-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathaug.py
54 lines (45 loc) · 2.56 KB
/
aug.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import albumentations as A
import cv2
import numpy as np
import random
def augs(img,labels, class_labels, cfg_aug):
transform = A.Compose([
A.HorizontalFlip(p = cfg_aug['HorizontalFlip']),
A.RandomBrightnessContrast(p = cfg_aug['RandomBrightnessContrast']),
A.VerticalFlip(p = cfg_aug['VerticalFlip']),
A.MedianBlur(p = cfg_aug['MedianBlur']),
A.ImageCompression(quality_lower = 75, p = cfg_aug['ImageCompression']),
A.Affine(scale=cfg_aug['Affine']['scale'], shear = cfg_aug['Affine']['shear'], rotate = (-cfg_aug['Affine']['rotate'], cfg_aug['Affine']['rotate']), p = cfg_aug['Affine']['p'])],
bbox_params = A.BboxParams(format='yolo', label_fields=['class_labels']))
transformed = transform(image = img, bboxes = labels, class_labels = class_labels)
img = transformed['image']
labels=np.array([[c, *b] for c, b in zip(transformed['class_labels'], transformed['bboxes'])])
return img, labels
def random_crop(self,image, bboxes):
if random.random()<0.5:
h,w,_=image.shape
min_max_bbox=np.concatenate([np.min(bboxes[:,0:2],axis=0),np.max(bboxes[:,2:4],axis=0)],axis=0)
min_box_x=min_max_bbox[0]
min_box_y=min_max_bbox[1]
max_box_x=w - min_max_bbox[2]
max_box_y=h - min_max_bbox[3]
crop_xmin=max(0,int(min_max_bbox[0] - random.uniform(0,min_box_x)))
crop_ymin=max(0,int(min_max_bbox[1] - random.uniform(0,min_box_y)))
crop_xmax=max(w,int(min_max_bbox[2] + random.uniform(0,max_box_x)))
crop_ymax=max(h,int(min_max_bbox[3] + random.uniform(0,max_box_y)))
image = image[crop_ymin:crop_ymax, crop_xmin:crop_xmax]
bboxes[:, [0, 2]] = bboxes[:, [0, 2]] - crop_xmin
bboxes[:, [1, 3]] = bboxes[:, [1, 3]] - crop_ymin
return image,bboxes
def augment_hsv(im, hgain=0.5, sgain=0.5, vgain=0.5):
# HSV color-space augmentation
if hgain or sgain or vgain:
r = np.random.uniform(-1, 1, 3) * [hgain, sgain, vgain] + 1 # random gains
hue, sat, val = cv2.split(cv2.cvtColor(im, cv2.COLOR_BGR2HSV))
dtype = im.dtype # uint8
x = np.arange(0, 256, dtype=r.dtype)
lut_hue = ((x * r[0]) % 180).astype(dtype)
lut_sat = np.clip(x * r[1], 0, 255).astype(dtype)
lut_val = np.clip(x * r[2], 0, 255).astype(dtype)
im_hsv = cv2.merge((cv2.LUT(hue, lut_hue), cv2.LUT(sat, lut_sat), cv2.LUT(val, lut_val)))
cv2.cvtColor(im_hsv, cv2.COLOR_HSV2BGR, dst=im) # no return needed