We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
When I introduce random noise to the input loss.item() decreases. Part of the code for training is included here.
for epoch in range(epochs): # model.train() epoch_loss = 0 epoch_step = 0 with tqdm(total=n_train, desc=f'Epoch {epoch + 1}/{epochs}', unit='img', ncols=50) as pbar: for i, batch in enumerate(train_loader): global_step += 1 epoch_step += 1 images = batch[0] bboxes = batch[1] paths = batch[2] images = images.to(device=device, dtype=torch.float32) images.requires_grad = True bboxes = bboxes.to(device=device) bboxes_pred = model(images) loss, loss_xy, loss_wh, loss_obj, loss_cls, loss_l2 = criterion( bboxes_pred, bboxes) print("Without Noise - ", loss.item(), loss_xy.item(), loss_wh.item(), loss_obj.item(), loss_cls.item(), loss_l2.item()) grad = torch.autograd.grad(loss, [images], create_graph=True, retain_graph=True, allow_unused=True)[0] # loss.backward() noise = torch.randn(images.size()) imgs = images.detach().cpu() + noise imgs = imgs.to(device=device, dtype=torch.float32) bboxes_pred = model(imgs) loss, loss_xy, loss_wh, loss_obj, loss_cls, loss_l2 = criterion( bboxes_pred, bboxes) print("With Noise - ", loss.item(), loss_xy.item(), loss_wh.item(), loss_obj.item(), loss_cls.item(), loss_l2.item())
Output - Without Noise - 20.36496353149414 0.0 0.0 20.36496353149414 0.0 6.040985584259033 With Noise - 1.169505000114441 0.0 0.0 1.169505000114441 0.0 0.05301150307059288 --------- looping again Without Noise - 25.24418830871582 0.0 0.0 25.24418830871582 0.0 7.514528274536133 With Noise - 1.8068726062774658 0.0 0.0 1.8068726062774658 0.0 0.12245824933052063 --------- looping again Without Noise - 1.1534618139266968 0.0 0.0 1.1534618139266968 0.0 0.2820863425731659 With Noise - 0.8495630025863647 0.0 0.0 0.8495630025863647 0.0 0.034061141312122345 --------- looping again Without Noise - 2754.517333984375 3.337832450866699 2730.53369140625 18.649364471435547 1.9963617324829102 5465.08642578125 With Noise - 2763.16845703125 2.5691161155700684 2741.94189453125 13.955108642578125 4.702309608459473 5486.26513671875
Without Noise - 20.36496353149414 0.0 0.0 20.36496353149414 0.0 6.040985584259033 With Noise - 1.169505000114441 0.0 0.0 1.169505000114441 0.0 0.05301150307059288 --------- looping again Without Noise - 25.24418830871582 0.0 0.0 25.24418830871582 0.0 7.514528274536133 With Noise - 1.8068726062774658 0.0 0.0 1.8068726062774658 0.0 0.12245824933052063 --------- looping again Without Noise - 1.1534618139266968 0.0 0.0 1.1534618139266968 0.0 0.2820863425731659 With Noise - 0.8495630025863647 0.0 0.0 0.8495630025863647 0.0 0.034061141312122345 --------- looping again Without Noise - 2754.517333984375 3.337832450866699 2730.53369140625 18.649364471435547 1.9963617324829102 5465.08642578125 With Noise - 2763.16845703125 2.5691161155700684 2741.94189453125 13.955108642578125 4.702309608459473 5486.26513671875
The text was updated successfully, but these errors were encountered:
No branches or pull requests
When I introduce random noise to the input loss.item() decreases. Part of the code for training is included here.
Output -
Without Noise - 20.36496353149414 0.0 0.0 20.36496353149414 0.0 6.040985584259033 With Noise - 1.169505000114441 0.0 0.0 1.169505000114441 0.0 0.05301150307059288 --------- looping again Without Noise - 25.24418830871582 0.0 0.0 25.24418830871582 0.0 7.514528274536133 With Noise - 1.8068726062774658 0.0 0.0 1.8068726062774658 0.0 0.12245824933052063 --------- looping again Without Noise - 1.1534618139266968 0.0 0.0 1.1534618139266968 0.0 0.2820863425731659 With Noise - 0.8495630025863647 0.0 0.0 0.8495630025863647 0.0 0.034061141312122345 --------- looping again Without Noise - 2754.517333984375 3.337832450866699 2730.53369140625 18.649364471435547 1.9963617324829102 5465.08642578125 With Noise - 2763.16845703125 2.5691161155700684 2741.94189453125 13.955108642578125 4.702309608459473 5486.26513671875
The text was updated successfully, but these errors were encountered: