-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathstlc.v
312 lines (246 loc) · 8.01 KB
/
stlc.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
(* Full safety for STLC *)
Require Export SfLib.
Require Export Arith.EqNat.
Require Export Arith.Le.
Require Import Omega.
Require Import NPeano.
Module STLC.
Definition id := nat.
Inductive ty : Type :=
| TBool : ty
| TFun : ty -> ty -> ty
.
Inductive tm : Type :=
| ttrue : tm
| tfalse : tm
| tvar : id -> tm
| tapp : tm -> tm -> tm (* f(x) *)
| tabs : tm -> tm (* \f x.y *)
.
Inductive vl : Type :=
| vbool : bool -> vl
| vabs : list vl -> tm -> vl
.
Definition venv := list vl.
Definition tenv := list ty.
Hint Unfold venv.
Hint Unfold tenv.
Fixpoint length {X: Type} (l : list X): nat :=
match l with
| [] => 0
| _::l' => 1 + length l'
end.
Fixpoint index {X : Type} (n : id) (l : list X) : option X :=
match l with
| [] => None
| a :: l' => if beq_nat n (length l') then Some a else index n l'
end.
Inductive has_type : tenv -> tm -> ty -> Prop :=
| t_true: forall env,
has_type env ttrue TBool
| t_false: forall env,
has_type env tfalse TBool
| t_var: forall x env T1,
index x env = Some T1 ->
has_type env (tvar x) T1
| t_app: forall env f x T1 T2,
has_type env f (TFun T1 T2) ->
has_type env x T1 ->
has_type env (tapp f x) T2
| t_abs: forall env y T1 T2,
has_type (T1::(TFun T1 T2)::env) y T2 ->
has_type env (tabs y) (TFun T1 T2)
.
Inductive wf_env : venv -> tenv -> Prop :=
| wfe_nil : wf_env nil nil
| wfe_cons : forall v t vs ts,
val_type v t ->
wf_env vs ts ->
wf_env (cons v vs) (cons t ts)
with val_type : vl -> ty -> Prop :=
| v_bool: forall b,
val_type (vbool b) TBool
| v_abs: forall venv tenv y T1 T2,
wf_env venv tenv ->
has_type (T1::(TFun T1 T2)::tenv) y T2 ->
val_type (vabs venv y) (TFun T1 T2)
.
(*
None means timeout
Some None means stuck
Some (Some v)) means result v
*)
Fixpoint teval(n: nat)(env: venv)(t: tm){struct n}: option (option vl) :=
match n with
| 0 => None
| S n =>
match t with
| ttrue => Some (Some (vbool true))
| tfalse => Some (Some (vbool false))
| tvar x => Some (index x env)
| tabs y => Some (Some (vabs env y))
| tapp ef ex =>
match teval n env ef with
| None => None
| Some None => Some None
| Some (Some (vbool _)) => Some None
| Some (Some (vabs env2 ey)) =>
match teval n env ex with
| None => None
| Some None => Some None
| Some (Some vx) =>
teval n (vx::(vabs env2 ey)::env2) ey
end
end
end
end.
(* Here is a possible way to use DO notion for cleaner syntax: *)
Notation "'RES' x" := (Some x) (right associativity, at level 60).
Notation "'VAL' x" := (Some x) (right associativity, at level 60).
Definition STUCK: option (option vl) := Some (None).
Definition TIMEOUT: option (option vl) := None.
Notation "'DO1' x <== e1 ; e2"
:= (match e1 with
| Some x => e2
| _ => None
end)
(right associativity, at level 60).
Notation "'DO' x <== e1 ; e2"
:= (match e1 with
| Some (Some x) => e2
| Some _ => Some None
| None => None
end)
(right associativity, at level 60).
Notation "'FUEL' n <== e1 ; e2"
:= (match e1 with
| 0 => TIMEOUT
| S n => e2
end)
(right associativity, at level 60).
Notation "'DO' n <== 'FUEL' e1 ; e2"
:= (match e1 with
| 0 => TIMEOUT
| S n => e2
end)
(right associativity, at level 60).
Fixpoint eval(n: nat)(env: venv)(t: tm){struct n}: option (option vl) :=
DO n1 <== FUEL n;
match t with
| ttrue => RES VAL (vbool true)
| tfalse => RES VAL (vbool false)
| tvar x => RES (index x env)
| tabs y => RES VAL (vabs env y)
| tapp ef ex =>
DO vf <== eval n1 env ef;
DO vx <== eval n1 env ex;
match vf with
| (vabs env2 ey) =>
eval n1 (vx::(vabs env2 ey)::env2) ey
| _ => STUCK
end
end.
(* end notation *)
Hint Constructors ty.
Hint Constructors tm.
Hint Constructors vl.
Hint Constructors has_type.
Hint Constructors val_type.
Hint Constructors wf_env.
Hint Constructors option.
Hint Constructors list.
Hint Unfold index.
Hint Unfold length.
Hint Resolve ex_intro.
Lemma wf_length : forall vs ts,
wf_env vs ts ->
(length vs = length ts).
Proof.
intros. induction H. auto.
assert ((length (v::vs)) = 1 + length vs). constructor.
assert ((length (t::ts)) = 1 + length ts). constructor.
rewrite IHwf_env in H1. auto.
Qed.
Hint Immediate wf_length.
Lemma index_max : forall X vs n (T: X),
index n vs = Some T ->
n < length vs.
Proof.
intros X vs. induction vs.
Case "nil". intros. inversion H.
Case "cons".
intros. inversion H.
case_eq (beq_nat n (length vs)); intros E.
SCase "hit".
rewrite E in H1. inversion H1. subst.
eapply beq_nat_true in E.
unfold length. unfold length in E. rewrite E. eauto.
SCase "miss".
rewrite E in H1.
assert (n < length vs). eapply IHvs. apply H1.
compute. eauto.
Qed.
Lemma index_extend : forall X vs n a (T: X),
index n vs = Some T ->
index n (a::vs) = Some T.
Proof.
intros.
assert (n < length vs). eapply index_max. eauto.
assert (n <> length vs). omega.
assert (beq_nat n (length vs) = false) as E. eapply beq_nat_false_iff; eauto.
unfold index. unfold index in H. rewrite H. rewrite E. reflexivity.
Qed.
Lemma index_safe_ex: forall H1 G1 TF i,
wf_env H1 G1 ->
index i G1 = Some TF ->
exists v, index i H1 = Some v /\ val_type v TF.
Proof. intros. induction H.
Case "nil". inversion H0.
Case "cons". inversion H0.
case_eq (beq_nat i (length ts)).
SCase "hit".
intros E.
rewrite E in H3. inversion H3. subst t.
assert (beq_nat i (length vs) = true). eauto.
assert (index i (v :: vs) = Some v). eauto. unfold index. rewrite H2. eauto.
eauto.
SCase "miss".
intros E.
assert (beq_nat i (length vs) = false). eauto.
rewrite E in H3.
assert (exists v0, index i vs = Some v0 /\ val_type v0 TF) as HI. eapply IHwf_env. eauto.
inversion HI as [v0 HI1]. inversion HI1.
eexists. econstructor. eapply index_extend; eauto. eauto.
Qed.
(* if not a timeout, then result not stuck and well-typed *)
Theorem full_safety : forall n e tenv venv res T,
teval n venv e = Some res -> has_type tenv e T -> wf_env venv tenv ->
exists v, res = Some v /\ val_type v T.
Proof.
intros n. induction n.
(* 0 *) intros. inversion H.
(* S n *) intros. destruct e; inversion H; inversion H0.
Case "True". eexists. split. eauto. eapply v_bool.
Case "False". eexists. split. eauto. eapply v_bool.
Case "Var".
destruct (index_safe_ex venv0 tenv0 T i) as [v IV]. eauto. eauto.
inversion IV as [I V].
rewrite I. eexists. split. eauto. eapply V.
Case "App".
remember (teval n venv0 e1) as tf. (* not stuck *)
remember (teval n venv0 e2) as tx.
subst T.
destruct tf as [rf|]; destruct tx as [rx|]; try solve by inversion.
assert (exists vf, rf = Some vf /\ val_type vf (TFun T1 T2)) as HRF. subst. eapply IHn; eauto.
inversion HRF as [vf [EF HVF]].
inversion HVF. (* now we know it's a closure, and we have has_type evidence *)
assert (exists vx, rx = Some vx /\ val_type vx T1) as HRX. subst. eapply IHn; eauto.
inversion HRX as [vx [EX HVX]].
subst. eapply IHn; eauto. (* body *)
(* other case: tx = None *)
assert (exists vf, rf = Some vf /\ val_type vf (TFun T1 T2)) as HRF. subst. eapply IHn; eauto.
inversion HRF as [vf [EF HVF]]. subst. inversion HVF. subst. inversion H3. (* contradiction *)
Case "Abs".
eexists. split. eauto. eapply v_abs; eauto.
Qed.
End STLC.