-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathdarklight.py
513 lines (424 loc) · 20.2 KB
/
darklight.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Wed April 1 13:39:00 2021
This repository is based on the repository at https://github.com/artest08/LateTemporalModeling3DCNN. We thank the authors for the repository.
This repository is authored by Jiajun Chen
We thank the authors for the repository.
"""
import os
import time
import argparse
import shutil
import numpy as np
os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"]="0"
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim
import torch.utils.data
from tensorboardX import SummaryWriter
from torch.optim import lr_scheduler
import video_transforms
import models
import datasets
#import swats
from opt.AdamW import AdamW
import csv
model_names = sorted(name for name in models.__dict__
if not name.startswith("__")
and callable(models.__dict__[name]))
dataset_names = sorted(name for name in datasets.__all__)
parser = argparse.ArgumentParser(description='PyTorch Two-Stream Action Recognition')
parser.add_argument('--settings', metavar='DIR', default='./datasets/settings',
help='path to datset setting files')
parser.add_argument('--dataset', '-d', default='ARID',
choices=["ucf101", "hmdb51", "smtV2", "window", "ARID"],
help='dataset: ucf101 | hmdb51 | smtV2')
parser.add_argument('--arch', '-a', default='dark_light',
choices=model_names,
help='model architecture: ' +
' | '.join(model_names) +
'(default: dark_light)')
parser.add_argument('-s', '--split', default=1, type=int, metavar='S',
help='which split of data to work on (default: 1)')
parser.add_argument('-j', '--workers', default=4, type=int, metavar='N',
help='number of data loading workers (default: 2)')
parser.add_argument('--epochs', default=200, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('-b', '--batch-size', default=3, type=int,
metavar='N', help='mini-batch size (default: 8)')
parser.add_argument('--iter-size', default=16, type=int,
metavar='I', help='iter size to reduce memory usage (default: 16)')
parser.add_argument('--lr', '--learning-rate', default=1e-5, type=float,
metavar='LR', help='initial learning rate')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum (default: 0.9)')
parser.add_argument('--weight-decay', '--wd', default=1e-3, type=float,
metavar='W', help='weight decay (default: 1e-3)')
parser.add_argument('--print-freq', default=50, type=int,
metavar='N', help='print frequency (default: 400)')
parser.add_argument('--save-freq', default=1, type=int,
metavar='N', help='save frequency (default: 1)')
parser.add_argument('--num-seg', default=1, type=int,
metavar='N', help='Number of segments in dataloader (default: 1)')
#parser.add_argument('--resume', default='./dene4', type=str, metavar='PATH',
# help='path to latest checkpoint (default: none)')
parser.add_argument('-e', '--evaluate', dest='evaluate', action='store_true',
help='evaluate model on validation set')
parser.add_argument('-c', '--continue', dest='contine', action='store_true',
help='continue training')
parser.add_argument('-g','--gamma', default=1,type=float,
help="the value of gamma")
parser.add_argument('--both-flow', default='True',
help='give dark and light flow both')
parser.add_argument('--no-attention', default=True, action='store_false', help="use attention to instead of linear")
best_prec1 = 0
best_loss = 30
warmUpEpoch = 5
def main():
global args, best_prec1, model, writer, best_loss, length, width, height, input_size, scheduler, suffix
args = parser.parse_args()
training_continue = args.contine
if not args.no_attention:
args.arch='dark_light_noAttention'
suffix = 'ga=%s_b=%s_both_flow=%s' % (args.gamma , args.batch_size , args.both_flow)
headers = ['epoch', 'top1', 'top5', 'loss']
with open('train_record_%s.csv' % suffix, 'w', newline='') as f:
record = csv.writer(f)
record.writerow(headers)
with open('validate_record_%s.csv' % suffix, 'w', newline='') as f:
record = csv.writer(f)
record.writerow(headers)
print('work in both_flow = %s, gamma = %s, batch_size = %s'%(args.both_flow, args.gamma, args.batch_size))
input_size = 112
width = 170
height = 128
saveLocation="./checkpoint/"+args.dataset+"_"+args.arch+"_split"+str(args.split)
if not os.path.exists(saveLocation):
os.makedirs(saveLocation)
writer = SummaryWriter(saveLocation)
# create model
if args.evaluate:
print("Building validation model ... ")
model = build_model_validate()
optimizer = AdamW(model.parameters(), lr= args.lr, weight_decay=args.weight_decay)
elif training_continue:
model, startEpoch, optimizer, best_prec1 = build_model_continue()
for param_group in optimizer.param_groups:
lr = param_group['lr']
print("Continuing with best precision: %.3f and start epoch %d and lr: %f" %(best_prec1,startEpoch,lr))
else:
print("Building model with ADAMW... ")
model = build_model()
optimizer = AdamW(model.parameters(), lr= args.lr, weight_decay=args.weight_decay)
startEpoch = 0
print("Model %s is loaded. " % (args.arch))
# define loss function (criterion) and optimizer
criterion = nn.CrossEntropyLoss().cuda()
scheduler = lr_scheduler.ReduceLROnPlateau(
optimizer, 'min', patience=5, verbose=True)
print("Saving everything to directory %s." % (saveLocation))
dataset='./datasets/ARID_frames'
cudnn.benchmark = True
length=64
# Data transforming
is_color = True
scale_ratios = [1.0, 0.875, 0.75, 0.66]
clip_mean = [0.485, 0.456, 0.406] * args.num_seg * length
clip_std = [0.229, 0.224, 0.225] * args.num_seg * length
normalize = video_transforms.Normalize(mean=clip_mean,
std=clip_std)
train_transform = video_transforms.Compose([
video_transforms.MultiScaleCrop((input_size, input_size), scale_ratios),
video_transforms.RandomHorizontalFlip(),
video_transforms.ToTensor(),
normalize,
])
val_transform = video_transforms.Compose([
video_transforms.CenterCrop((input_size)),
video_transforms.ToTensor(),
normalize,
])
# data loading
train_setting_file = "train_split%d.txt" % (args.split)
train_split_file = os.path.join(args.settings, args.dataset, train_setting_file)
val_setting_file = "val_split%d.txt" % (args.split)
val_split_file = os.path.join(args.settings, args.dataset, val_setting_file)
if not os.path.exists(train_split_file) or not os.path.exists(val_split_file):
print("No split file exists in %s directory. Preprocess the dataset first" % (args.settings))
#ARID.py
train_dataset = datasets.__dict__[args.dataset](root=dataset,
modality="rgb",
source=train_split_file,
phase="train",
is_color=is_color,
new_length=length,
new_width=width,
new_height=height,
video_transform=train_transform,
num_segments=args.num_seg,
gamma=args.gamma)
val_dataset = datasets.__dict__[args.dataset](root=dataset,
modality="rgb",
source=val_split_file,
phase="val",
is_color=is_color,
new_length=length,
new_width=width,
new_height=height,
video_transform=val_transform,
num_segments=args.num_seg,
gamma=args.gamma)
print('{} samples found, {} train data and {} test data.'.format(len(val_dataset)+len(train_dataset),
len(train_dataset),
len(val_dataset)))
train_loader = torch.utils.data.DataLoader(
train_dataset,
batch_size=args.batch_size, shuffle=True,
num_workers=args.workers, pin_memory=True)
print(train_loader)
val_loader = torch.utils.data.DataLoader(
val_dataset,
batch_size=args.batch_size, shuffle=False,
num_workers=args.workers, pin_memory=True)
if args.evaluate:
prec1,prec5,lossClassification = validate(val_loader, model, criterion, -1)
return
for epoch in range(startEpoch, args.epochs):
# if learning_rate_index > max_learning_rate_decay_count:
# break
# adjust_learning_rate(optimizer, epoch)
train(train_loader, model, criterion, optimizer, epoch)
# evaluate on validation set
prec1 = 0.0
lossClassification = 0
if (epoch + 1) % args.save_freq == 0:
prec1,prec5,lossClassification = validate(val_loader, model, criterion, epoch)
writer.add_scalar('data/top1_validation', prec1, epoch)
writer.add_scalar('data/top3_validation', prec5, epoch)
writer.add_scalar('data/classification_loss_validation', lossClassification, epoch)
scheduler.step(lossClassification)
# remember best prec@1 and save checkpoint
is_best = prec1 >= best_prec1
best_prec1 = max(prec1, best_prec1)
# best_in_existing_learning_rate = max(prec1, best_in_existing_learning_rate)
#
# if best_in_existing_learning_rate > prec1 + 1:
# learning_rate_index = learning_rate_index
# best_in_existing_learning_rate = 0
if (epoch + 1) % args.save_freq == 0:
checkpoint_name = "%03d_%s" % (epoch + 1, "checkpoint.pth.tar")
if is_best:
print("Model son iyi olarak kaydedildi")
save_checkpoint({
'epoch': epoch + 1,
'arch': args.arch,
'state_dict': model.state_dict(),
'best_prec1': best_prec1,
'best_loss': best_loss,
'optimizer' : optimizer.state_dict(),
}, is_best, checkpoint_name, saveLocation)
checkpoint_name = "%03d_%s" % (epoch + 1, "checkpoint.pth.tar")
save_checkpoint({
'epoch': epoch + 1,
'arch': args.arch,
'state_dict': model.state_dict(),
'best_prec1': best_prec1,
'best_loss': best_loss,
'optimizer' : optimizer.state_dict(),
}, is_best, checkpoint_name, saveLocation)
writer.export_scalars_to_json("./all_scalars.json")
writer.close()
def build_model():
#args.arch:dark_light
model = models.__dict__[args.arch](num_classes=11, length=args.num_seg, both_flow=args.both_flow)
if torch.cuda.device_count() > 1:
model=torch.nn.DataParallel(model)
model = model.cuda()
return model
def build_model_validate():
modelLocation="./checkpoint/"+args.dataset+"_"+args.arch+"_split"+str(args.split)
model_path = os.path.join(modelLocation,'model_best.pth.tar')
params = torch.load(model_path)
print(modelLocation)
model=models.__dict__[args.arch](num_classes=11, length=args.num_seg, both_flow=args.both_flow)
if torch.cuda.device_count() > 1:
model=torch.nn.DataParallel(model)
model.load_state_dict(params['state_dict'])
model.cuda()
model.eval()
return model
def build_model_continue():
modelLocation="./checkpoint/"+args.dataset+"_"+args.arch+"_split"+str(args.split)
model_path = os.path.join(modelLocation,'model_best.pth.tar')
params = torch.load(model_path)
print(modelLocation)
model=models.__dict__[args.arch](num_classes=11, length=args.num_seg, both_flow=args.both_flow)
if torch.cuda.device_count() > 1:
model=torch.nn.DataParallel(model)
model.load_state_dict(params['state_dict'])
model = model.cuda()
optimizer = AdamW(model.parameters(), lr= args.lr, weight_decay=args.weight_decay)
optimizer.load_state_dict(params['optimizer'])
startEpoch = params['epoch']
best_prec = params['best_prec1']
return model, startEpoch, optimizer, best_prec
#进入
def train(train_loader, model, criterion, optimizer, epoch):
batch_time = AverageMeter()
lossesClassification = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
# switch to train mode
model.train()
end = time.time()
optimizer.zero_grad()
loss_mini_batch_classification = 0.0
acc_mini_batch = 0.0
acc_mini_batch_top3 = 0.0
totalSamplePerIter=0
for i, (inputs, inputs_light, targets) in enumerate(train_loader):
inputs=inputs.view(-1,length,3,input_size,input_size).transpose(1,2)
inputs_light=inputs_light.view(-1,length,3,input_size,input_size).transpose(1,2)
inputs = inputs.cuda()
inputs_light = inputs_light.cuda()
targets = targets.cuda()
output= model((inputs,inputs_light))
prec1, prec5 = accuracy(output.data, targets, topk=(1, 5))
acc_mini_batch += prec1.item()
acc_mini_batch_top3 += prec5.item()
lossClassification = criterion(output, targets)
lossClassification = lossClassification / args.iter_size
totalLoss=lossClassification
loss_mini_batch_classification += lossClassification.data.item()
totalLoss.backward()
totalSamplePerIter += output.size(0)
if (i+1) % args.iter_size == 0:
# compute gradient and do SGD step
optimizer.step()
optimizer.zero_grad()
lossesClassification.update(loss_mini_batch_classification, totalSamplePerIter)
top1.update(acc_mini_batch/args.iter_size, totalSamplePerIter)
top5.update(acc_mini_batch_top3/args.iter_size, totalSamplePerIter)
batch_time.update(time.time() - end)
end = time.time()
loss_mini_batch_classification = 0
acc_mini_batch = 0
acc_mini_batch_top3 = 0.0
totalSamplePerIter = 0.0
#scheduler.step()
if (i+1) % args.print_freq == 0:
print('[%d] time: %.3f loss: %.4f' %(i,batch_time.avg,lossesClassification.avg))
print('train * Epoch: {epoch} Prec@1 {top1.avg:.3f} Prec@5 {top5.avg:.3f} Classification Loss {lossClassification.avg:.4f}\n'
.format(epoch = epoch, top1=top1, top5=top5, lossClassification=lossesClassification))
with open('train_record_%s.csv' % suffix, 'a', newline='') as f:
record = csv.writer(f)
record.writerow([epoch, round(top1.avg, 3), round(top5.avg, 3), round(lossesClassification.avg, 4)])
writer.add_scalar('data/classification_loss_training', lossesClassification.avg, epoch)
writer.add_scalar('data/top1_training', top1.avg, epoch)
writer.add_scalar('data/top3_training', top5.avg, epoch)
def validate(val_loader, model, criterion,epoch):
batch_time = AverageMeter()
lossesClassification = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
# switch to evaluate mode
model.eval()
end = time.time()
with torch.no_grad():
for i, (inputs, inputs_light, targets) in enumerate(val_loader):
inputs=inputs.view(-1,length,3,input_size,input_size).transpose(1,2)
inputs_light=inputs_light.view(-1,length,3,input_size,input_size).transpose(1,2)
inputs = inputs.cuda()
inputs_light = inputs_light.cuda()
targets = targets.cuda()
# compute output
output = model((inputs,inputs_light))
lossClassification = criterion(output, targets)
# measure accuracy and record loss
prec1, prec5 = accuracy(output.data, targets, topk=(1, 5))
lossesClassification.update(lossClassification.data.item(), output.size(0))
top1.update(prec1.item(), output.size(0))
top5.update(prec5.item(), output.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
print('validate * * Prec@1 {top1.avg:.3f} Prec@5 {top5.avg:.3f} Classification Loss {lossClassification.avg:.4f}\n'
.format(top1=top1, top5=top5, lossClassification=lossesClassification))
with open('validate_record_%s.csv' % suffix, 'a', newline='') as f:
record = csv.writer(f)
record.writerow([epoch, round(top1.avg,3), round(top5.avg,3), round(lossesClassification.avg,4)])
return top1.avg, top5.avg, lossesClassification.avg
def save_checkpoint(state, is_best, filename, resume_path):
cur_path = os.path.join(resume_path, filename)
torch.save(state, cur_path)
best_path = os.path.join(resume_path, 'model_best.pth.tar')
if is_best:
shutil.copyfile(cur_path, best_path)
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def adjust_learning_rate(optimizer, epoch):
"""Sets the learning rate to the initial LR decayed by 10 every 150 epochs"""
decay = 0.1 ** (sum(epoch >= np.array(args.lr_steps)))
lr = args.lr * decay
print("Current learning rate is %4.6f:" % lr)
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def adjust_learning_rate2(optimizer, epoch):
isWarmUp=epoch < warmUpEpoch
decayRate=0.2
if isWarmUp:
lr=args.lr*(epoch+1)/warmUpEpoch
else:
lr=args.lr*(1/(1+(epoch+1-warmUpEpoch)*decayRate))
#decay = 0.1 ** (sum(epoch >= np.array(args.lr_steps)))
print("Current learning rate is %4.6f:" % lr)
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def adjust_learning_rate3(optimizer, epoch):
isWarmUp=epoch < warmUpEpoch
decayRate=0.97
if isWarmUp:
lr=args.lr*(epoch+1)/warmUpEpoch
else:
lr = args.lr * decayRate**(epoch+1-warmUpEpoch)
#decay = 0.1 ** (sum(epoch >= np.array(args.lr_steps)))
print("Current learning rate is %4.6f:" % lr)
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def adjust_learning_rate4(optimizer, learning_rate_index):
"""Sets the learning rate to the initial LR decayed by 10 every 150 epochs"""
decay = 0.1 ** learning_rate_index
lr = args.lr * decay
print("Current learning rate is %4.8f:" % lr)
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def accuracy(output, target, topk=(1,)):
"""Computes the precision@k for the specified values of k"""
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].contiguous().view(-1).float().sum(0)
res.append(correct_k.mul_(100.0 / batch_size))
return res
if __name__ == '__main__':
main()