[2].shape)
boxes = post_processing(img_in, 0.4, outputs)
num_classes = 80
if num_classes == 20:
namesfile = 'data/voc.names'
elif num_classes == 80:
namesfile = 'data/coco.names'
else:
namesfile = 'data/names'
class_names = load_class_names(namesfile)
result = plot_boxes_cv2(image_src, boxes, savename=None, class_names=class_names)
cv2.imshow("tensorflow predicted", result)
cv2.waitKey()
if __name__ == '__main__':
if len(sys.argv) == 1:
sys.argv.append('weight/yolov4.pb')
sys.argv.append('data/dog.jpg')
if len(sys.argv) == 3:
tfpbfile = sys.argv[1]
image_path = sys.argv[2]
demo_tensorflow(tfpbfile, image_path)
else:
print('Please execute this script this way:\n')
print(' python demo_tensorflow.py <tfpbfile> <imageFile>')