-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathfsub_equiv.v
865 lines (734 loc) · 25.9 KB
/
fsub_equiv.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
(*
FSub (F<:)
T ::= Top | X | T -> T | Forall Z <: T. T^Z
t ::= x | lambda x:T.t | Lambda X<:T.t | t t | t [T]
*)
(* semantic equality big-step / small-step *)
Require Export SfLib.
Require Export Arith.EqNat.
Require Export Arith.Le.
Require Import Coq.Program.Equality.
Require Import Omega.
Require Import NPeano.
(* ### Syntax ### *)
Definition id := nat.
Inductive ty : Type :=
| TTop : ty
| TFun : ty -> ty -> ty
| TAll : ty -> ty -> ty
| TVarF : id -> ty (* free type variable, in concrete environment *)
| TVarH : id -> ty (* free type variable, in abstract environment *)
| TVarB : id -> ty (* locally-bound type variable *)
.
Inductive tm : Type :=
| tvar : id -> tm
| tabs : ty -> tm -> tm
| tapp : tm -> tm -> tm
| ttabs : ty -> tm -> tm
| ttapp : tm -> ty -> tm
| tty: ty -> tm
.
Inductive binding {X: Type} :=
| bind_tm : X -> binding
| bind_ty : X -> binding
.
Inductive vl : Type :=
(* a closure for a term abstraction *)
| vabs : venv (*H*) -> ty -> tm -> vl
(* a closure for a type abstraction *)
| vtabs : venv (*H*) -> ty -> tm -> vl
(* a closure over a type *)
| vty : venv (*H*) -> ty -> vl
with venv : Type := (* need to recurse structurally, hence don't use built-in list *)
| vnil: venv
| vcons: vl -> venv -> venv
.
Definition tenv := list (@binding ty). (* Gamma environment: static *)
(*Definition venv := list vl. (* H environment: run-time *) *)
Definition aenv := list (venv*ty). (* J environment: abstract at run-time *)
(* ### Representation of Bindings ### *)
(* An environment is a list of values, indexed by decrementing ids. *)
Fixpoint lengthr (l : venv) : nat :=
match l with
| vnil => 0
| vcons a l' =>
S (lengthr l')
end.
Fixpoint indexr (n : id) (l : venv) : option vl :=
match l with
| vnil => None
| vcons a l' =>
if (beq_nat n (lengthr l')) then Some a else indexr n l'
end.
Inductive closed: nat(*B*) -> nat(*H*) -> nat(*F*) -> ty -> Prop :=
| cl_top: forall i j k,
closed i j k TTop
| cl_fun: forall i j k T1 T2,
closed i j k T1 ->
closed i j k T2 ->
closed i j k (TFun T1 T2)
| cl_all: forall i j k T1 T2,
closed i j k T1 ->
closed (S i) j k T2 ->
closed i j k (TAll T1 T2)
| cl_sel: forall i j k x,
k > x ->
closed i j k (TVarF x)
| cl_selh: forall i j k x,
j > x ->
closed i j k (TVarH x)
| cl_selb: forall i j k x,
i > x ->
closed i j k (TVarB x)
.
(* open define a locally-nameless encoding wrt to TVarB type variables. *)
(* substitute type u for all occurrences of (TVarB k) *)
Fixpoint open_rec (k: nat) (u: ty) (T: ty) { struct T }: ty :=
match T with
| TTop => TTop
| TFun T1 T2 => TFun (open_rec k u T1) (open_rec k u T2)
| TAll T1 T2 => TAll (open_rec k u T1) (open_rec (S k) u T2)
| TVarF x => TVarF x
| TVarH i => TVarH i
| TVarB i => if beq_nat k i then u else TVarB i
end.
Definition open u T := open_rec 0 u T.
(* Locally-nameless encoding with respect to varH variables. *)
Fixpoint subst (U : ty) (T : ty) {struct T} : ty :=
match T with
| TTop => TTop
| TFun T1 T2 => TFun (subst U T1) (subst U T2)
| TAll T1 T2 => TAll (subst U T1) (subst U T2)
| TVarB i => TVarB i
| TVarF i => TVarF i
| TVarH i => if beq_nat i 0 then U else TVarH (i-1)
end.
Definition liftb (f: ty -> ty) b :=
match b with
| bind_tm T => bind_tm (f T)
| bind_ty T => bind_ty (f T)
end.
Definition substb (U: ty) := liftb (subst U).
Fixpoint nosubst (T : ty) {struct T} : Prop :=
match T with
| TTop => True
| TFun T1 T2 => nosubst T1 /\ nosubst T2
| TAll T1 T2 => nosubst T1 /\ nosubst T2
| TVarB i => True
| TVarF i => True
| TVarH i => i <> 0
end.
(* ### Evaluation (Big-Step Semantics) ### *)
(*
None means timeout
Some None means stuck
Some (Some v)) means result v
*)
(* Environment-based evaluator *)
Fixpoint teval(n: nat)(env: venv)(t: tm){struct n}: option (option vl) :=
match n with
| 0 => None
| S n =>
match t with
| tty T => Some (Some (vty env T))
| tvar x => Some (indexr x env)
| tabs T y => Some (Some (vabs env T y))
| ttabs T y => Some (Some (vtabs env T y))
| tapp ef ex =>
match teval n env ex with
| None => None
| Some None => Some None
| Some (Some vx) =>
match teval n env ef with
| None => None
| Some None => Some None
| Some (Some (vtabs _ _ _)) => Some None
| Some (Some (vty _ _)) => Some None
| Some (Some (vabs env2 _ ey)) =>
teval n (vcons vx env2) ey
end
end
| ttapp ef ex =>
match teval n env ef with
| None => None
| Some None => Some None
| Some (Some (vabs _ _ _)) => Some None
| Some (Some (vty _ _)) => Some None
| Some (Some (vtabs env2 T ey)) =>
teval n (vcons (vty env ex) env2) ey
end
end
end.
(* Substitution-based evaluator *)
Fixpoint shift_ty (u:nat) (T : ty) {struct T} : ty :=
match T with
| TTop => TTop
| TFun T1 T2 => TFun (shift_ty u T1) (shift_ty u T2)
| TAll T1 T2 => TAll (shift_ty u T1) (shift_ty u T2)
| TVarF i => TVarF i
| TVarH i => TVarH (i+u)
| TVarB i => TVarB i
end.
Fixpoint shift_tm (u:nat) (T : tm) {struct T} : tm :=
match T with
| tvar i => tvar (i + u)
| tabs T1 t => tabs (shift_ty u T1) (shift_tm u t)
| tapp t1 t2 => tapp (shift_tm u t1) (shift_tm u t2)
| ttabs T1 t => ttabs (shift_ty u T1) (shift_tm u t)
| ttapp t1 T2 => ttapp (shift_tm u t1) (shift_ty u T2)
| tty T => tty (shift_ty u T)
end.
Definition et t := match t with
| tty T => T
| _ => TTop
end.
Fixpoint subst_tm (u:tm) (T : tm) {struct T} : tm :=
match T with
| tvar i => if beq_nat i 0 then u else tvar (i-1)
| tabs T1 t => tabs (subst (et u) T1) (subst_tm (shift_tm 1 u) t)
| tapp t1 t2 => tapp (subst_tm u t1) (subst_tm u t2)
| ttabs T1 t => ttabs (subst (et u) T1) (subst_tm (shift_tm 1 u) t)
| ttapp t1 T2 => ttapp (subst_tm u t1) (subst (et u) T2)
| tty T => tty (subst (et u) T)
end.
Fixpoint subst_ty (u:ty) (T : tm) {struct T} : tm :=
match T with
| tvar i => if beq_nat i 0 then (tty u) else tvar (i-1)
| tabs T1 t => tabs (subst u T1) (subst_ty (shift_ty 1 u) t)
| tapp t1 t2 => tapp (subst_ty u t1) (subst_ty u t2)
| ttabs T1 t => ttabs (subst u T1) (subst_ty (shift_ty 1 u) t)
| ttapp t1 T2 => ttapp (subst_ty u t1) (subst u T2)
| tty T => tty (subst u T)
end.
Fixpoint tevals(n: nat)(t: tm){struct n}: option (option tm) :=
match n with
| 0 => None
| S n =>
match t with
| tty T => Some (Some (tty T))
| tvar x => Some None
| tabs T y => Some (Some (tabs T y))
| ttabs T y => Some (Some (ttabs T y))
| tapp ef ex =>
match tevals n ex with
| None => None
| Some None => Some None
| Some (Some vx) =>
match tevals n ef with
| None => None
| Some None => Some None
| Some (Some (tty T)) => Some None
| Some (Some (tvar _)) => Some None
| Some (Some (tapp _ _)) => Some None
| Some (Some (ttapp _ _)) => Some None
| Some (Some (ttabs _ _)) => Some None
| Some (Some (tabs _ ey)) =>
tevals n (subst_tm vx ey)
end
end
| ttapp ef ex =>
match tevals n ef with
| None => None
| Some None => Some None
| Some (Some (tty T)) => Some None
| Some (Some (tvar _)) => Some None
| Some (Some (tapp _ _)) => Some None
| Some (Some (ttapp _ _)) => Some None
| Some (Some (tabs _ _)) => Some None
| Some (Some (ttabs T ey)) =>
tevals n (subst_ty ex ey)
end
end
end.
(* ### Evaluation (Small-Step Semantics) ### *)
Inductive value : tm -> Prop :=
| V_Abs : forall T t,
value (tabs T t)
| V_TAbs : forall T t,
value (ttabs T t)
| V_Ty : forall T,
value (tty T)
.
Inductive step : tm -> tm -> Prop :=
| ST_AppAbs : forall v T1 t12,
value v ->
step (tapp (tabs T1 t12) v) (subst_tm v t12)
| ST_App1 : forall t1 t1' t2,
step t1 t1' ->
step (tapp t1 t2) (tapp t1' t2)
| ST_App2 : forall f t2 t2',
value f ->
step t2 t2' ->
step (tapp f t2) (tapp f t2')
| ST_TAppAbs : forall T1 t12 T2,
step (ttapp (ttabs T1 t12) T2) (subst_ty T2 t12)
| ST_TApp1 : forall t1 t1' t2,
step t1 t1' ->
step (ttapp t1 t2) (ttapp t1' t2)
.
Inductive mstep : nat -> tm -> tm -> Prop :=
| MST_Z : forall t,
mstep 0 t t
| MST_S: forall n t1 t2 t3,
step t1 t2 ->
mstep n t2 t3 ->
mstep (S n) t1 t3
.
(* automation *)
Hint Constructors venv.
Hint Unfold tenv.
Hint Unfold open.
Hint Unfold indexr.
Hint Unfold length.
Hint Constructors ty.
Hint Constructors tm.
Hint Constructors vl.
Hint Constructors closed.
Hint Constructors option.
Hint Constructors list.
Hint Resolve ex_intro.
(* ### Euivalence big-step env <-> big-step subst ### *)
Fixpoint subst_ty_all n venv t {struct venv} :=
match venv with
| vnil => t
| vcons (vabs venv0 T y) tl => subst TTop (subst_ty_all (S n) tl t) (* use TTop as placeholder *)
| vcons (vtabs venv0 T y) tl => subst TTop (subst_ty_all (S n) tl t) (* use TTop as placeholder *)
| vcons (vty venv0 T) tl =>
subst (shift_ty n (subst_ty_all 0 venv0 T)) (subst_ty_all (S n) tl t)
end.
Fixpoint subst_tm_all n venv t {struct venv} :=
match venv with
| vnil => t
| vcons (vabs venv0 T y) tl =>
subst_tm (shift_tm n (tabs (subst_ty_all 0 venv0 T) (subst_tm_all 1 venv0 y))) (subst_tm_all (S n) tl t)
| vcons (vtabs venv0 T y) tl =>
subst_tm (shift_tm n (ttabs (subst_ty_all 0 venv0 T) (subst_tm_all 1 venv0 y))) (subst_tm_all (S n) tl t)
| vcons (vty venv0 T) tl =>
subst_ty (shift_ty n (subst_ty_all 0 venv0 T)) (subst_tm_all (S n) tl t)
end.
Definition subst_tm_res t :=
match t with
| None => None
| Some None => Some None
| Some (Some (vabs venv0 T y)) => Some (Some ((tabs (subst_ty_all 0 venv0 T) (subst_tm_all 1 venv0 y))))
| Some (Some (vtabs venv0 T y)) => Some (Some ((ttabs (subst_ty_all 0 venv0 T) (subst_tm_all 1 venv0 y))))
| Some (Some (vty venv0 T)) => Some (Some (tty (subst_ty_all 0 venv0 T)))
end.
Lemma idx_miss: forall env i l,
i >= lengthr env ->
indexr i env = None /\ subst_tm_all l env (tvar i) = (tvar (i-(lengthr env))).
Proof.
intros env. induction env.
- intros. simpl in H. simpl.
assert (i-0=i). omega. rewrite H0. eauto.
- intros. simpl in H. simpl.
destruct (IHenv i (S l)) as [A B]. omega.
rewrite B. simpl.
assert (beq_nat (i - lengthr env) 0 = false). eapply beq_nat_false_iff. omega.
assert (beq_nat i (lengthr env) = false). eapply beq_nat_false_iff. omega.
rewrite H0. rewrite H1.
assert (i - lengthr env - 1 = i - S (lengthr env)). omega.
rewrite H2.
destruct v; try destruct v; eauto.
Qed.
Lemma idx_miss1: forall env i l,
i >= lengthr env ->
subst_tm_all l env (tvar i) = (tvar (i-(lengthr env))).
Proof.
intros env. eapply idx_miss; eauto.
Qed.
Lemma shiftz_id_ty: forall t,
shift_ty 0 t = t.
Proof.
intros. induction t; simpl; eauto; try rewrite IHt; try rewrite IHt1; try rewrite IHt2; eauto.
Qed.
Lemma shiftz_id: forall t,
shift_tm 0 t = t.
Proof.
intros. induction t; simpl; eauto; try rewrite IHt; try rewrite IHt1; try rewrite IHt2; eauto; try rewrite shiftz_id_ty; eauto.
Qed.
Lemma shift_add_ty: forall t l1 l2,
shift_ty l1 (shift_ty l2 t) = shift_ty (l2+l1) t.
Proof.
intros. induction t; simpl; eauto; try rewrite IHt; try rewrite IHt1; try rewrite IHt2; eauto.
rewrite plus_assoc. eauto.
Qed.
Lemma shift_add: forall t l1 l2,
shift_tm l1 (shift_tm l2 t) = shift_tm (l2+l1) t.
Proof.
intros. induction t; simpl; eauto; try rewrite IHt; try rewrite IHt1; try rewrite IHt2; eauto; try rewrite shift_add_ty; eauto.
rewrite plus_assoc. eauto.
Qed.
Lemma subst_shift_id_ty: forall t u l,
subst u (shift_ty (S l) t) = shift_ty l t.
Proof.
intros t. induction t; intros; simpl; eauto.
- rewrite IHt1. rewrite IHt2. eauto.
- rewrite IHt1. rewrite IHt2. eauto.
- assert (beq_nat (i + S l) 0 = false). eapply beq_nat_false_iff. omega. rewrite H.
assert (i+(S l)-1=i+l). omega. rewrite H0; eauto.
Qed.
Lemma subst_shift_id_ty1: forall t u l,
subst_ty u (shift_tm (S l) t) = shift_tm l t.
Proof.
intros t. induction t; intros; simpl; eauto.
- assert (beq_nat (i + S l) 0 = false). eapply beq_nat_false_iff. omega. rewrite H.
assert (i+(S l)-1=i+l). omega. rewrite H0; eauto.
- rewrite IHt. rewrite subst_shift_id_ty. eauto.
- rewrite IHt1. rewrite IHt2. eauto.
- rewrite IHt. rewrite subst_shift_id_ty. eauto.
- rewrite IHt. rewrite subst_shift_id_ty. eauto.
- rewrite subst_shift_id_ty. eauto.
Qed.
Lemma subst_shift_id: forall t u l,
subst_tm u (shift_tm (S l) t) = shift_tm l t.
Proof.
intros t. induction t; intros; simpl; eauto.
- assert (beq_nat (i + S l) 0 = false). eapply beq_nat_false_iff. omega. rewrite H.
assert (i+(S l)-1=i+l). omega. rewrite H0; eauto.
- rewrite IHt. rewrite subst_shift_id_ty. eauto.
- rewrite IHt1. rewrite IHt2. eauto.
- rewrite IHt. rewrite subst_shift_id_ty. eauto.
- rewrite IHt. rewrite subst_shift_id_ty. eauto.
- rewrite subst_shift_id_ty. eauto.
Qed.
Lemma subst_ty_tm: forall t u,
subst_tm (tty u) t = subst_ty u t.
Proof.
intros t. induction t; intros; simpl; eauto.
- rewrite IHt. eauto.
- rewrite IHt1. rewrite IHt2. eauto.
- rewrite IHt. eauto.
- rewrite IHt. eauto.
Qed.
Lemma idx_miss2: forall env i v l,
i < lengthr env ->
subst_tm_all l (vcons v env) (tvar i) = subst_tm_all l env (tvar i).
Proof.
intros env. induction env.
- intros. inversion H.
- intros. simpl in H.
case_eq (beq_nat i (lengthr env)); intros E.
+
assert (beq_nat (i - lengthr env) 0 = true) as E1.
eapply beq_nat_true_iff. eapply beq_nat_true_iff in E. omega.
simpl. rewrite idx_miss1. rewrite idx_miss1. simpl. rewrite E1.
destruct v0; destruct v; eauto.
simpl. rewrite subst_shift_id. eauto. rewrite subst_shift_id_ty. eauto.
simpl. rewrite subst_shift_id. eauto. rewrite subst_shift_id_ty. eauto.
simpl. rewrite subst_shift_id_ty. eauto.
simpl. rewrite subst_shift_id. eauto. rewrite subst_shift_id_ty. eauto.
simpl. rewrite subst_shift_id. eauto. rewrite subst_shift_id_ty. eauto.
simpl. rewrite subst_shift_id_ty. eauto.
simpl. rewrite subst_shift_id_ty. eauto. rewrite shift_add_ty. rewrite plus_comm.
rewrite subst_shift_id_ty1. eauto.
simpl. rewrite subst_shift_id_ty. eauto. rewrite shift_add_ty. rewrite plus_comm.
rewrite subst_shift_id_ty1. eauto.
simpl. rewrite subst_shift_id_ty. eauto.
eapply beq_nat_true_iff in E. omega.
eapply beq_nat_true_iff in E. omega.
+ assert (i < lengthr env). rewrite beq_nat_false_iff in E. omega.
remember (vcons v env) as env1. simpl.
subst env1. rewrite IHenv. rewrite IHenv.
destruct v0.
eapply (IHenv i (vabs v0 t t0)). eauto.
eapply (IHenv i (vtabs v0 t t0)). eauto.
eapply (IHenv i (vty v0 t)). eauto.
eauto.
eauto.
Qed.
Lemma idx_hit: forall env i,
i < lengthr env ->
subst_tm_res (Some (indexr i env)) = Some (Some (subst_tm_all 0 env (tvar i))).
Proof.
intros env. induction env.
- intros. inversion H.
- intros.
simpl in H. simpl.
case_eq (beq_nat i (lengthr env)); intros E.
+ eapply beq_nat_true_iff in E.
rewrite idx_miss1. subst i. simpl.
assert (beq_nat (lengthr env - lengthr env) 0 = true). eapply beq_nat_true_iff. omega.
rewrite H0.
assert (beq_nat (lengthr env) (lengthr env) = true). eapply beq_nat_true_iff. omega.
destruct v.
rewrite shiftz_id. rewrite shiftz_id_ty. eauto.
rewrite shiftz_id. rewrite shiftz_id_ty. eauto.
rewrite shiftz_id_ty. eauto.
omega.
+ assert (i <> lengthr env). eapply beq_nat_false_iff. eauto.
assert (i < lengthr env). omega.
specialize (IHenv _ H1).
rewrite <-(idx_miss2 env _ v) in IHenv . simpl in IHenv. eauto. eauto.
Qed.
(* proof of equivalence *)
Theorem big_env_subst: forall n env e1 e2,
subst_tm_all 0 env e1 = e2 ->
subst_tm_res (teval n env e1) = (tevals n e2).
Proof.
intros n. induction n.
(* z *) intros. simpl. eauto.
(* S n *) intros.
destruct e1; simpl; eauto.
- (* var *)
assert (i < lengthr env \/ i >= lengthr env) as L. omega.
destruct L as [L|L].
+ (* hit *)
simpl in H.
specialize (idx_hit env i L). intros IX. rewrite H in IX.
remember (indexr i env). destruct o.
* simpl in IX. rewrite IX. destruct v; inversion IX; eauto.
* inversion IX.
+
specialize (idx_miss env i 0 L). intros IX. rewrite H in IX.
destruct IX as [A B]. rewrite A. rewrite B. eauto.
- (* tabs *)
assert (forall env l,
subst_tm_all l env (tabs t e1) =
(tabs (subst_ty_all l env t) (subst_tm_all (S l) env e1))) as REC. {
intros env0. induction env0; intros.
simpl. eauto.
simpl. destruct v; rewrite IHenv0; simpl; eauto;
try rewrite shift_add; rewrite shift_add_ty; rewrite plus_comm; eauto. }
rewrite REC in H. subst e2. eauto.
- (* tapp *)
assert (forall env l,
subst_tm_all l env (tapp e1_1 e1_2) =
(tapp (subst_tm_all l env e1_1) (subst_tm_all l env e1_2))) as REC. {
intros env0. induction env0; intros.
simpl. eauto.
simpl. destruct v; rewrite IHenv0; simpl; eauto. }
rewrite REC in H. subst e2.
assert (subst_tm_res (teval n env e1_2) = tevals n (subst_tm_all 0 env e1_2)) as HF. eapply IHn; eauto.
assert (subst_tm_res (teval n env e1_1) = tevals n (subst_tm_all 0 env e1_1)) as HX. eapply IHn; eauto.
rewrite <-HF. rewrite <-HX. simpl.
remember ((teval n env e1_2)) as A.
destruct A as [[|]|]; simpl.
* remember ((teval n env e1_1)) as B.
destruct B as [[|]|]; simpl.
{ destruct v0; destruct v; simpl; eauto.
eapply IHn. simpl. rewrite shiftz_id. rewrite shiftz_id_ty. eauto.
eapply IHn. simpl. rewrite shiftz_id. rewrite shiftz_id_ty. eauto.
eapply IHn. simpl. rewrite subst_ty_tm. rewrite shiftz_id_ty. eauto.
}
destruct v; eauto.
destruct v; eauto.
* eauto.
* eauto.
- (* ttabs *)
assert (forall env l,
subst_tm_all l env (ttabs t e1) =
(ttabs (subst_ty_all l env t) (subst_tm_all (S l) env e1))) as REC. {
intros env0. induction env0; intros.
simpl. eauto.
simpl. destruct v; rewrite IHenv0; simpl; eauto;
try rewrite shift_add; rewrite shift_add_ty; rewrite plus_comm; eauto. }
rewrite REC in H. subst e2. eauto.
- (* ttapp *)
assert (forall env l,
subst_tm_all l env (ttapp e1 t) =
(ttapp (subst_tm_all l env e1) (subst_ty_all l env t))) as REC. {
intros env0. induction env0; intros.
simpl. eauto.
simpl. destruct v; rewrite IHenv0; simpl; eauto. }
rewrite REC in H. subst e2.
assert (subst_tm_res (teval n env e1) = tevals n (subst_tm_all 0 env e1)) as HX. eapply IHn; eauto.
rewrite <-HX. simpl.
remember ((teval n env e1)) as B.
destruct B as [[?|]|]; simpl.
{ destruct v; simpl; eauto.
eapply IHn. simpl. rewrite shiftz_id_ty. eauto. }
eauto. eauto.
- (* dummy *)
assert (forall env l T,
subst_tm_all l env (tty T) =
(tty (subst_ty_all l env T))) as REC. {
intros env0. induction env0; intros.
simpl. eauto.
simpl. destruct v; rewrite IHenv0; simpl; eauto;
try rewrite shift_add; rewrite shift_add_ty; rewrite plus_comm; eauto. }
rewrite REC in H. subst e2. eauto.
Qed.
(* ### Equivalence big-step subst <-> small-step subst ### *)
Lemma app_inv: forall nu t1 t2 t3,
tevals nu (tapp t1 t2) = Some (Some t3) ->
exists T ty v2 nv, nu = S nv /\
tevals nv t1 = Some (Some (tabs T ty)) /\
tevals nv t2 = Some (Some v2) /\
tevals nv (subst_tm v2 ty) = Some (Some t3).
Proof.
intros. destruct nu. inversion H.
simpl in H.
remember (tevals nu t2) as rx.
destruct rx. destruct o.
remember (tevals nu t1) as rf.
destruct rf. destruct o.
destruct t0; inversion H; repeat eexists; eauto.
inversion H. inversion H. inversion H. inversion H.
Qed.
Lemma tapp_inv: forall nu t1 t2 t3,
tevals nu (ttapp t1 t2) = Some (Some t3) ->
exists T ty nv, nu = S nv /\
tevals nv t1 = Some (Some (ttabs T ty)) /\
tevals nv (subst_ty t2 ty) = Some (Some t3).
Proof.
intros. destruct nu. inversion H.
simpl in H.
remember (tevals nu t1) as rf.
destruct rf. destruct o.
destruct t; inversion H; repeat eexists; eauto.
inversion H. inversion H.
Qed.
Lemma eval_stable: forall n t1 v j,
tevals n t1 = Some v ->
j >= n ->
tevals j t1 = Some v.
Proof.
intros n. induction n; intros. inversion H.
destruct j. inversion H0.
destruct t1; eauto.
- simpl in H. simpl.
remember (tevals n t1_2) as rx.
destruct rx. destruct o.
rewrite (IHn _ (Some t)).
remember (tevals n t1_1) as rf.
destruct rf. destruct o.
rewrite (IHn _ (Some t0)).
destruct t0; eauto; eapply IHn; eauto; omega.
destruct t0; eauto; eapply IHn; eauto; omega.
omega.
rewrite (IHn _ None). eauto. eauto. omega.
inversion H.
eauto. omega.
inversion H. rewrite (IHn _ None). eauto. eauto. omega.
inversion H.
- simpl in H. simpl.
remember (tevals n t1) as rf.
destruct rf. destruct o.
rewrite (IHn _ (Some t0)).
destruct t0; eauto; eapply IHn; eauto; omega.
destruct t0; eauto; eapply IHn; eauto; omega.
omega.
rewrite (IHn _ None). eauto. eauto. omega.
inversion H.
Qed.
Lemma value_eval: forall t1,
value t1 ->
forall nu, nu >= 1 -> tevals nu t1 = Some (Some t1).
Proof.
intros. destruct nu. inversion H0. inversion H; eauto.
Qed.
Lemma step_eval: forall t1 t2,
step t1 t2 ->
forall t3 nu, tevals nu t2 = Some (Some t3) ->
tevals (S nu) t1 = Some (Some t3).
Proof.
intros ? ? ?. induction H; intros.
- (* AppAbs *)
simpl.
assert (nu >= 1). destruct nu. inversion H0. omega.
rewrite (value_eval v).
rewrite (value_eval (tabs T1 t12)).
eapply H0; omega. constructor.
eauto. eauto. eauto.
- (* App1 *)
simpl. eapply app_inv in H0.
repeat destruct H0 as [? H0].
destruct H0 as [N [E1 [E2 E3]]].
subst nu. eapply IHstep in E1.
eapply eval_stable in E2.
rewrite E1. rewrite E2. eapply eval_stable. eapply E3. eauto. eauto.
- (* App2 *)
simpl. eapply app_inv in H1.
repeat destruct H1 as [? H1].
destruct H1 as [N [E1 [E2 E3]]].
subst nu. eapply IHstep in E2.
eapply eval_stable in E1.
rewrite E1. rewrite E2. eapply eval_stable. eapply E3. eauto. eauto.
- (* TAppAbs *)
simpl.
assert (nu >= 1). destruct nu. inversion H. omega.
rewrite (value_eval (ttabs T1 t12)).
eapply H; omega. constructor.
eauto.
- (* App1 *)
simpl. eapply tapp_inv in H0.
repeat destruct H0 as [? H0].
destruct H0 as [N [E1 E2]].
subst nu. eapply IHstep in E1.
eapply eval_stable in E2.
rewrite E1. rewrite E2. eauto. eauto.
Qed.
(* proof of equivalence: small-step implies big-step *)
Theorem small_to_big: forall n t1 t2,
mstep n t1 t2 -> value t2 ->
exists ns, tevals ns t1 = Some (Some t2).
Proof.
intros n. induction n.
(* z *)
intros. inversion H; subst.
exists 1. eapply value_eval; eauto.
(* S n *)
intros. inversion H; subst.
eapply IHn in H3. destruct H3.
exists (S x). eapply step_eval; eauto.
eauto.
Qed.
(* proof of equivalence: big-step implies small-step *)
Lemma ms_app1 : forall n t1 t1' t2,
mstep n t1 t1' ->
mstep n (tapp t1 t2) (tapp t1' t2).
Proof.
intros. induction H. constructor.
econstructor. eapply ST_App1; eauto. eauto.
Qed.
Lemma ms_app2 : forall n t1 t2 t2',
value t1 ->
mstep n t2 t2' ->
mstep n (tapp t1 t2) (tapp t1 t2').
Proof.
intros. induction H0. constructor.
econstructor. apply ST_App2; eauto. eauto.
Qed.
Lemma ms_tapp1 : forall n t1 t1' t2,
mstep n t1 t1' ->
mstep n (ttapp t1 t2) (ttapp t1' t2).
Proof.
intros. induction H. constructor.
econstructor. eapply ST_TApp1; eauto. eauto.
Qed.
Lemma ms_trans : forall n1 n2 t1 t2 t3,
mstep n1 t1 t2 ->
mstep n2 t2 t3 ->
mstep (n1+n2) t1 t3.
Proof.
intros. induction H. eauto.
econstructor. eauto. eauto.
Qed.
Theorem big_to_small: forall n t1 t2,
tevals n t1 = Some (Some t2) ->
exists ns, value t2 /\ mstep ns t1 t2.
Proof.
intros n. induction n; intros. inversion H. destruct t1.
- simpl in H. inversion H.
- simpl in H. inversion H. eexists. split; constructor.
- eapply app_inv in H. repeat destruct H as [? H].
destruct H as [N [E1 [E2 E3]]]. inversion N. subst x2.
eapply IHn in E1. eapply IHn in E2. eapply IHn in E3.
destruct E1 as [? [? E1]]. destruct E2 as [? [? E2]]. destruct E3 as [? [? E3]].
eexists. split. eauto.
eapply ms_app1 in E1. eapply ms_app2 in E2.
eapply ms_trans. eapply E1.
eapply ms_trans. eapply E2. econstructor. econstructor.
eauto. eauto. eauto.
- simpl in H. inversion H. eexists. split; constructor.
- eapply tapp_inv in H. repeat destruct H as [? H].
destruct H as [N [E1 E2]]. inversion N. subst x1.
eapply IHn in E1. eapply IHn in E2.
destruct E1 as [? [? E1]]. destruct E2 as [? [? E2]].
eexists. split. eauto.
eapply ms_tapp1 in E1.
eapply ms_trans. eapply E1. econstructor. econstructor.
eauto.
- simpl in H. inversion H. eexists. split; constructor.
Qed.