diff --git a/tc_core_analyzer_lib/utils/compute_interaction_per_acc.py b/tc_core_analyzer_lib/utils/compute_interaction_per_acc.py index 791c134..b125a69 100644 --- a/tc_core_analyzer_lib/utils/compute_interaction_per_acc.py +++ b/tc_core_analyzer_lib/utils/compute_interaction_per_acc.py @@ -103,10 +103,14 @@ def thr_int( graph_interaction = make_graph(matrix_interaction) # filtering the `at least interaction count` from the graph - graph_interaction_thresh = remove_edges_below_threshold(graph_interaction, EDGE_STR_THR) + graph_interaction_thresh = remove_edges_below_threshold( + graph_interaction, EDGE_STR_THR + ) # get unweighted node degree value for each node from interaction network - all_degrees_thresh = np.array([val for (_, val) in graph_interaction_thresh.degree()]) + all_degrees_thresh = np.array( + [val for (_, val) in graph_interaction_thresh.degree()] + ) # compare total unweighted node degree after thresholding to threshold thr_uw_thr_deg = np.where(all_degrees_thresh > UW_THR_DEG_THR)[0] @@ -115,18 +119,18 @@ def thr_int( def remove_edges_below_threshold( - graph: DiGraph, EDGE_STR_THR: int, weight_name: str = "weight" - ) -> DiGraph: + graph: DiGraph, EDGE_STR_THR: int, weight_name: str = "weight" +) -> DiGraph: """ remove the edges that has a weight below the threshold """ graph_copy = copy.deepcopy(graph) graph_copy.remove_edges_from( - [ - (n1, n2) - for n1, n2, w in graph_copy.edges(data=weight_name) - if w < EDGE_STR_THR - ] + [ + (n1, n2) + for n1, n2, w in graph_copy.edges(data=weight_name) + if w < EDGE_STR_THR + ] ) return graph_copy