forked from GavinKerrigan/conf_matrix_and_calibration
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_utils.py
281 lines (228 loc) · 12.9 KB
/
data_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
import os
from combination_methods import *
import numpy as np
import pandas as pd
rng = np.random.default_rng(1234)
def load_CIFAR10H(model_name):
""" Loads the CIFAR-10H predictions (human and model) and true labels.
"""
dirname = os.path.dirname(__file__)
if model_name == 'r_low_acc':
data_path = os.path.join(dirname, 'data/cifar10h/human_model_truth_cifar10h.csv')
data = np.genfromtxt(data_path, delimiter=',')
human_counts = data[:, :10]
model_probs = data[:, 10:20]
true_labels = data[:, -1]
true_labels -= 1 # data has labels 1-10 -- shifting so that they are zero-indexed.
else:
data_path = os.path.join(dirname, f'data/cifar10h/{model_name}.csv')
data = np.genfromtxt(data_path, delimiter=',')
true_labels = data[:, 0]
human_counts = data[:, 1:11]
model_probs = data[:, 11:]
true_labels = true_labels.astype(int)
return human_counts, model_probs, true_labels
def load_CIFAR10H_individual(model_name):
""" Loads the CIFAR-10H predictions, but keeps track of the individual IDs.
"""
dirname = os.path.dirname(__file__)
# ---- Model data
if model_name == 'r_low_acc':
data_path = os.path.join(dirname, 'data/cifar10h/human_model_truth_cifar10h.csv')
data = np.genfromtxt(data_path, delimiter=',')
model_probs = data[:, 10:20]
else:
data_path = os.path.join(dirname, f'data/cifar10h/{model_name}.csv')
data = np.genfromtxt(data_path, delimiter=',')
model_probs = data[:, 11:]
# ----- Human data
# Load raw human-generated labels
human_data_path = os.path.join(dirname, 'data/cifar10h/cifar10h-raw.csv')
human_data = pd.read_csv(human_data_path)
# drop attention checks
human_data = human_data[human_data['is_attn_check'] == 0]
# create dict which maps annotator_id --> [y_h, y_true, model_probs]
# consisting of the individual's guesses, true labels, and model probabilities
# (for the images labeled by the person)
annotator_ids = human_data['annotator_id'].unique()
n_annotators = annotator_ids.size
individual_level_data = dict.fromkeys(np.arange(n_annotators))
for i, idx in enumerate(annotator_ids):
single_annotator_data = human_data[human_data['annotator_id'] == idx]
image_idxs = single_annotator_data['cifar10_test_test_idx'].to_numpy()
model_probs_single_annotator = model_probs[image_idxs]
individual_level_data[i] = {'y_h': single_annotator_data['chosen_label'].to_numpy(),
'model_probs': model_probs_single_annotator,
'y_m': np.argmax(model_probs_single_annotator, axis=1),
'y_true': single_annotator_data['true_label'].to_numpy(),
}
return individual_level_data
def load_old_noisy_imagenet(noise_level, model_name, n_epochs=None, noise_type='phase', reaction_time=False):
"""
"""
assert noise_type in ['phase'], 'Invalid noise type'
assert noise_level in [80, 95, 110, 125], 'Invalid noise level'
assert model_name in ['alexnet', 'densenet161', 'googlenet', 'resnet152', 'vgg19'], 'Invalid model name'
image_labels = ['airplane', 'bear', 'bicycle', 'bird', 'boat', 'bottle', 'car', 'cat', 'chair',
'clock', 'dog', 'elephant', 'keyboard', 'knife', 'oven', 'truck']
image_labels_numeric = np.arange(0, 16)
data_dir = './data/old_noisy_imagenet_data'
# data_dir = '../data/old_noisy_imagenet_data'
human_data_fpath = data_dir + '/human_only_classification_6per_img_export.csv'
model_data_prefix = '/imagenet_0016_category_phase_noise_all_predictions_'
epoch_suffix = {None: 'baseline.csv',
0: 'epoch00.csv',
1: 'epoch01.csv',
10: 'epoch10.csv'}
model_data_fpath = data_dir + model_data_prefix + epoch_suffix[n_epochs]
human_data = pd.read_csv(human_data_fpath)
human_data.replace(to_replace=image_labels, value=image_labels_numeric, inplace=True)
human_data = human_data[human_data['noise_level'] == noise_level]
columns = ['participant_id', 'image_name', 'image_category', 'participant_classification']
if reaction_time:
columns.append('classification_time')
human_data = human_data[columns]
if reaction_time:
arbitrary_reaction_time_cutoff = 650 # 650 ms
human_data = human_data[human_data.classification_time > arbitrary_reaction_time_cutoff]
model_data = pd.read_csv(model_data_fpath)
model_data.replace(to_replace=image_labels, value=image_labels_numeric, inplace=True)
model_data = model_data[(model_data['noise_type'] == noise_type) &
(model_data['noise_level'] == noise_level) &
(model_data['model_name'] == model_name)]
model_data.drop(columns=['noise_type', 'noise_level', 'model_name', 'correct', 'category'], inplace=True)
# Merge based on input image
dataset = pd.merge(human_data, model_data, on='image_name', how='left')
# Map to numpy
human_ids = dataset['participant_id'].to_numpy(dtype=int)
y_h = dataset['participant_classification'].to_numpy(dtype=int)
y_true = dataset['image_category'].to_numpy(dtype=int)
# Get model_probs in numeric order, i.e. model_probs[0][0] corresponds to 'airplane'
model_probs = dataset[image_labels].to_numpy(dtype=float)
# Normalize each model output (via summing)
model_probs /= model_probs.sum(axis=1, keepdims=True)
if reaction_time:
reaction_time = dataset['classification_time'].to_numpy(dtype=float)
return y_true, y_h, model_probs, reaction_time
return y_true, y_h, model_probs
def load_noisy_imagenet(model_name, noise_level, model_acc_level):
model_acc_level = model_acc_level.lower()
assert model_acc_level in ['low', 'med', 'high']
assert noise_level in [80, 95, 110, 125]
if model_name == 'vgg19':
model_name_dict = {'low': 'vgg19_01',
'med': 'vgg19_06',
'high': 'vgg19_48'}
elif model_name == 'googlenet':
model_name_dict = {'low': 'googlenet_01',
'med': 'googlenet_06',
'high': 'googlenet_47'}
else:
raise NotImplementedError
# Read data CSVs
data_path_model = f'./data/noisy_imagenet/{model_name}.csv'
data_path_human = './data/noisy_imagenet/human_only_classification_6per_img_export.csv'
data_model = pd.read_csv(data_path_model)
data_human = pd.read_csv(data_path_human)
image_labels = ['airplane', 'bear', 'bicycle', 'bird', 'boat', 'bottle', 'car', 'cat', 'chair',
'clock', 'dog', 'elephant', 'keyboard', 'knife', 'oven', 'truck']
image_labels_numeric = np.arange(0, 16)
# Replace string labels with numeric labels and get appropriate subset of data
data_human.replace(to_replace=image_labels, value=image_labels_numeric, inplace=True)
data_human = data_human[data_human['noise_level'] == noise_level]
data_human = data_human[['image_name', 'image_category', 'participant_classification']]
# Get appropriate subset of model data
data_model.rename(columns=dict(zip(image_labels, image_labels_numeric)), inplace=True)
data_model = data_model[(data_model['noise_level'] == noise_level) &
(data_model['model_name'] == model_name_dict[model_acc_level])]
data_model = data_model[['image_name'] + image_labels_numeric.tolist()]
dataset = pd.merge(data_human, data_model, how='left')
dataset.drop(columns=['image_name'], inplace=True)
y_true = dataset['image_category'].to_numpy().astype(int)
y_h = dataset['participant_classification'].to_numpy().astype(int)
model_probs = dataset[image_labels_numeric].to_numpy()
return y_true, y_h, model_probs
def load_noisy_imagenet_logits(noise_level, model_acc_level):
model_acc_level = model_acc_level.lower()
assert model_acc_level in ['low', 'med', 'high']
assert noise_level in [80, 95, 110, 125]
model_name_dict = {'low': 'vgg19_01',
'med': 'vgg19_06',
'high': 'vgg19_48'}
# Read data CSVs
data_path_model = './data/noisy_imagenet/vgg19_logits.csv'
data_path_human = './data/noisy_imagenet/human_only_classification_6per_img_export.csv'
data_model = pd.read_csv(data_path_model)
data_human = pd.read_csv(data_path_human)
image_labels = ['airplane', 'bear', 'bicycle', 'bird', 'boat', 'bottle', 'car', 'cat', 'chair',
'clock', 'dog', 'elephant', 'keyboard', 'knife', 'oven', 'truck']
image_labels_numeric = np.arange(0, 16)
# Replace string labels with numeric labels and get appropriate subset of data
data_human.replace(to_replace=image_labels, value=image_labels_numeric, inplace=True)
data_human = data_human[data_human['noise_level'] == noise_level]
data_human = data_human[['image_name', 'image_category', 'participant_classification']]
# Get appropriate subset of model data
data_model.rename(columns=dict(zip(image_labels, image_labels_numeric)), inplace=True)
data_model = data_model[(data_model['noise_level'] == noise_level) &
(data_model['model_name'] == model_name_dict[model_acc_level])]
data_model = data_model[['image_name'] + image_labels_numeric.tolist()]
dataset = pd.merge(data_human, data_model, how='left')
dataset.drop(columns=['image_name'], inplace=True)
y_true = dataset['image_category'].to_numpy().astype(int)
y_h = dataset['participant_classification'].to_numpy().astype(int)
model_probs = dataset[image_labels_numeric].to_numpy()
return y_true, y_h, model_probs
def load_noisy_imagenet_individual(model_name, noise_level, model_acc_level):
dirname = os.path.dirname(__file__)
model_acc_level = model_acc_level.lower()
assert model_acc_level in ['low', 'med', 'high']
assert noise_level in [80, 95, 110, 125]
if model_name == 'vgg19':
model_name_dict = {'low': 'vgg19_01',
'med': 'vgg19_06',
'high': 'vgg19_48'}
elif model_name == 'googlenet':
model_name_dict = {'low': 'googlenet_01',
'med': 'googlenet_06',
'high': 'googlenet_47'}
else:
raise NotImplementedError
# Read data CSVs
data_path_model = os.path.join(dirname, f'./data/noisy_imagenet/{model_name}.csv')
data_path_human = os.path.join(dirname, './data/noisy_imagenet/human_only_classification_6per_img_export.csv')
data_model = pd.read_csv(data_path_model)
data_human = pd.read_csv(data_path_human)
image_labels = ['airplane', 'bear', 'bicycle', 'bird', 'boat', 'bottle', 'car', 'cat', 'chair',
'clock', 'dog', 'elephant', 'keyboard', 'knife', 'oven', 'truck']
image_labels_numeric = np.arange(0, 16)
# Replace string labels with numeric labels and get appropriate subset of data
data_human.replace(to_replace=image_labels, value=image_labels_numeric, inplace=True)
data_human = data_human[data_human['noise_level'] == noise_level]
# Get appropriate subset of model data
data_model.rename(columns=dict(zip(image_labels, image_labels_numeric)), inplace=True)
data_model = data_model[(data_model['noise_level'] == noise_level) &
(data_model['model_name'] == model_name_dict[model_acc_level])]
data_model = data_model[['image_name'] + image_labels_numeric.tolist()]
# ----- Human data
# Load raw human-generated labels
# create dict which maps annotator_id --> [y_h, y_true, model_probs]
# consisting of the individual's guesses, true labels, and model probabilities
# (for the images labeled by the person)
annotator_ids = data_human['participant_id'].unique()
n_annotators = annotator_ids.size
individual_level_data = dict.fromkeys(np.arange(n_annotators))
for i, idx in enumerate(annotator_ids):
single_annotator_data = data_human[data_human['participant_id'] == idx]
image_idxs = single_annotator_data['image_name'].to_numpy()
# Iterate over images human labeled, get model predictions
model_probs_single_annotator = np.empty(shape=(image_idxs.size, 16))
for j, image_idx in enumerate(image_idxs):
model_probs_single_image = data_model[data_model['image_name'] == image_idx]
model_probs_single_image = model_probs_single_image[image_labels_numeric].to_numpy()[0]
model_probs_single_annotator[j] = model_probs_single_image
individual_level_data[i] = {'y_h': single_annotator_data['participant_classification'].to_numpy(),
'model_probs': model_probs_single_annotator,
'y_m': np.argmax(model_probs_single_annotator, axis=1),
'y_true': single_annotator_data['image_category'].to_numpy(),
}
return individual_level_data