-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathtest_linear.mojo
45 lines (37 loc) · 1.02 KB
/
test_linear.mojo
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
from autograd import (
Tensor,
Linear,
sin,
mse,
max_pool_2d,
)
from autograd.utils.shape import shape
fn main() raises:
# init params
let l1 = Linear(1, 64)
let l2 = Linear(64, 64)
let l3 = Linear(64, 1, activation="none")
# training
var avg_loss = Float32(0.0)
let every = 1000
let num_epochs = 20000
for epoch in range(1, num_epochs + 1):
# set input and true values
let input = Tensor(shape(32, 1)).randu(0, 1).dynamic()
let true_vals = sin(15.0 * input)
# define model architecture
var x = l1.forward(input)
x = l2.forward(x)
x = l3.forward(x)
let loss = mse(x, true_vals)
# print progress
avg_loss += loss[0]
if epoch % every == 0:
print("Epoch:", epoch, " Avg Loss: ", avg_loss / every)
avg_loss = 0.0
# compute gradients and optimize
loss.backward()
loss.optimize(0.01, "sgd")
# clear graph
loss.clear()
input.free()