-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate.py
408 lines (333 loc) · 17.2 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
import numpy as np
import os
import pickle
import torch
from torch.utils.data import DataLoader
import math
from collections import defaultdict
from tqdm import tqdm
import time
import datetime
import random
import json
from lib.arguments import get_args
from lib.utils import *
from lib.models.utils import flatten
from lib.models.query import *
def _setup_hitting_time_query(args, batch, model, guarantee_mark=False, use_tqdm=False, num_item_to_query=1):
if args.cuda:
batch = {k:v.cuda(torch.cuda.current_device()) for k,v in batch.items()}
times, marks = batch["target_times"], batch["target_marks"]
length = times.numel()
to_condition_on = min(length - 1, 5)
last_time = times[:, to_condition_on-1].item()
if args.checkpoint_path.startswith("../checkpoints/mooc_norm"):
condition_marks = marks[:, :to_condition_on, ...]
existing_marks = torch.nonzero(condition_marks.sum(dim=-2), as_tuple=True)[1]
assert(len(existing_marks) >= 1)
perm = torch.randperm(len(existing_marks))
next_item = existing_marks[perm[0]].item()
else:
next_item = torch.randint(high=model.num_channels, size=(1,)).item()
# ## generate queries based on num_item_to_query
# if args.checkpoint_path.startswith("../checkpoints/mooc_norm"):
# condition_marks = marks[:, :to_condition_on, ...]
# existing_marks = torch.nonzero(condition_marks.sum(dim=-2), as_tuple=True)[1]
# assert (len(existing_marks) >= 1)
# if len(existing_marks) < num_item_to_query:
# existing_marks = list(range(model.num_channels))
# perm = torch.randperm(len(existing_marks))
# next_item = existing_marks[perm[:num_item_to_query]].tolist()
# else:
# perm = torch.randperm(model.num_channels)
# next_item = perm[:num_item_to_query].tolist()
up_to = max(min((times[:, to_condition_on].item() - last_time) * 10, 10.0), 1e-2) # paper
# up_to = max(min((times[:, to_condition_on].item() - last_time) * 10, 10.0, times[:, -1].item() - last_time), 1e-2) # Dec 22
# up_to = max(min((times[:, to_condition_on].item() - last_time) * 50, 50.0), 1e-2) # Oct 7
max_T = last_time + up_to
remaining_times, remaining_marks = times[:, to_condition_on:], marks[:, to_condition_on:, ...]
t_mask = remaining_times <= max_T
remaining_times, remaining_marks = remaining_times[t_mask].unsqueeze(0), remaining_marks[t_mask].unsqueeze(0)
if remaining_marks.sum(dim=-2).squeeze(0)[next_item].any() > 0:
mark_obs, next_time = True, remaining_times[0, remaining_marks.argmax(dim=-2).squeeze(0)[next_item]].item() - last_time # normalized
# mark_obs = True
# # A_idx = torch.nonzero(remaining_marks[:, :, next_item[0]], as_tuple=True)[1]
# # B_idx = torch.nonzero(remaining_marks[:, :, next_item[1]], as_tuple=True)[1]
# # idx = min(A_idx.item(), B_idx.item())
# idx = min(torch.nonzero(remaining_marks[:, :, next_item], as_tuple=True)[1]).item()
# next_time = remaining_times[0, idx].item() - last_time
else:
mark_obs, next_time = False, None
times, marks = times[:, :to_condition_on], marks[:, :to_condition_on, ...]
return times, marks, next_item, mark_obs, last_time, next_time, max_T, up_to
def _generate_hitting_time_queries(args, model, dataloader, file_suffix, guarantee_mark=False, save_seqs=False, num_item_to_query=1):
all_queries, num_queries = {}, min(args.num_queries, len(dataloader))
dl_iter = iter(dataloader)
for i in tqdm(range(num_queries)):
batch = next(dl_iter)
times, marks, next_item, mark_obs, last_time, next_time, max_T, up_to = \
_setup_hitting_time_query(args, batch, model, use_tqdm=False, num_item_to_query=num_item_to_query)
all_queries[i] = {
'times': times, 'marks': marks, 'next_item': next_item, 'mark_obs': mark_obs,
'last_time': last_time, 'next_time': next_time, 'max_T': max_T, 'up_to': up_to
}
save_results(args, all_queries, suffix=f'{file_suffix}_hitting_queries', save_seqs=save_seqs)
return all_queries
def _hitting_time_eff_gt(args, model, queries):
num_seqs = args.gt_num_seqs
num_int_pts = args.gt_num_int_pts
gts = []
effs = []
for i in tqdm(range(len(queries))):
times, marks, next_item, mark_obs, last_time, next_time, max_T, up_to = queries[i].values()
tmq = UnbiasedHittingTimeQuery(up_to=up_to, hitting_marks=next_item, batch_size=args.query_batch_size,
device=args.device, use_tqdm=False, proposal_batch_size=args.proposal_batch_size)
is_res = tmq.estimate(model, num_seqs, num_int_pts, conditional_times=times, conditional_marks=marks,
calculate_bounds=False)
gts.append(is_res["est"].item())
effs.append(is_res["rel_eff"].item())
return gts, effs
def _hitting_time_ll_eff_pass(args, model, queries, num_seqs, num_int_pts):
results = {"is_est": [],
"is_var": [],
"naive_est": [],
"naive_var": [],
"rel_eff": [],
"avg_is_time": 0.0,
"avg_naive_time": 0.0,
"ll": [],
"mark_obs": [],
"ll_avg_time": 0.0}
num_queries = len(queries)
for i in tqdm(range(num_queries)):
times, marks, next_item, mark_obs, last_time, next_time, max_T, up_to = queries[i].values()
results['mark_obs'].append(mark_obs)
# evaluating efficiency of hitting time queries up to whole obs. window
tmq = UnbiasedHittingTimeQuery(up_to=up_to, hitting_marks=next_item, batch_size=args.query_batch_size,
device=args.device, use_tqdm=False, proposal_batch_size=args.proposal_batch_size)
is_t0 = time.perf_counter()
is_cdf = tmq.estimate(model, num_seqs, num_int_pts, conditional_times=times, conditional_marks=marks,
calculate_bounds=False)
is_t1 = time.perf_counter()
is_time = (is_t1 - is_t0) / num_queries
if not args.skip_naive:
naive_t0 = time.perf_counter()
naive_est = tmq.naive_estimate(model, num_seqs, conditional_times=times, conditional_marks=marks)
naive_t1 = time.perf_counter()
results['is_est'].append(is_cdf['est'].item())
results['is_var'].append(is_cdf['is_var'].item())
results["naive_var"].append(is_cdf["naive_var"].item())
results["rel_eff"].append(is_cdf["rel_eff"].item())
results["avg_is_time"] += is_time
if not args.skip_naive:
results["naive_est"].append(naive_est)
results["avg_naive_time"] += (naive_t1 - naive_t0) / num_queries
return results
def hitting_time_queries_pass(args, model, dataloader, results):
file_suffix = datetime.now().strftime('%m_%d_%Y_%H_%M_%S')
seed = args.seed
set_random_seed(seed=seed)
print_log("Generating queries...")
all_queries = _generate_hitting_time_queries(args, model, dataloader, file_suffix)
if results is None:
results = {'gt': None, 'gt_eff': None, 'estimates': {}}
if not args.skip_gt:
if (results['gt'] is None) or (results['gt_eff'] is None):
print_log("Calculating gt...")
results['gt'], results['gt_eff'] = _hitting_time_eff_gt(args, model, all_queries)
save_results(args, results, file_suffix)
else:
print_log("Skipping GT Estimates.")
print_log("Calculating est...")
if not args.just_gt:
for i, num_seqs in enumerate(args.num_seqs):
ns_key = f'num_seqs_{num_seqs}'
results['estimates'][ns_key] = {}
for j, num_int_pts in enumerate(args.num_int_pts):
np_key = f'num_int_pts_{num_int_pts}'
args.seed = seed + i * len(args.num_int_pts) + j
set_random_seed(args)
if (ns_key in results['estimates']) and (np_key in results['estimates'][ns_key]) and (
results['estimates'][ns_key][np_key] is not None):
print_log(f'Skipping {ns_key} {np_key}')
continue
else:
print_log(f'Estimating hitting queries for num_seqs={ns_key} and num_int_pts={np_key}')
results['estimates'][ns_key][np_key] = _hitting_time_ll_eff_pass(args, model, all_queries, num_seqs, num_int_pts)
save_results(args, results, file_suffix)
save_results(args, results, file_suffix)
return results
def hitting_time_queries_runtime(args, model, dataloader):
file_suffix = datetime.now().strftime('%m_%d_%Y_%H_%M_%S')
seed = args.seed
set_random_seed(seed=seed)
results = {}
for hitting_query_item_pct in args.hitting_query_item_pcts:
num_items_to_query = max(math.floor(model.num_channels * hitting_query_item_pct), 1)
print_log(f"Generating queries for {num_items_to_query} items for hitting time queries...")
all_queries = _generate_hitting_time_queries(args, model, dataloader, file_suffix, num_item_to_query=num_items_to_query)
hit_key = f'pcts_items_{hitting_query_item_pct}'
results[hit_key] = {}
print_log("Calculating est...")
for i, num_seqs in enumerate(args.num_seqs):
ns_key = f'num_seqs_{num_seqs}'
results[hit_key][ns_key] = {}
for j, num_int_pts in enumerate(args.num_int_pts):
np_key = f'num_int_pts_{num_int_pts}'
args.seed = seed + i * len(args.num_int_pts) + j
set_random_seed(args)
print_log(f'Estimating hitting queries for num_seqs={ns_key} and num_int_pts={np_key}')
results[hit_key][ns_key][np_key] = _hitting_time_ll_eff_pass(args, model, all_queries, num_seqs, num_int_pts)
save_results(args, results, file_suffix)
save_results(args, results, file_suffix)
return results
def _setup_a_before_b_query(args, batch, model, use_tqdm=False):
if args.cuda:
batch = {k:v.cuda(torch.cuda.current_device()) for k,v in batch.items()}
times, marks = batch["target_times"], batch["target_marks"]
length = times.numel()
to_condition_on = min(length - 1, 5)
last_time = times[:, to_condition_on - 1].item()
# pick A and B here
condition_time, condition_marks = times[:, :to_condition_on], marks[:, :to_condition_on, ...]
if args.checkpoint_path.startswith("../checkpoints/instacart_dept_norm"):
perm = torch.randperm(model.num_channels)
all_items = list(range(model.num_channels))
A, B = all_items[perm[0]], all_items[perm[1]]
max_T = times[:, -1].item()
up_to = max_T - last_time
else:
existing_marks = torch.nonzero(condition_marks.sum(dim=-2), as_tuple=True)[1]
if len(existing_marks) < 2:
existing_marks = list(range(model.num_channels))
perm = torch.randperm(len(existing_marks))
A, B = existing_marks[perm[0]], existing_marks[perm[1]]
up_to = max(min((times[:, to_condition_on].item() - last_time) * 10, 10.0), 1e-2)
max_T = last_time + up_to
remaining_times, remaining_marks = times[:, to_condition_on:], marks[:, to_condition_on:, ...]
t_mask = remaining_times <= max_T
remaining_times, remaining_marks = remaining_times[t_mask].unsqueeze(0), remaining_marks[t_mask].unsqueeze(0)
# decide if A or B first
if not remaining_times.shape[-1]:
true_mark = [0, 0, 0, 1]
else:
A_idx = torch.nonzero(remaining_marks[:,:,A], as_tuple=True)[1]
B_idx = torch.nonzero(remaining_marks[:,:,B], as_tuple=True)[1]
if not len(A_idx) and not len(B_idx):
true_mark = [0, 0, 0, 1] # no a or b
elif not len(A_idx):
true_mark = [0, 0, 1, 0] # b before a
elif not len(B_idx):
true_mark = [0, 1, 0, 0] # a before b
elif A_idx[0] == B_idx[0]:
true_mark = [1, 0, 0, 0] # a equals b
elif A_idx[0] < B_idx[0]:
true_mark = [0, 1, 0, 0]
else:
true_mark = [0, 0, 1, 0]
return condition_time, condition_marks, A, B, up_to, true_mark # (4)
def _generate_a_before_b_queries(args, model, dataloader, file_suffix):
all_queries, num_queries = {}, min(args.num_queries, len(dataloader))
dl_iter = iter(dataloader)
for i in tqdm(range(num_queries)):
batch = next(dl_iter)
times, marks, A, B, up_to, true_mark = _setup_a_before_b_query(args, batch, model, use_tqdm=False)
all_queries[i] = {'times': times, 'marks': marks, 'A': A, 'B': B, 'up_to': up_to, 'true_mark': true_mark}
save_results(args, all_queries, suffix=f'{file_suffix}_ab_queries', save_seqs=False)
return all_queries
def _a_before_b_queries_pass(args, model, queries, num_seqs, num_int_pts):
results = {
'is_est': [],
"naive_est": [],
'true_mark': [],
'is_var': [],
'naive_var': [],
'rel_eff': [],
'avg_is_time': 0.,
'avg_naive_time': 0.
}
num_queries = len(queries)
for i in tqdm(range(num_queries)):
times, marks, A, B, up_to, true_mark = queries[i].values()
results['true_mark'].append(true_mark)
abq = AbeforeBQuery(up_to, torch.tensor([A]), torch.tensor([B]), batch_size=args.query_batch_size, device=args.device, use_tqdm=False, proposal_batch_size=args.proposal_batch_size)
is_t0 = time.perf_counter()
is_est = abq.estimate(model, num_seqs, num_int_pts, times, marks)
is_t1 = time.perf_counter()
if not args.skip_naive:
naive_t0 = time.perf_counter()
naive_est = abq.naive_estimate(model, num_seqs, conditional_times=times, conditional_marks=marks)
naive_t1 = time.perf_counter()
results['naive_est'].append([naive_est['a_equals_b'], naive_est['a_before_b'], naive_est['b_before_a'], naive_est['no_a_or_b']])
results['avg_naive_time'] += (naive_t1 - naive_t0) / num_queries
results['is_est'].append([is_est['a_equals_b'], is_est['a_before_b'], is_est['b_before_a'], is_est['no_a_or_b']])
results['is_var'].append(is_est['is_var'])
results['naive_var'].append(is_est['naive_var'])
# results['rel_eff'].append(is_est['rel_eff'])
results["avg_is_time"] += (is_t1 - is_t0) / num_queries
return results
def a_before_b_queries_pass(args, model, dataloader, partial_res):
file_suffix = datetime.now().strftime('%m_%d_%Y_%H_%M_%S')
seed = args.seed
set_random_seed(seed=seed)
print_log("Generating queries...")
all_queries = _generate_a_before_b_queries(args, model, dataloader, file_suffix)
results = {}
print_log("Calculating est...")
for i, num_seqs in enumerate(args.num_seqs):
ns_key = f'num_seqs_{num_seqs}'
results[ns_key] = {}
for j, num_int_pts in enumerate(args.num_int_pts):
np_key = f'num_int_pts_{num_int_pts}'
args.seed = seed + i * len(args.num_int_pts) + j
set_random_seed(args)
if (ns_key in results) and (np_key in results[ns_key]) and (results[ns_key][np_key] is not None):
print_log(f'Skipping {ns_key} {np_key}')
continue
else:
print_log(f'Estimating A before B queries for num_seqs={ns_key} and num_int_pts={np_key}')
results[ns_key][np_key] = _a_before_b_queries_pass(args, model, all_queries, num_seqs, num_int_pts)
save_results(args, results, file_suffix)
save_results(args, results, file_suffix)
return results
def main():
print_log("Getting arguments.")
args = get_args()
args = get_training_args(args)
args.evaluate = True
args.top_k = 0
args.top_p = 0
args.batch_size = 1
args.shuffle = True # shuffle the test dataloader
print_log("Setting seed.")
set_random_seed(args)
print_log("Setting up dataloaders.")
args.pin_test_memory = True
train_dataloader, valid_dataloader, test_dataloader = get_data(args)
print_log("Setting up model, optimizer, and learning rate scheduler.")
model, _, _ = setup_model_and_optim(args, len(train_dataloader))
load_checkpoint(args, model)
model.eval()
if args.continue_experiments is not None:
partial_res = pickle.load(open(args.continue_experiments, "rb"))
else:
partial_res = None
print_log("")
print_log("")
print_log("Commencing Experiments")
with torch.no_grad():
if args.hitting_time_queries:
# results = hitting_time_queries_pass(args, model, valid_dataloader, partial_res)
results = hitting_time_queries_pass(args, model, test_dataloader, partial_res)
print("Hitting time queries done.")
# print(results)
elif args.a_before_b_queries:
# results = a_before_b_queries_pass(args, model, valid_dataloader, partial_res)
results = a_before_b_queries_pass(args, model, test_dataloader, partial_res)
print("A before B queries done.")
elif args.runtime_hitting_time_queries:
# results = hitting_time_queries_runtime(args, model, valid_dataloader)
results = hitting_time_queries_runtime(args, model, test_dataloader)
print("Hitting time runtime experiments done.")
if __name__ == "__main__":
main()