-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path06_SSN_Model_Predict.Rmd
1696 lines (1308 loc) · 64.9 KB
/
06_SSN_Model_Predict.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
---
title: "James SSN Predictions"
author: "Michael McManus, Travis Linscome-Hatfield"
date: "12/03/2024"
output:
html_document:
fig_caption: yes
number_sections: false
toc: yes
toc_float: yes
code_folding: hide
self_contained: yes
theme: lumen
editor_options:
chunk_output_type: console
---
Here's what I added in this script for the example!
# Outline
The purpose of this script is to make sure both obs and preds have the same covariates. This is required so that the SSN model built from the obs can then applied to make predictions at the preds. The 48 preds where withheld from from the SSN model building to provide an independent data set for measuring the predictive performance of the SSN model. The 48 preds were collected from spatially balanced probabilistic surveys done from 2019-2022.
Three modifications were made to the SSN WS-WQ model, ssn_wswq_reml1, from script 05 in attempts to get a better predictive model. Those modifications included:
1) Added a partition factor statement to the model based on parallel coordinate plot,
2) Based on the literature, tested 3 additional covariates to try and get a better fitting and predictive model,
3) Tested the hypothesis that monitoring sites having upstream waterbodies furthest away would have higher VSCI.
With those modification evaluated, then the final model, which included the partition factor and the nearest distance to upstream waterbody covariate, was evaluated by comparing observed vsci to predicted vsci, first, for the 199 observations from 2001-2018 using leave-one-out-cross-validation (loocv). The second evaluation used the 48 predictions sites from 2019-2022 with their observed vsci compared to the predicted vsci from the SSN model. Both of those evaluations were done graphs of the observed values on the y-axis and predicted values on the x-axis.
Log Keeping log below for now when reach final version will delete.
12/23/2024 Travis walked me through merging his interval_pred_upd branch with main repository on GitHub. Once that was done I pulled that from main repository to my local repository.
12/16/2024 trying to run distance hypothesis using binomial, numerically coded waterbody upstream, 0 is absent and 1 is present, and distance upstream to nearest waterbody as continuous covariate.
11/25/2024 using James_071024_pluspreds as ssn object as has all 48 prediction points in one shapefile. And bringing additional covariates. Needing to assign 0's to preds_2019_2022 that initially had dist_nearest_up_wb_km set to NA for 31 of 48 prediction points.
11/19/2024 trying to run TLH code chunk for prediction interval graph
On 10/24/2024, went through the code with Travis and now runs without errors all chunks above Status vs Trend Predictions chunk. Pushed to repository.
Trying again on 08/14/2024 to push this code up to github repository.
On 08/13/2024, pushed to github. Trying push again as I don't see this code
on github.
On 07/12/2024 need to make sure that james_071024.ssn, with PRISM data, gives same prediction output as previous ssn object. It does.
On 07/02/2024 R version 4.4.1 was installed.
On 07/01/2024 added code to include partition factor assignment to preds.
On 06/28/2024 added code to run a parition factor model.
On 06/17/2024 running code to get predictions for 2019-2020 that I put into a geopackage so I map and plot se vs prediction in QGIS.
On 05/14/2024 running code as updated R, RTools, and RStudio on 05/08/2024.
On 04/19/2024 also specify spatial autocovariance of tail down exponential and Euclidean exponential. Also, run MLR of mixed geography using impervious cover of all 4 geographies (to identify high collinearity), elevation at watershed, DO, tothab, and l_tn, and Lower James subbasin. Does that combination of variables better fit and outperform watershed-only model?
On 04/18/2024 now using vsci as response variable not y2.
On 04/17/2024 now using James041724.ssn as it has climate PRISM data out of StreamCat of precip_mm, Tmean, and Tmax.
On 04/09/2024 Mike Dumelle recommended: 1) use untransformed vsci, 2) include absence/presence binary land cover with percent land cover, and 3) include year.
On 04/04/2024 now using James040424.ssn as Ellen D'Amico from Pegasus updated Preds_2021_2022 points.
On 03/27/2024, Using code from step1_james_eda_v1.Rmd, but now specifying preds1 to bring in 22 points from 2019-2020 VDEQ monitoring and preds2 to bring in 26 points from 2021-2022 VDEQ monitoring using current SSN from James.ssn_032224.zip.
# Libraries
```{r setup,message=FALSE, warning=FALSE, collapse=TRUE}
library(SSN2)
library(tidyverse)
library(dplyr)
library(Hmisc)
library(sf)
library(moments)
library(fitdistrplus)
library(mapview)
library(leaflet)
library(leafpop) # for popups in mapview
library(leafsync) # sync mapview maps
library(units)
library(janitor)
library(dummy)
library(GGally) # parallel coordinate plot
library(readxl)
library(bestglm)
library(car)
library(performance)
library(scales) # comma instead of scientific notation
library(corrr) # tidyverse correlation package
library(tmap)
library(gstat) # semivariogram cloud
library(plotly)
library(dotwhisker)
# remotes::install_github("fsolt/dotwhisker")
# library(dotwhisker) #coefficient plot did not install as archived
# consider https://github.com/ggobi/ggally/issues/372
# with function in Ggally of GGally::ggcoef()
sessionInfo()
knitr::opts_chunk$set(message=FALSE, warning=FALSE,collapse = T)
```
# SSN Observations and Preds
Notice this import explicitly brings in the prediction points. Also, this version of the SSN requires that both the obs and predpts to have the same covariates.
```{r ssn_obs_preds}
# now bringing predpts 2019-2022 combined
# current ssn
j_ssn1a <- SSN2::ssn_import("ssn_object/James_071024_pluspreds.ssn", predpts = c("Preds_2019_2022"),
overwrite = FALSE)
# previous ssn
# j_ssn1a <- SSN2::ssn_import("E:/R_vdeq_sci/Working/Data/neptune_analysis/ssn_objects/James041724.ssn", predpts = c("Preds_2019_2020", "Preds_2021_2022"),
#overwrite = FALSE)
# j_ssn1a <- SSN2::ssn_import("E:/R_vdeq_sci/Working/Data/neptune_analysis/ssn_objects/James.ssn", predpts = c("Preds_2019_2020", "Preds_2021_2022"),
# overwrite = FALSE)
names(j_ssn1a)
summary(j_ssn1a)
DFobs <- SSN2::ssn_get_data(j_ssn1a) %>% clean_names(.)
preds1 <- SSN2::ssn_get_data(j_ssn1a, name = "Preds_2019_2022") %>% clean_names(.)
# str(preds1)
# str(preds2)
```
## SFS Meeting Torgegram
```{r sfs_torgegram}
# torg2 <- ggplot(flowuncon, aes(x=dist, y=gamma)) + geom_point(size =3) + labs(x = "Flow-Unconnected Stream Distance (m)", y = "Semivariance", title = "VSCI Torgegram Stream Network Distance") + scale_x_continuous(labels=comma)
# png(file="figures_sfs/torg2.png",width=6,height=3,units="in",res=150)
# torg2
# dev.off()
# esv2 <- ggplot(euclid, aes(x=dist, y=gamma)) + geom_point(size =3) + labs(x = "Euclidean Distance (m)", y = "Semivariance", title = "VSCI Semivariogram Euclidean Distance") + scale_x_continuous(labels=comma)
# png(file="figures_sfs/esv2.png",width=6,height=3,units="in",res=150)
# esv2
# dev.off()
```
## Steps for working with preds based on obs
Note that both obs and preds need to be in the SSN object that is modeled. This results in the SSN model object having all the variables needed for the SSN predict function.
1. Make factors of vahusb and year.
2. Log total nitrogen.
3. Include additional covariates of wastewater treatment plant, depth to bedrock, upstream waterbody as categorical absent or present, and continuous covariate of distance to nearest upstream waterbody.
4. Empirical logit transformations for impervious and forest
5. Dummy code transformation of factors for vahusb.
On 03/04/2029, realized I needed to add in imputing of 2 observed sites for total habitat scores. I need tot_hab for catchment and catchment-riparian in the mixed geographies SSN analysis. Saw this when I made scatter plot of covariates.
## 1.20 Total Habitat (RBP) score
Bring Total Habitat Score (TotHab) in from Wadeable_ProbMon_2001-2018_Final_Final.xslx spreadsheet so it can be joined to DFobs and then j_ssn1a. These 2 stations: 2-JKS070.97 and 2-DDY000.75_2017 do not have tothab as Emma confirmed in her 11/24/2023 email. Both sites are in Central Appalachian Ridges and Valleys. Both have high VSCI scores of 73.8 and 84.5 (the latter is max VSCI), respectively. I will impute their tothab scores. For trend station 2-DDY000.75_2017, I will average the scores of 172.5, 173.5, and 178 from 2011, 2013, and 2015, respectively. For 2-JKS070.97 on 3rd order, I averaged nearby sites 2-JKS076.16, has tothab of 162.0 on 3rd order, is upstream of 2-JKS070.97, about 16 km apart. Also used Back Creek site, 2-BCC001.90 (has tothab of 189.0 on 2nd order), that flows parallel to Jackson River, where the 2 sites are, and Back Creek site is near confluence to Jackson River. 2-BCC001.90 is about 9 stream km from 2-JKS070.97. Added new variable tothab.
```{r tothab}
tothab_ds1 <- read_xlsx("data/Wadeable_ProbMon_2001-2018_Final_Final.xlsx", range = "Wadeable_ProbMon_2001-2018!D1:BK814")
tothab_ds2 <- tothab_ds1 |>
filter(SubBasin == "James") |>
dplyr::select(StationID_Trend, TotHab) |>
mutate_at(c('TotHab'), as.numeric)
summary(tothab_ds2$TotHab)
# 2-DDY000.75_2017 is on Daddy Run headwater of Calfpasture River
# https://stackoverflow.com/questions/32829358/dplyr-filter-with-sql-like-wildcard
dr_na <- filter(tothab_ds2, grepl("2-DDY000.75", StationID_Trend, fixed = TRUE))
summary(dr_na$TotHab)
tothab_ds3 <- tothab_ds2|>
mutate(
TotHab = case_when(StationID_Trend == "2-DDY000.75_2017" ~ 176.4,
TRUE ~ TotHab))
# 2-JKS070.97 is on Jackson River
jr_na <- filter(tothab_ds3, StationID_Trend == "2-JKS076.16"| StationID_Trend == "2-BCC001.90")
summary(jr_na$TotHab)
tothab_ds4 <- tothab_ds3|>
mutate(
TotHab = case_when(StationID_Trend == "2-JKS070.97" ~ 175.5,
TRUE ~ TotHab))
# no longer any NAs
summary(tothab_ds4$TotHab)
tothab_ds4 <- rename(tothab_ds4,c(tothab = TotHab, st_id_tren = StationID_Trend ))
head(tothab_ds4)
# add tothab as new variable
DFobs <- full_join(DFobs, tothab_ds4, by = join_by(station_id_2==st_id_tren))
names(DFobs)
# remove datasets not needed downstream
rm(tothab_ds1, tothab_ds2, dr_na, tothab_ds3, jr_na, tothab_ds4)
```
# Transform Obs Covariates
On 12/16/2024 added binomial wbc, wbc_bin, coded as numeric 0 or 1 similar to Dumelle et al. 2023 coding in National Lake assessment conductivity paper.
On 11/25/2024 added WWTP, STATSGo_Set2, and waterbody covariates.
0n 06/28/20204 added for ju - yes and ju - no to test if partitioning on ju helpful first by looking at separate torgegrams and then in modeling.
On 04/10/2024 added code for a binary presence covariate for impervious cover at watershed extent.
```{r transform_obs}
DFobs$year_f <- as.factor(DFobs$year)
DFobs$vahusb <- factor(DFobs$vahusb, levels = c("JU", "JM", "JR", "JA", "JL"))
summary(DFobs$vahusb)
DFobs <- DFobs %>%
mutate(
jl = case_when(
vahusb != "JL" ~ 0,
vahusb == "JL" ~1
)
)
DFobs <- DFobs %>%
mutate(
ju = case_when(
vahusb == "JU" ~ "yes",
.default = "no"
)
)
DFobs$ju <- factor(DFobs$ju, levels = c("yes","no"))
summary(DFobs$ju)
glimpse(DFobs)
# In ArcGIS these 2 fields are not numeric so have to mutate
DFobs2 <- DFobs %>% mutate_at(c('pct_for_c', 'pct_for_w'), as.numeric)
DFobs2$l_tn <- log(DFobs2$tn)
DFobs2$vsci <- round(DFobs2$vscivcpmi,1)
# WWTP data
wwtp_ds1 <- read.csv("data/WWTP_VA.csv") %>% clean_names(.)
DFobs2 <- left_join(DFobs2, wwtp_ds1, by = join_by(feature_id == comid))
DFobs2 <- DFobs2 %>%
mutate(
wwtp = case_when(
wwtp_all_dens_ws > 0 ~ "yes",
wwtp_all_dens_ws == 0 ~ "no"
)
)
DFobs2$wwtp <- factor(DFobs2$wwtp, levels = c("yes","no"))
summary(DFobs2$wwtp)
# Statgo2 Set 2 variables, use RckDepWs
statsgo_set2 <- read.csv("data/STATSGO_Set2_VA.csv") %>% clean_names(.)
names(statsgo_set2)
DFobs2 <- left_join(DFobs2, statsgo_set2, by = join_by(feature_id == comid))
# Waterbody data
wb_ds1 <- read.csv("data/ObservationPoints_DistancesUpstream_100424.csv") %>% clean_names(.)
class(wb_ds1)
names(wb_ds1)
head(wb_ds1)
str(wb_ds1)
summary(wb_ds1$num_waterbody_up, na.rm = TRUE)
summary(wb_ds1$dist_nearest_up_wb_km, na.rm = TRUE)
wb_ds1$dist_nearest_up_wb_km <- round(wb_ds1$dist_nearest_up_wb_km, 1)
summary(wb_ds1$dist_nearest_up_wb_km, na.rm = TRUE)
# file below provides a link to waterbody, and subsequently to DFobs data.
StationIDs_UniqLocIDs <- read.csv("data/StationIDs_UniqLocIDs.csv") %>% clean_names(.)
names(StationIDs_UniqLocIDs)
wb_ds2 <- left_join(StationIDs_UniqLocIDs, wb_ds1, by=join_by(uniq_loc_id))
names(wb_ds2)
# from help by = join_by(name == artist)
# station_id_2 and station_id are both long station trend names
DFobs2 <- left_join(DFobs2, wb_ds2, by = join_by(station_id_2==station_id))
names(DFobs2)
DFobs2 <- DFobs2 %>%
mutate(
wbc = case_when(
incl_nhdwb == "yes" ~ "present",
incl_nhdwb != "yes" ~ "absent"
)
)
class(DFobs2$wbc)
DFobs2$wbc <- factor(DFobs2$wbc, levels = c("present", "absent"))
summary(DFobs2$wbc)
# adding binomial wbc, wbc_bin, coded as numeric 0 or 1 similar to Dumelle et al. 2023 coding in National Lake assessment conductivity paper.
DFobs2 <- DFobs2 %>%
mutate(
wbc_bin = case_when(
incl_nhdwb == "yes" ~ 1,
incl_nhdwb != "yes" ~ 0
)
)
class(DFobs2$wbc_bin)
DFbos2 <- as.numeric(DFobs2$wbc_bin)
class(DFobs2$bin_wbc)
summary(DFobs2$dist_nearest_up_wb_km)
DFobs2$dist_nearest_up_wb_km[is.na(DFobs2$dist_nearest_up_wb_km)] <- 0
summary(DFobs2$dist_nearest_up_wb_km)
names(DFobs2)
class(DFobs2)
# note ssn_put_data requires sf object and SSN2 object
j_ssn2 <- SSN2::ssn_put_data(DFobs2,j_ssn1a)
# just doing this assignment so not have to rename objects
j_ssn3 <- j_ssn2
# VARIABLE ADJUSTMENT ZONE 4
### Variables to apply empirical logit transformation
emplog_vars <- c("pct_for_w","pct_imp_w","pct_crop_w","pct_hay_w","pct_grs_w","pct_shrb_w","pct_for_wr","pct_imp_rp_w","pct_crop_wr","pct_hay_wr","pct_grs_wr","pct_shrb_wr","pct_for_c","pct_imp_c","pct_crop_c","pct_hay_c","pct_grs_c", "pct_shrb_c", "pct_for_cr","pct_imp_rp_c","pct_crop_cr","pct_hay_cr","pct_grs_cr","pct_shrb_cr")
# remove geometry so empirical logit can be applied
DFobsz <- st_set_geometry(DFobs2, NULL)
################################################################
################################################################
## transform these variables and put the new values into new columns in DFobs
for(var in emplog_vars){
### create new tranformed data column to preserve the original
new_nm <- paste0(var,"_emplog")
dat_vec_obs <- DFobsz[,var]
# dat_vec_preds <- DFpreds[,var]
#converting to 0-1 range
dat_vec_obs <- dat_vec_obs/100
# dat_vec_preds <- dat_vec_preds/100
# dat_vec[dat_vec == 1] <- .9999
# dat_vec[dat_vec == 0] <- .0001
if(any(dat_vec_obs > 1 | dat_vec_obs < 0)){
cat("ERROR: percentage variables outside logical bounds")
}
small_dat_vec_obs <- dat_vec_obs[dat_vec_obs <1 & dat_vec_obs >0]
# small_dat_vec_preds <- dat_vec_preds[dat_vec_preds <1 & dat_vec_preds >0]
op1_obs <- small_dat_vec_obs
op2_obs<- 1-small_dat_vec_obs
# op1_preds <- small_dat_vec_preds
# op2_preds <- 1-small_dat_vec_preds
## minimum of op1 op2
delt_obs <- min(c(op1_obs,op2_obs))
# delt_preds <- min(c(op1_preds,op2_preds))
## getting set of frequencies
freqs_obs <- NULL
for(i in 1:length(dat_vec_obs)){
if(dat_vec_obs[i] <= delt_obs){
freqs_obs[i] <- delt_obs/2
}else if(dat_vec_obs[i] >= 1- delt_obs){
freqs_obs[i] <- 1-(delt_obs/2)
}else{
freqs_obs[i] <-dat_vec_obs[i]
}
}
# freqs_preds <- NULL
# for(i in 1:length(dat_vec_preds)){
# if(dat_vec_preds[i] <= delt_preds){
# freqs_preds[i] <- delt_preds/2
# }else if(dat_vec_preds[i] >= 1- delt_preds){
# freqs_preds[i] <- 1-(delt_preds/2)
# }else{
# freqs_preds[i] <-dat_vec_preds[i]
# }
# }
##getting logits
logits_obs <- log(freqs_obs/(1-freqs_obs))
DFobsz[,new_nm] <- logits_obs
# logits_preds <- log(freqs_preds/(1-freqs_preds))
# DFpreds[,new_nm] <- logits_preds
}
DFobsz <- DFobsz %>%
mutate(
imp_w_pres = case_when(
pct_imp_w_emplog <= -8.111428 ~ 0,
pct_imp_w_emplog > -8.111428 ~1
)
)
head(DFobsz$imp_w_pres)
head(DFobsz$pct_imp_w)
names(DFobsz)
DFobsz2 <- dplyr::select(DFobsz, c(station_id_2, pct_for_w_emplog:imp_w_pres))
# put transformed covariates in an SF object
DFobs2a <- full_join(DFobs2, DFobsz2, by = join_by(station_id_2))
# put SF object into SSN
j_ssn3 <- SSN2::ssn_put_data(DFobs2a,j_ssn3)
# dummy code 5 vahusb with base being JU, James Upper
vahusb <- dplyr::select(DFobsz, vahusb)
summary(vahusb)
glimpse(vahusb)
vahusb_d <- (data.frame(dummy(vahusb)))
# 5 levels need only n-1 =4 dummy variables, removed base level of JU by dropping first column
vahusb_d <- vahusb_d[c(-1)]
dim(vahusb_d)
head(DFobsz$vahusb)
distinct(vahusb_d)
head(vahusb_d)
str(vahusb_d)
class(vahusb_d)
DFobsz <- cbind(DFobsz,vahusb_d)
names(DFobsz)
X1 <- DFobsz|>
dplyr::select(station_id_2, vahusb_JM, vahusb_JR, vahusb_JA, vahusb_JL) %>%
mutate_at(c('vahusb_JM', 'vahusb_JR', 'vahusb_JA', 'vahusb_JL'), as.numeric)
# X1 can only contain numeric or factor
str(X1)
# put dummy covariates in an SF object
DFobs3a <- full_join(DFobs2a, X1, by = join_by(station_id_2))
names(DFobs3a)
# put SF object into SSN
j_ssn3 <- SSN2::ssn_put_data(DFobs3a,j_ssn3)
```
# Transform Pred Covariates
On 12/16/2024 added binomial wbc, wbc_bin, coded as numeric 0 or 1 similar to Dumelle et al. 2023 coding in National Lake assessment conductivity paper.
On 11/25/2024 have to assign 0's for 31 of 48 preds that had distances of NA and additional covariates.
```{r transform_preds}
# did this assignment so would not have to change all the object names below
preds3 <- preds1
# create same name as in obs models
preds3$tothab <- preds3$tot_hab
preds3$year_f <- as.factor(preds3$year)
preds3$vahusb <- factor(preds3$vahusb, levels = c("JU", "JM", "JR", "JA", "JL"))
summary(preds3$vahusb)
preds3 <- preds3 %>%
mutate(
jl = case_when(
vahusb != "JL" ~ 0,
vahusb == "JL" ~1
)
)
preds3 <- preds3 %>%
mutate(
ju = case_when(
vahusb == "JU" ~ "yes",
.default = "no"
)
)
preds3$ju <- factor(preds3$ju, levels = c("yes","no"))
summary(preds3$ju)
preds3$l_tn <- log(preds3$tn)
preds3$vsci <- round(preds3$vscivcpmi,1)
# WWTP data loaded from obs so comment out
# wwtp_ds1 <- read.csv("E:/R_vdeq_nhdplus/WWTP_VA.csv") %>% clean_names(.)
preds3 <- left_join(preds3, wwtp_ds1, by = join_by(feature_id == comid))
preds3 <- preds3 %>%
mutate(
wwtp = case_when(
wwtp_all_dens_ws > 0 ~ "yes",
wwtp_all_dens_ws == 0 ~ "no"
)
)
preds3$wwtp <- factor(preds3$wwtp, levels = c("yes","no"))
summary(preds3$wwtp)
# loaded from obs so commented out
# Statgo2 Set 2 variables, use RckDepWs
#statsgo_set2 <- read.csv("E:/R_vdeq_nhdplus/STATSGO_Set2_VA.csv") %>% clean_names(.)
names(statsgo_set2)
preds3 <- left_join(preds3, statsgo_set2, by = join_by(feature_id == comid))
# Preds Waterbody data
preds1wb_ds1 <- read.csv("data/PredictionPoints_2019_2020_DistancesUpstream_091924.csv") %>% clean_names(.)
preds2wb_ds1 <- read.csv("data/PredictionPoints_2021_2022_DistancesUpstream_091924.csv") %>% clean_names(.)
predsallwb_ds1 <- bind_rows(preds1wb_ds1, preds2wb_ds1)
class(predsallwb_ds1)
names(predsallwb_ds1)
head(predsallwb_ds1)
str(predsallwb_ds1)
summary(predsallwb_ds1$num_waterbody_up, na.rm = TRUE)
summary(predsallwb_ds1$dist_nearest_up_wb_km, na.rm = TRUE)
predsallwb_ds1$dist_nearest_up_wb_km <- round(predsallwb_ds1$dist_nearest_up_wb_km, 1)
summary(predsallwb_ds1$dist_nearest_up_wb_km, na.rm = TRUE)
summary(predsallwb_ds1$dist_nearest_up_wb_km)
predsallwb_ds1$dist_nearest_up_wb_km[is.na(predsallwb_ds1$dist_nearest_up_wb_km)] <- 0
summary(predsallwb_ds1$dist_nearest_up_wb_km)
# file below provides a link to waterbody, and subsequently to DFobs data so commented out for pred
# StationIDs_UniqLocIDs <- read.csv("E:/R_vdeq_sci/Working/StationIDs_UniqLocIDs.csv") %>% clean_names(.)
#
# names(StationIDs_UniqLocIDs)
#
# wb_ds2 <- left_join(StationIDs_UniqLocIDs, wb_ds1, by=join_by(uniq_loc_id))
# names(wb_ds2)
# from help by = join_by(name == artist)
# station_id_2 and station_id are both long station trend names
preds3 <- left_join(preds3, predsallwb_ds1, by = join_by(station_id_2 == station_id))
names(preds3)
preds3 <- preds3 %>%
mutate(
wbc = case_when(
incl_nhdwb == "yes" ~ "present",
incl_nhdwb != "yes" ~ "absent"
)
)
preds3$wbc <- factor(preds3$wbc, levels = c("present", "absent"))
summary(preds3$wbc)
preds3 <- preds3 %>%
mutate(
wbc_bin = case_when(
incl_nhdwb == "yes" ~ 1,
incl_nhdwb != "yes" ~ 0
)
)
preds3$wbc_bin <- as.numeric(preds3$wbc_bin)
names(preds3)
class(preds3)
# note ssn_put_data requires sf object and SSN2 object
j_ssn3 <- SSN2::ssn_put_data(preds3,j_ssn3, name = "Preds_2019_2022", resize_data = FALSE)
summary(j_ssn3)
# saveRDS(j_ssn3, file = "j_ssn3.rds")
# VARIABLE ADJUSTMENT ZONE 4
### Variables to apply empirical logit transformation
# emplog_vars <- c("pct_for_w","pct_imp_w","pct_crop_w","pct_hay_w","pct_grs_w","pct_shrb_w","pct_for_wr","pct_imp_rp_w","pct_crop_wr","pct_hay_wr","pct_grs_wr","pct_shrb_wr","pct_for_c","pct_imp_c","pct_crop_c","pct_hay_c","pct_grs_c", "pct_shrb_c", "pct_for_cr","pct_imp_rp_c","pct_crop_cr","pct_hay_cr","pct_grs_cr","pct_shrb_cr")
# remove geometry so empirical logit can be applied
predsz <- st_set_geometry(preds3, NULL)
################################################################
################################################################
## transform these variables and put the new values into new columns in preds
for(var in emplog_vars){
### create new tranformed data column to preserve the original
new_nm <- paste0(var,"_emplog")
dat_vec_obs <- predsz[,var]
# dat_vec_preds <- DFpreds[,var]
#converting to 0-1 range
dat_vec_obs <- dat_vec_obs/100
# dat_vec_preds <- dat_vec_preds/100
# dat_vec[dat_vec == 1] <- .9999
# dat_vec[dat_vec == 0] <- .0001
if(any(dat_vec_obs > 1 | dat_vec_obs < 0)){
cat("ERROR: percentage variables outside logical bounds")
}
small_dat_vec_obs <- dat_vec_obs[dat_vec_obs <1 & dat_vec_obs >0]
# small_dat_vec_preds <- dat_vec_preds[dat_vec_preds <1 & dat_vec_preds >0]
op1_obs <- small_dat_vec_obs
op2_obs<- 1-small_dat_vec_obs
# op1_preds <- small_dat_vec_preds
# op2_preds <- 1-small_dat_vec_preds
## minimum of op1 op2
delt_obs <- min(c(op1_obs,op2_obs))
# delt_preds <- min(c(op1_preds,op2_preds))
## getting set of frequencies
freqs_obs <- NULL
for(i in 1:length(dat_vec_obs)){
if(dat_vec_obs[i] <= delt_obs){
freqs_obs[i] <- delt_obs/2
}else if(dat_vec_obs[i] >= 1- delt_obs){
freqs_obs[i] <- 1-(delt_obs/2)
}else{
freqs_obs[i] <-dat_vec_obs[i]
}
}
# freqs_preds <- NULL
# for(i in 1:length(dat_vec_preds)){
# if(dat_vec_preds[i] <= delt_preds){
# freqs_preds[i] <- delt_preds/2
# }else if(dat_vec_preds[i] >= 1- delt_preds){
# freqs_preds[i] <- 1-(delt_preds/2)
# }else{
# freqs_preds[i] <-dat_vec_preds[i]
# }
# }
##getting logits
logits_obs <- log(freqs_obs/(1-freqs_obs))
predsz[,new_nm] <- logits_obs
# logits_preds <- log(freqs_preds/(1-freqs_preds))
# DFpreds[,new_nm] <- logits_preds
}
predsz <- predsz %>%
mutate(
imp_w_pres = case_when(
pct_imp_w_emplog <= -8.111428 ~ 0,
pct_imp_w_emplog > -8.111428 ~1
)
)
head(predsz$imp_w_pres)
head(predsz$pct_imp_w)
names(predsz)
predsz2 <- dplyr::select(predsz, c(station_id_2, pct_for_w_emplog:imp_w_pres))
# put transformed covariates in an SF object
preds3a <- full_join(preds3, predsz2, by = join_by(station_id_2))
summary(preds3a$pct_imp_w_emplog)
class(preds3a)
# saveRDS(preds3a, file = "preds3a.rds")
# put SF object into SSN
j_ssn3 <- SSN2::ssn_put_data(preds3a,j_ssn3, name = "Preds_2019_2022", resize_data = FALSE)
summary(j_ssn3$preds$Preds_2019_2022$pct_imp_w_emplog)
# dummy code 5 vahusb with base being JU, James Upper
vahusb <- dplyr::select(predsz, vahusb)
summary(vahusb)
glimpse(vahusb)
vahusb_d <- (data.frame(dummy(vahusb)))
# 5 levels need only n-1 =4 dummy variables, removed base level of JU by dropping first column
vahusb_d <- vahusb_d[c(-1)]
dim(vahusb_d)
head(predsz$vahusb)
distinct(vahusb_d)
head(vahusb_d)
str(vahusb_d)
class(vahusb_d)
predsz <- cbind(predsz,vahusb_d)
names(predsz)
P1 <- predsz|>
dplyr::select(station_id_2, vahusb_JM, vahusb_JR, vahusb_JA, vahusb_JL) %>%
mutate_at(c('vahusb_JM', 'vahusb_JR', 'vahusb_JA', 'vahusb_JL'), as.numeric)
str(P1)
# P1 can only contain numeric or factor for 22 preds
# put dummy covariates in an SF object
preds3b <- full_join(preds3a, P1, by = join_by(station_id_2))
names(preds3b)
# put SF object into SSN
j_ssn3 <- SSN2::ssn_put_data(preds3b,j_ssn3, "Preds_2019_2022", resize_data = FALSE)
summary(j_ssn3)
# Check that afv_area is in SSN object
str(j_ssn3$preds$Preds_2019_2022$afv_area)
```
# Create Distance Matrix
When using a new SSN object, such as James_071024_pluspreds.ssn have to create distance matrices. Ran first set of code and now see a distance matrix folder in where the SSN object is stored at:
ssn_object/James_071024_pluspreds.ssn and see sub folders for obs and Preds_2019_2022 subfolder.
Already run so commented out.
```{r distance_matrix}
# Distance matrix for obs and first set of prediction points from 2019-2022
# SSN2::ssn_create_distmat(j_ssn3, predpts = "Preds_2019_2022", overwrite = TRUE)
```
## Torgegrams DO, TN and Partitioning
In the coefficent plot, the flip-flop in instream stressor, being dissolved oxygen at Watershed and Watershed-Riparian, and then total nitrogen for Catchment and Catchment-Riparian suggests that different stressors have their effects on stream condition index at different spatial extents. I thought of following that up in two ways. First, see if semivariograms and Torgegrams of dissolved oxygen and total nitrogen show different ranges, the distance at which observations are independent. My hypothesis is that dissolved oxygen will have a larger range than total nitrogen. Second, I want to see if I update the watershed model to include all 3 instream stressors does that beat the current watershed model having only dissolved oxygen.
On 05/03/2024, not seeing that much spatial structure in DO or Log(TN). On 07/12/2024 still need to test if 3 instream stressors in a model outperforms just DO in the model. Try subsetting ssn objectby ju factor and then making separate Torgegrams.
```{r do_tn_toregrams}
#
# class(j_ssn3)
# ztg <- SSN2::Torgegram(vscivcpmi ~ 1, j_ssn3, type = c("flowcon", "flowuncon", "euclid"))
# # SSN2::plot.Torgegram(ztg)
# torg <- ztg[["euclid"]]
# names(torg)
# class(torg)
# ggplot(torg, aes(x=dist, y=gamma,size=np)) + geom_point()
#
# summary(j_ssn3$obs$ju)
# glimpse(j_ssn3$obs$ju)
#
# #ju yes has 71 obs and no has 128 obs
# # esv_separate <- map(c(yes, no), ~ SSN2::Torgegram(vscivcpmi ~ 1, j_ssn3 |> filter(ju == .x)))
# #
# # esv_separate
# #
# # # plot(esv_separate[[1]]) not helpful
# #
# # esv_ju_yes <- esv_separate[[1]]
# # esv_ju_no <- esv_separate[[2]]
# #
# # names(esv_ju_yes)
# #
# # esv1 <- ggplot(esv_ju_yes, aes(x=dist, y=gamma, size=np)) + geom_point() + labs(x = "Euclidean Distance (m)", y = "Semivariance", title = "JU yes") + scale_x_continuous(labels=comma)
# #
# # esv2 <- ggplot(esv_ju_no, aes(x=dist, y=gamma, size=np)) + geom_point() + labs(x = "Euclidean Distance (m)", y = "Semivariance", title = "JU no") + scale_x_continuous(labels=comma)
# #
#
#
#
# ztg <- SSN2::Torgegram(l_tn ~1, j_ssn3, type = c("flowcon", "flowuncon", "euclid"))
# plot(ztg, main = "Torgegram Log(TN)")
# plot(ztg, type = "flowcon", main = "Torgegram Log(TN)")
# plot(ztg, type = "flowuncon", main = "Torgegram Log(TN)")
# plot(ztg, type = "euclid", main = "Torgegram Log(TN)")
# plot(ztg, separate = TRUE, main = "Torgegram Log(TN)")
#
# flowcon <- ztg[["flowcon"]]
# ggplot(flowcon, aes(x=dist, y=gamma)) + geom_point()
# flowcon$dist_type <- "flow_conn"
#
# flowuncon <- ztg[["flowuncon"]]
# names(flowuncon)
# class(flowuncon)
# ggplot(flowuncon, aes(x=dist, y=gamma)) + geom_point()
# flowuncon$dist_type <- "flow_unconn"
#
# euclid <- ztg[["euclid"]]
# names(euclid)
# class(euclid)
# ggplot(euclid, aes(x=dist, y=gamma)) + geom_point()
# euclid$dist_type <- "euclid"
#
# torg <- bind_rows(flowuncon,euclid)
# ggplot(torg, aes(x=dist, y=gamma, colour = dist_type)) + geom_point()
#
# # test if Torgegram would work using similar code below
# # esv_separate <- map(c(2001, 2006), ~ esv(log_Zn ~ log_dist2road, moss |> filter(year == .x)))
#
```
# Ws-Wq Model
This is the SSN Ws-Wq model that was evaluated in script 05. Here is it run again and augmented with diagnostic and fitted values. The parallel coordinate plot of the augmented data frame was grouped by the 5 vahusb. The clustering of the JU variables in that plot is what suggested using the partition factor. See the description of partition factor under section 4.1.3 Advanced Features in An Introduction to Spatial Stream Network Modeling in R using SSN2.
On 04/19/2024 kept tail down exponential and changed Euclidean to exponential based on models_yintercept.csv table.
On 04/10/2023 evaluated model using vsci, untransformed, and added imp_w_pres, a binary presence indicator of impervious cover. This was approach was used by Dumelle et al. 2023 in their spatial modeling of NLA conductivity.
```{r wswq_ssn_obs_fitted}
ssn_wswq_reml1 <- ssn_lm(
formula = vsci ~ pct_imp_w_emplog + elev_ws + do + vahusb_JL,
ssn.object = j_ssn3,
tailup_type = "none",
taildown_type = "exponential",
euclid_type = "exponential",
nugget_type = "nugget",
estmethod = "reml",
additive = "afv_area"
)
summary(ssn_wswq_reml1)
varcomp(ssn_wswq_reml1)
loocv(ssn_wswq_reml1)
#plot(ssn_wswq_reml1, which = c(1:6))
tidy(ssn_wswq_reml1)
aug_ssn_wswq_reml1 <- augment(ssn_wswq_reml1, drop = FALSE)
class(aug_ssn_wswq_reml1)
names(aug_ssn_wswq_reml1)
mapview(aug_ssn_wswq_reml1)
mapview(aug_ssn_wswq_reml1, zcol = ".std.resid", cex = ".std.resid", alpha.regions = .8, legend = TRUE, popup = popupTable(aug_ssn_wswq_reml1, zcol = c(".std.resid")))# + mapview(stream)
# parallel coordinate plot
# names(aug_ssn_wswq_reml1)
pcpobs <- ggparcoord(data = aug_ssn_wswq_reml1, columns = c(136,155,38,161,165,204,166,232), groupColumn = "vahusb", scale = "std", showPoint = TRUE, title = "Observed Sites", alphaLines = 0.8, boxplot = FALSE)
pcpobs
ggplot(aug_ssn_wswq_reml1, aes(x = pct_imp_w_emplog, y = .fitted, colour = vahusb)) + geom_point() + geom_smooth(method = "lm")
ggplot(aug_ssn_wswq_reml1, aes(x = vahusb, y = .fitted)) + geom_boxplot()
resid_ssn1 <- as.data.frame(aug_ssn_wswq_reml1)|>
dplyr::select(station_id_2, .fitted, .resid, .std.resid)
class(resid_ssn1)
names(resid_ssn1)
ssn_wswq_fit_reml1 <- dplyr::select(aug_ssn_wswq_reml1, c(station_id, station_id_2, year, vahusb, do, tn, tothab, l_tn, vscivcpmi, pct_imp_c, pct_imp_w, elev_ws, pct_imp_w_emplog, vsci, .fitted, .std.resid))
# saveRDS(ssn_wswq_fit_reml1, file = "outputs/ssn_wswq_fit_reml1.rds")
# st_write(ssn_wswq_fit_reml1, dsn = file.path(getwd(), "ssn_wswq_fit_reml1.gpkg"), layer = "ssn_wswq_fit_reml1", driver = "GPKG", quiet = FALSE, append = FALSE)
# put selected covariates in an SF object
DFobs4 <- full_join(DFobs3a, resid_ssn1, by = join_by(station_id_2))
names(DFobs4)
# put SF object into SSN
j_ssn4 <- SSN2::ssn_put_data(DFobs4,j_ssn3)
res_tg1 <- SSN2::Torgegram(.std.resid ~ 1, j_ssn4, type = c("flowuncon", "euclid"))
plot(res_tg1, main = "Torgegram of Standardized Residuals from Watershed SSN")
```
# Ws-Wq Partitioned
The z4 model below has the partitioned factor of ju, Upper James. The models z1-z3 tested different coding and how different fixed and random effects compared to ssn_wswq_reml1. Finally, z4 model had a better fit, based on AIcc, than ssn_wswq_reml1. Also, the RMSPE is slightly smaller for the z4 model, and its cor2 is slightly larger.
On 12/26/2024 commented out models z1-z3
On 11/25/2024 why does z4ssn_wswq_ml1 model give much more reasonable range estimates than reml model?
On 07/03/2024 need to look at diagnostic plots of partition model. Diagnostic plots are saved as Word files at E:\R_vdeq_sci\Working\Data\neptune_analysis\scripts_by_basin.
On 06/28/2024, I coded for a partition factor base on JU subbasin versus non-JU subasins , partly because parallel coordinate plot showed JU to differ in covariates and vsci from rest of subbasins. Results from dummy coded model above match factor coded model below. Also, on 06/20/2024 compared the Watershed ssn model to a model with a random effect of year. The Watershed ssn model had a much lower AICc than the model with a random effect of year.
```{r wswq_ssn_partition}
# z1 model shows that jl as factor gives same results at dummy coded vahusb_JL
# z1ssn_wswq_reml1 <- ssn_lm(
# formula = vsci ~ pct_imp_w_emplog + elev_ws + do + jl,
# ssn.object = j_ssn3,
# tailup_type = "none",
# taildown_type = "exponential",
# euclid_type = "exponential",
# nugget_type = "nugget",
# estmethod = "reml",
# additive = "afv_area"
# )
# summary(z1ssn_wswq_reml1)
# random effect of year
# z2ssn_wswq_reml1 <- ssn_lm(
# formula = vsci ~ pct_imp_w_emplog + elev_ws + do + vahusb_JL,
# ssn.object = j_ssn3,
# tailup_type = "none",
# taildown_type = "exponential",
# euclid_type = "exponential",
# nugget_type = "nugget",
# estmethod = "reml",
# additive = "afv_area",
# random = ~ year_f
# )
#
# summary(z2ssn_wswq_reml1)
# varcomp(z2ssn_wswq_reml1)
# loocv(z2ssn_wswq_reml1)
#plot(z2ssn_wswq_reml1, which = c(1:6))
#
# glances(ssn_wswq_reml1,z2ssn_wswq_reml1)
# AICc ssn_ws_reml1 1415 vs. AICc z2ssn_wswq_reml1 1424
# fixed effect of year
# z3ssn_wswq_reml1 <- ssn_lm(
# formula = vsci ~ pct_imp_w_emplog + elev_ws + do + vahusb_JL + year_f,
# ssn.object = j_ssn3,
# tailup_type = "none",
# taildown_type = "exponential",
# euclid_type = "exponential",
# nugget_type = "nugget",
# estmethod = "reml",
# additive = "afv_area"
# )
#
# summary(z3ssn_wswq_reml1)
# varcomp(z3ssn_wswq_reml1)
# loocv(z3ssn_wswq_reml1)
#plot(z3ssn_wswq_reml1, which = c(1:6))
# glances(ssn_wswq_reml1,z2ssn_wswq_reml1,z3ssn_wswq_reml1)
# AICc ssn_ws_reml1 1415 vs. AICc z2ssn_wswq_reml1 1423 vs AICc z3ssn 1327
# RMSPE/cor2 ssn_ws_reml1 8/38/0.41 vs. RMSPE/cor2 z2ssn_wswq_reml1 8.46/0.40 vs RMSPE/cor2 z3ssn 8.70/0.378
# On 06/28/2024 partition factor on ju motivated by parallel coordinate plots of obs and preds. Partition factor, from help, affects covariance portion of the model while fixed effects affect the mean portion. Therefore I think I can compare 2 models based on AICc derived from reml.
z4ssn_wswq_reml1 <- ssn_lm(
formula = vsci ~ pct_imp_w_emplog + elev_ws + do + vahusb_JL,
ssn.object = j_ssn3,
tailup_type = "none",
taildown_type = "exponential",
euclid_type = "exponential",
nugget_type = "nugget",
estmethod = "reml",
additive = "afv_area",
partition_factor = ~ ju
)
summary(z4ssn_wswq_reml1)
varcomp(z4ssn_wswq_reml1)
loocv(z4ssn_wswq_reml1) %>% print(n = Inf)
glances(ssn_wswq_reml1,z4ssn_wswq_reml1)
#plot(z4ssn_wswq_reml1, which = c(1:6))
tidy(z4ssn_wswq_reml1)
aug_z4_wswq_reml1 <- augment(z4ssn_wswq_reml1, drop = FALSE)
summary(aug_z4_wswq_reml1$.std.resid)
mapview(aug_z4_wswq_reml1, zcol = ".std.resid", cex = ".std.resid", alpha.regions = .8, legend = TRUE, popup = popupTable(aug_ssn_wswq_reml1, zcol = c(".std.resid")))
aug_z4_wswq_reml1 <- dplyr::select(aug_z4_wswq_reml1, c(station_id, station_id_2, year, vahusb, do, tn, tothab, l_tn, vscivcpmi, pct_imp_c, pct_imp_w, elev_ws, pct_imp_w_emplog, vsci, .fitted, .std.resid))
# saveRDS(aug_z4_wswq_reml1, file = "outputs/aug_z4_wswq_reml1.rds")
# st_write(aug_z4_wswq_reml1, dsn = file.path(getwd(), "aug_z4_wswq_reml1.gpkg"), layer = "aug_z4_wswq_reml1", driver = "GPKG", quiet = FALSE, append=FALSE)
# B/c want to compare predictions from models having different covariates specifying estimation method as ml
z4ssn_wswq_ml1 <- ssn_lm(
formula = vsci ~ pct_imp_w_emplog + elev_ws + do + vahusb_JL,
ssn.object = j_ssn3,
tailup_type = "none",
taildown_type = "exponential",
euclid_type = "exponential",
nugget_type = "nugget",
estmethod = "ml",
additive = "afv_area",
partition_factor = ~ ju
)
summary(z4ssn_wswq_ml1)
varcomp(z4ssn_wswq_ml1)
loocv(z4ssn_wswq_ml1) %>% print(n = Inf)
```
# TLH fitted to obs interval plot
On 12/23/2024 commenting this code out b/c this is not the model I need for fitted interval obs plot.
On 12/16/2024 first using a4 reml model and will compare to z5 reml model with distance covariate as that provides a better fit based on smaller AICc value.
```{r fitted_interval_obs_plot}
# z4 model was run above
## fit model
# z4ssn_wswq_ml1 <- ssn_lm(
# formula = vsci ~ pct_imp_w_emplog + elev_ws + do + vahusb_JL,
# ssn.object = j_ssn3,
# tailup_type = "none",
# taildown_type = "exponential",
# euclid_type = "exponential",
# nugget_type = "nugget",
# estmethod = "ml",
# additive = "afv_area",
# partition_factor = ~ju