-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmvregression.py
132 lines (94 loc) · 2.91 KB
/
mvregression.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
# multiple variable linear regression
import numpy as np
import matplotlib.pyplot as plot
import copy
# Determine the objective -----
# Setup the training data -----
X_train = np.random.rand(2000).reshape(1000,2)*60
y_train = (X_train[:, 0]**2)+(X_train[:,1]**2)
f01 = plot.figure(1)
ax = f01.add_subplot(111, projection='3d')
ax.scatter(X_train[:,0], X_train[:,1], y_train, marker='.', color='r')
ax.set_xlabel('X1')
ax.set_ylabel('X2')
# plot.show()
m, n = X_train.shape
print(m)
print(n)
# Design the model -----
def mv_equation(X, w, b):
y = np.dot(X,w) + b
return y
w = np.array([10, 10]) # vector with 2 elements
b = 100
y_pred = mv_equation(X_train, w, b)
# print(y_pred)
# y_pred = mv_equation(X_train[0], w, b)
# print(y_pred)
# Design the cost function -----
def cost_function(X_train, y_train, model, w, b):
m, n = X_train.shape
cost = 0.0
for i in range(m):
y_pred = mv_equation(X_train[i], w, b)
cost += (y_pred - y_train[i])**2
cost = cost/(2*m)
return cost
w = np.array([50, 50]) # vector with 2 elements
b = 0
cost = cost_function(X_train, y_train, mv_equation, w, b)
print(cost)
# Optimise the model -----
def gradient_function(X_train, y_train, model, w, b):
m, n = X_train.shape
dJ_dw = np.zeros((n,))
dJ_db = 0
# loop through samples i, from 0 to m-1
for i in range(m):
y_pred[i] = model(X_train[i],w,b)
# loop through fetures j, from 0 to n-1
for j in range(n):
dJ_dw[j] = dJ_dw[j] + (y_pred[i]-y_train[i])*X_train[i,j]
dJ_db = dJ_db + (y_pred[i] - y_train[i])
dJ_dw = dJ_dw/m
dJ_db = dJ_db/m
return dJ_dw, dJ_db
dJ_dw, dJ_db = gradient_function(X_train, y_train, mv_equation, w, b)
print(dJ_dw)
print(dJ_db)
def gradient_descent(X_train, y_train, w_init, b_init, alpha, N_iterations, model, cost_function, gradient_function):
J_log = []
w = copy.deepcopy(w_init)
b = b_init
for i in range(N_iterations):
dJ_dw, dJ_db = gradient_function(X_train, y_train, model, w, b)
w = w - alpha * dJ_dw
b = b - alpha * dJ_db
if i < 100000:
J_log.append(cost_function(X_train,y_train,model, w, b))
return w, b, J_log
# Analyse the prediction performance -----
w_init = np.zeros((2,))
b_init = 0.0
N_iterations = 100
alpha = 0.0001
w_final, b_final, J_log = gradient_descent(X_train, y_train, w_init, b_init, alpha, N_iterations, mv_equation, cost_function, gradient_function)
# use w and b to make predictions
print(f'w_final: {w_final}, b_final{b_final}')
f02 = plot.figure(2)
plot.plot(J_log)
plot.xlabel('number of iterations')
plot.ylabel('cost function')
plot.show()
y_pred = mv_equation(X_train, w_final, b_final)
xs = np.tile(np.arange(61), (61, 1))
ys = np.tile(np.arange(61), (61, 1)).T
zs = xs*w_final[0]+ys*w_final[1]+b_final
f03 = plot.figure(3)
ax = f03.add_subplot(111, projection = '3d')
ax.scatter(X_train[:,0], X_train[:,1], y_train, marker='.', color='r')
ax.set_xlabel('X1')
ax.set_ylabel('X2')
ax.set_zlabel('y')
ax.plot_surface(xs,ys,zs, alpha = 0.5)
plot.show()