-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathfinetune.py
599 lines (497 loc) · 25.1 KB
/
finetune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
import os
import argparse
import time
from tqdm import tqdm
from torch.distributions import Normal
import torch.nn.functional as F
from data import get_dataset, fix_legacy_dict
from torch.utils.data import DataLoader
import numpy as np
from torch.nn.parallel import DistributedDataParallel as DDP
from critic import Discriminator, ValueCelebA, Value
import torch
from torch.utils.data.distributed import DistributedSampler
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms
from torchvision.utils import save_image, make_grid
unsqueeze3x = lambda x: x[..., None, None, None]
import random
# os.environ["CUDA_VISIBLE_DEVICES"]="0"
from model import Model
from config import diffusion_config
def _map_gpu(gpu):
if gpu == 'cuda':
return lambda x: x.cuda()
else:
return lambda x: x.to(torch.device(gpu))
def rescale(X, batch=True):
return (X - (-1)) / (2)
def rescale_train(X, batch = True):
return X
def std_normal(size):
return map_gpu(torch.normal(0, 1, size=size))
def print_size(net):
"""
Print the number of parameters of a network
"""
if net is not None and isinstance(net, torch.nn.Module):
module_parameters = filter(lambda p: p.requires_grad, net.parameters())
params = sum([np.prod(p.size()) for p in module_parameters])
print("{} Parameters: {:.6f}M".format(
net.__class__.__name__, params / 1e6), flush=True)
def calc_diffusion_hyperparams(T, beta_0, beta_T):
"""
Compute diffusion process hyperparameters
Parameters:
T (int): number of diffusion steps
beta_0 and beta_T (float): beta schedule start/end value,
where any beta_t in the middle is linearly interpolated
Returns:
a dictionary of diffusion hyperparameters including:
T (int), Beta/Alpha/Alpha_bar/Sigma (torch.tensor on cpu, shape=(T, ))
"""
Beta = torch.linspace(beta_0, beta_T, T)
Alpha = 1 - Beta
Alpha_bar = Alpha + 0
Beta_tilde = Beta + 0
for t in range(1, T):
Alpha_bar[t] *= Alpha_bar[t-1]
Beta_tilde[t] *= (1-Alpha_bar[t-1]) / (1-Alpha_bar[t])
Sigma = torch.sqrt(Beta_tilde)
_dh = {}
_dh["T"], _dh["Beta"], _dh["Alpha"], _dh["Alpha_bar"], _dh["Sigma"] = T, Beta, Alpha, Alpha_bar, Sigma
diffusion_hyperparams = _dh
return diffusion_hyperparams
def bisearch(f, domain, target, eps=1e-8):
"""
find smallest x such that f(x) > target
Parameters:
f (function): function
domain (tuple): x in (left, right)
target (float): target value
Returns:
x (float)
"""
#
sign = -1 if target < 0 else 1
left, right = domain
for _ in range(1000):
x = (left + right) / 2
if f(x) < target:
right = x
elif f(x) > (1 + sign * eps) * target:
left = x
else:
break
return x
def get_VAR_noise(S, schedule='linear'):
"""
Compute VAR noise levels
Parameters:
S (int): approximante diffusion process length
schedule (str): linear or quadratic
Returns:
np array of noise levels, size = (S, )
"""
target = np.prod(1 - np.linspace(diffusion_config["beta_0"], diffusion_config["beta_T"], diffusion_config["T"]))
if schedule == 'linear':
g = lambda x: np.linspace(diffusion_config["beta_0"], x, S)
domain = (diffusion_config["beta_0"], 0.99)
elif schedule == 'quadratic':
g = lambda x: np.array([diffusion_config["beta_0"] * (1+i*x) ** 2 for i in range(S)])
domain = (0.0, 0.95 / np.sqrt(diffusion_config["beta_0"]) / S)
else:
raise NotImplementedError
f = lambda x: np.prod(1 - g(x))
largest_var = bisearch(f, domain, target, eps=1e-4)
return g(largest_var)
def _log_gamma(x):
# Gamma(x+1) ~= sqrt(2\pi x) * (x/e)^x (1 + 1 / 12x)
y = x - 1
return np.log(2 * np.pi * y) / 2 + y * (np.log(y) - 1) + np.log(1 + 1 / (12 * y))
def _log_cont_noise(t, beta_0, beta_T, T):
# We want log_cont_noise(t, beta_0, beta_T, T) ~= np.log(Alpha_bar[-1].numpy())
delta_beta = (beta_T - beta_0) / (T - 1)
_c = (1.0 - beta_0) / delta_beta
t_1 = t + 1
return t_1 * np.log(delta_beta) + _log_gamma(_c + 1) - _log_gamma(_c - t_1 + 1)
# VAR
def _precompute_VAR_steps(diffusion_hyperparams, user_defined_eta):
_dh = diffusion_hyperparams
T, Alpha, Alpha_bar, Beta = _dh["T"], _dh["Alpha"], _dh["Alpha_bar"], _dh["Beta"]
assert len(Alpha_bar) == T
# compute diffusion hyperparameters for user defined noise
T_user = len(user_defined_eta)
Beta_tilde = map_gpu(torch.from_numpy(user_defined_eta)).to(torch.float32)
Gamma_bar = 1 - Beta_tilde
for t in range(1, T_user):
Gamma_bar[t] *= Gamma_bar[t-1]
assert Gamma_bar[0] <= Alpha_bar[0] and Gamma_bar[-1] >= Alpha_bar[-1]
continuous_steps = []
with torch.no_grad():
for t in range(T_user-1, -1, -1):
t_adapted = None
for i in range(T - 1):
if Alpha_bar[i] >= Gamma_bar[t] > Alpha_bar[i+1]:
t_adapted = bisearch(f=lambda _t: _log_cont_noise(_t, Beta[0].cpu().numpy(), Beta[-1].cpu().numpy(), T),
domain=(i-0.01, i+1.01),
target=np.log(Gamma_bar[t].cpu().numpy()))
break
if t_adapted is None:
t_adapted = T - 1
continuous_steps.append(t_adapted) # must be decreasing
return continuous_steps
def VAR_sampling(net, size, diffusion_hyperparams, user_defined_eta, kappa, continuous_steps):
"""
Perform the complete sampling step according to user defined variances
Parameters:
net (torch network): the model
size (tuple): size of tensor to be generated,
usually is (number of audios to generate, channels=1, length of audio)
diffusion_hyperparams (dict): dictionary of diffusion hyperparameters returned by calc_diffusion_hyperparams
note, the tensors need to be cuda tensors
user_defined_eta (np.array): User defined noise
kappa (float): factor multipled over sigma, between 0 and 1
continuous_steps (list): continuous steps computed from user_defined_eta
Returns:
the generated images in torch.tensor, shape=size
"""
# net.eval()
_dh = diffusion_hyperparams
T, Alpha, Alpha_bar, Beta = _dh["T"], _dh["Alpha"], _dh["Alpha_bar"], _dh["Beta"]
assert len(Alpha_bar) == T
assert len(size) == 4
assert 0.0 <= kappa <= 1.0
# compute diffusion hyperparameters for user defined noise
T_user = len(user_defined_eta)
Beta_tilde = map_gpu(torch.from_numpy(user_defined_eta)).to(torch.float32)
Gamma_bar = 1 - Beta_tilde
for t in range(1, T_user):
Gamma_bar[t] *= Gamma_bar[t-1]
assert Gamma_bar[0] <= Alpha_bar[0] and Gamma_bar[-1] >= Alpha_bar[-1]
# print('begin sampling, total number of reverse steps = %s' % T_user)
x = std_normal(size)
x_seq = [x.detach().clone()]
log_prob_list = []
with torch.no_grad():
for i, tau in enumerate(continuous_steps):
diffusion_steps = tau * map_gpu(torch.ones(size[0]))
# print(diffusion_steps.item())
epsilon_theta = net(x, diffusion_steps)
# epsilon_theta1 = net(x, diffusion_steps)
# print(epsilon_theta[0,0,0,0] == epsilon_theta1[0,0,0,0])
if i == T_user - 1: # the next step is to generate x_0
assert abs(tau) < 0.1
alpha_next = torch.tensor(1.0)
sigma = torch.tensor(0.0)
else:
alpha_next = Gamma_bar[T_user-1-i - 1]
sigma = kappa * torch.sqrt((1-alpha_next) / (1-Gamma_bar[T_user-1-i]) * (1 - Gamma_bar[T_user-1-i] / alpha_next))
x *= torch.sqrt(alpha_next / Gamma_bar[T_user-1-i]) # x_prev multiplier
c = torch.sqrt(1 - alpha_next - sigma ** 2) - torch.sqrt(1 - Gamma_bar[T_user-1-i]) * torch.sqrt(alpha_next / Gamma_bar[T_user-1-i]) # theta multiplier
pred_mean = x + c*epsilon_theta
if i == T_user - 1:
x += c * epsilon_theta + 0.001 * std_normal(size)
pred_std = map_gpu(unsqueeze3x(torch.tensor([0.001])))
else:
x += c * epsilon_theta + sigma * std_normal(size)
pred_std = map_gpu(unsqueeze3x(sigma))
dist = Normal(pred_mean, pred_std)
log_prob = dist.log_prob(x.detach().clone()).mean(dim = -1).mean(dim = -1).mean(dim = -1)
log_prob_list.append(log_prob)
# pred_list.append(epsilon_theta.detach().clone())
x_seq.append(x.detach().clone())
return x_seq, log_prob_list
def VAR_get_params(size, diffusion_hyperparams, user_defined_eta, kappa, continuous_steps):
_dh = diffusion_hyperparams
T, Alpha, Alpha_bar, Beta = _dh["T"], _dh["Alpha"], _dh["Alpha_bar"], _dh["Beta"]
assert len(Alpha_bar) == T
assert len(size) == 4
assert 0.0 <= kappa <= 1.0
# compute diffusion hyperparameters for user defined noise
T_user = len(user_defined_eta)
Beta_tilde = map_gpu(torch.from_numpy(user_defined_eta)).to(torch.float32)
Gamma_bar = 1 - Beta_tilde
for t in range(1, T_user):
Gamma_bar[t] *= Gamma_bar[t-1]
assert Gamma_bar[0] <= Alpha_bar[0] and Gamma_bar[-1] >= Alpha_bar[-1]
# print('begin sampling, total number of reverse steps = %s' % T_user)
x_prev_multiplier = torch.zeros(T_user)
theta_multiplier = torch.zeros(T_user)
std = torch.zeros(T_user)
diffusion_steps_list = torch.zeros(T_user)
for i, tau in enumerate(continuous_steps):
diffusion_steps_list[i] = tau
if i == T_user - 1: # the next step is to generate x_0
assert abs(tau) < 0.1
alpha_next = torch.tensor(1.0)
sigma = torch.tensor(0.0)
else:
alpha_next = Gamma_bar[T_user-1-i - 1]
sigma = kappa * torch.sqrt((1-alpha_next) / (1-Gamma_bar[T_user-1-i]) * (1 - Gamma_bar[T_user-1-i] / alpha_next))
x_prev_multiplier[i] = torch.sqrt(alpha_next / Gamma_bar[T_user-1-i])
theta_multiplier[i] = torch.sqrt(1 - alpha_next - sigma ** 2) - torch.sqrt(1 - Gamma_bar[T_user-1-i]) * torch.sqrt(alpha_next / Gamma_bar[T_user-1-i])
if i == T_user - 1:
std[i] = 0.001
else:
std[i] = sigma
# x = std_normal(size)
# with torch.no_grad():
# for i, tau in enumerate(continuous_steps):
# diffusion_steps = tau * map_gpu(torch.ones(size[0])) # shape ([bs])
# epsilon_theta = net(x, diffusion_steps)
# x = x*x_prev_multiplier[i] + theta_multiplier[i]*epsilon_theta + std[i]*std_normal(size)
return map_gpu(x_prev_multiplier), map_gpu(theta_multiplier), map_gpu(std), map_gpu(diffusion_steps_list)
def VAR_log_prob(net, x_prev, x_next, t, x_prev_multiplier, theta_multiplier, std, diffusion_steps_list, x_seq, log_prob_tensor):
# net.eval()
# net.train()
diffusion_steps = diffusion_steps_list[t] # shape ([bs])
epsilon_theta = net(x_prev, diffusion_steps)
# epsilon_theta_seq = net(torch.cat(x_seq[:10]), diffusion_steps)
pred_mean = x_prev*unsqueeze3x(x_prev_multiplier[t]) + unsqueeze3x(theta_multiplier[t])*epsilon_theta
pred_std = unsqueeze3x(std[t])
dist = Normal(pred_mean, pred_std)
log_prob = dist.log_prob(x_next.detach()).mean(dim = -1).mean(dim = -1).mean(dim = -1)
return log_prob
def train_one_epoch(net, dataloader, optimizer, f, v, optimizer_fstar, optimizer_v, continuous_steps, diffusion_hyperparams, size, user_defined_eta, kappa, args, train, n_critic, n_generator):
# buffer
state_dict = {}
state_dict['state'] = map_gpu(torch.FloatTensor())
state_dict['next_state'] = map_gpu(torch.FloatTensor())
state_dict['timestep'] = map_gpu(torch.LongTensor())
state_dict['final'] = map_gpu(torch.FloatTensor())
n_steps = args.S
# n_critic = 5
# n_generator = 10
# net.eval()
# net.train()
x_prev_multiplier, theta_multiplier, std, diffusion_steps_list = VAR_get_params(size, diffusion_hyperparams, user_defined_eta, kappa, continuous_steps)
def update_f_v(x_seq, img, state_dict):
x0 = x_seq[-1]
f.train()
v.train()
# take the last s_0 to compute f; then update v(s_0) - v(s_T)
# f = fstar()
# optimizer_fstar = optim.RMSprop(f.parameters(), lr=1e-3)
output = f(rescale_train(torch.cat((img.detach(),x0.detach()),0)))
d_loss = output[:x0.shape[0]].mean()-output[x0.shape[0]:].mean()
# print('mean check0', output[:x0.shape[0]].mean())
# print('mean check1', output[x0.shape[0]:].mean())
# print('d loss', d_loss)
d_loss.backward()
permutation = torch.randperm(args.batchsize * n_steps)
# for count in range(0, n_steps*args.batchsize, n_steps*args.batchsize):
# newest data
# print(state_dict['state'].shape[0])
# print(args.batchsize)
indices = permutation + (state_dict['state'].shape[0] - (args.batchsize * n_steps))
v_loss = F.mse_loss(v(state_dict['state'][indices], state_dict['timestep'][indices]), f(rescale_train(state_dict['final'][indices])))*n_steps
v_loss.backward()
# if args.local_rank == 0: print(v_loss/10)
optimizer_v.step()
optimizer_v.zero_grad()
optimizer_fstar.step()
optimizer_fstar.zero_grad()
return f(rescale_train(torch.cat((img.detach(),x0.detach())),0))[x0.shape[0]:]
for step, (images, labels) in enumerate(dataloader):
assert (images.max().item() <= 1) and (0 <= images.min().item())
# net.train()
x_seq, log_prob_list = VAR_sampling(net, size,
diffusion_hyperparams,
user_defined_eta,
kappa=generation_param["kappa"],
continuous_steps=continuous_steps)
log_prob_tensor = torch.cat(log_prob_list)
for t in range(n_steps):
state_dict['state'] = torch.cat((state_dict['state'],x_seq[t].detach()))
state_dict['next_state'] = torch.cat((state_dict['next_state'],x_seq[t+1].detach()))
state_dict['timestep'] = torch.cat((state_dict['timestep'], map_gpu(torch.tensor([t]*args.batchsize))))
state_dict['final']= torch.cat((state_dict['final'],x_seq[-1].detach()))
# test
# pred_recalc = VAR_log_prob(net, state_dict['state'][:4], state_dict['next_state'][:4],state_dict['timestep'][:4], x_prev_multiplier, theta_multiplier, std, diffusion_steps_list, x_seq, log_prob_tensor)
images = 2 * map_gpu(images)- 1
images = map_gpu(images)
# test
f_adv = update_f_v(x_seq, images, state_dict)
# test_adv = f(rescale_train(state_dict['final']))
norm = torch.tensor(0.0)
if (step+1)%n_critic == 0:
permutation = torch.randperm(state_dict['state'].shape[0])
for m in range(0, args.batchsize*n_generator, args.batchsize):
optimizer.zero_grad()
indices = permutation[m:m + args.batchsize]
with torch.no_grad():
adv = (f(rescale_train(state_dict['final'][indices]))-v(state_dict['state'][indices],state_dict['timestep'][indices])).detach().squeeze()
if train == True:
with torch.enable_grad():
log_prob_t = VAR_log_prob(net, state_dict['state'][indices], state_dict['next_state'][indices],state_dict['timestep'][indices], x_prev_multiplier, theta_multiplier, std, diffusion_steps_list, x_seq, log_prob_tensor)
loss = (adv * log_prob_t).mean()
loss.backward()
norm = torch.nn.utils.clip_grad_norm_(net.parameters(), 0.1)
optimizer.step()
# ema.update()
state_dict = {}
state_dict['state'] = map_gpu(torch.FloatTensor())
state_dict['next_state'] = map_gpu(torch.FloatTensor())
state_dict['timestep'] = map_gpu(torch.LongTensor())
state_dict['final'] = map_gpu(torch.FloatTensor())
if (step+1) % 10 == 0:
if args.local_rank == 0:
print(step)
with torch.no_grad():
output = f(rescale_train(torch.cat((x_seq[-1].detach(),images.detach()),0)))
val_loss = output[:x_seq[-1].shape[0]].mean()-output[x_seq[-1].shape[0]:].mean()
print("val",val_loss.item())
print('norm', norm.item())
print('mean', output[:x_seq[-1].shape[0]].mean().item())
# if (step+1) % 200 == 0:
# save_image(make_grid(rescale(x_seq[-1])[:64]), fp=os.path.join('generated', '{}_test_image.jpg'.format(output_name)))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
# dataset and model
parser.add_argument('-name', '--name', type=str, default = 'cifar10', choices=["cifar10", "celeba64"],
help='Name of experiment')
parser.add_argument('-n_channels', '--n_channels', type = int, default = '3')
parser.add_argument('-img_shape', '--img_shape', type = int, default = '32', choices = [32, 64])
parser.add_argument('-ema', '--ema', help='Whether use ema', default = True)
# fast generation parameters
parser.add_argument('-approxdiff', '--approxdiff', type=str, default = 'VAR', choices=['STD', 'STEP', 'VAR'], help='approximate diffusion process')
parser.add_argument('-kappa', '--kappa', type=float, default=1.0, help='factor to be multiplied to sigma')
parser.add_argument('-S', '--S', type=int, default=10, help='number of steps')
parser.add_argument('-schedule', '--schedule', type=str, choices=['linear', 'quadratic'], default = 'quadratic', help='noise level schedules')
# training parameters
parser.add_argument('-dataset-path', '--dataset-path', type=str, default = './data')
parser.add_argument('--n_epochs', type=int, help='Number of epochs', default = 1)
parser.add_argument('-bs', '--batchsize', type=int, default=128, help='Batchsize of generation')
parser.add_argument('-gpu', '--gpu', type=str, default='cuda', choices=['cuda']+[str(i) for i in range(16)], help='gpu device')
parser.add_argument('-n_critic', type=int, default=5, help='number of critic updates per step')
parser.add_argument('-n_generator', type=int, default=10, help='number of generator updates per step')
# learning rate
parser.add_argument('-lr', '--lr', type=float, default=1e-6, help='learning rate')
parser.add_argument('-v_lr', '--v_lr', type=float, default=1e-4, help='learning rate of value func')
parser.add_argument('-f_lr', '--f_lr', type=float, default=1e-4, help='learning rate of discriminator')
parser.add_argument('--local_rank', default=0, type=int)
parser.add_argument('--seed', default=112233, type=int)
args = parser.parse_args()
torch.backends.cudnn.deterministic = True
# print(args.local_rank)
args.gpu = "cuda:{}".format(args.local_rank)
torch.cuda.set_device(args.gpu)
torch.manual_seed(args.seed + args.local_rank)
np.random.seed(args.seed + args.local_rank)
torch.backends.cudnn.benchmark = False
torch.cuda.manual_seed_all(args.seed + args.local_rank)
random.seed(args.seed + args.local_rank)
os.environ['PYTHONHASHSEED'] = str(args.seed + args.local_rank)
global map_gpu
map_gpu = _map_gpu(args.gpu)
from config import model_config_map
model_config = model_config_map[args.name]
kappa = args.kappa
if args.approxdiff == 'VAR': # user defined variance
user_defined_eta = get_VAR_noise(args.S, args.schedule)
generation_param = {"kappa": kappa,
"user_defined_eta": user_defined_eta}
variance_schedule = '{}{}'.format(args.S, args.schedule)
else:
raise NotImplementedError
output_name = '{}_{}{}_kappa{}'.format(args.name,
args.approxdiff,
variance_schedule,
kappa)
# model_path = os.path.join('./ema_celeba64_VAR10quadratic_kappa1.0finetuned_test.pt')
model_path = os.path.join('checkpoints',
'{}diffusion_{}_model'.format('ema_' if args.ema else '', args.name),
'model.ckpt.pth')
# map diffusion hyperparameters to gpu
diffusion_hyperparams = calc_diffusion_hyperparams(**diffusion_config)
for key in diffusion_hyperparams:
if key != "T":
diffusion_hyperparams[key] = map_gpu(diffusion_hyperparams[key])
# predefine model
net = Model(**model_config)
print_size(net)
f = map_gpu(Discriminator())
v = map_gpu(Value(num_steps = args.S, img_shape = (args.n_channels,args.img_shape, args.img_shape)))
# load checkpoint
try:
d = fix_legacy_dict(torch.load(model_path, map_location='cpu'))
dm = net.state_dict()
# for k in args.delete_keys:
# print(
# f"Deleting key {k} because its shape in ckpt ({d[k].shape}) doesn't match "
# + f"with shape in model ({dm[k].shape})"
# )
# del d[k]
net.load_state_dict(d, strict=False)
# checkpoint = torch.load(model_path, map_location='cpu')
# net.load_state_dict(checkpoint)
net = map_gpu(net)
# fix batchnorm for stable fine-tuning
net.eval()
# net.train()
print('checkpoint successfully loaded')
except:
raise Exception('No valid model found')
ngpus = torch.cuda.device_count()
if ngpus > 1:
if args.local_rank == 0:
print(f"Using distributed training on {ngpus} gpus.")
args.batchsize = args.batchsize // ngpus
torch.distributed.init_process_group(backend="nccl", init_method="env://")
net = DDP(net, device_ids=[args.local_rank], output_device=args.local_rank)
f = DDP(f, device_ids=[args.local_rank], output_device=args.local_rank)
v = DDP(v, device_ids=[args.local_rank], output_device=args.local_rank)
# diffusion params
user_defined_eta = generation_param["user_defined_eta"]
continuous_steps = _precompute_VAR_steps(diffusion_hyperparams, user_defined_eta)
C, H, W = model_config["in_channels"], model_config["resolution"], model_config["resolution"]
# train loader
# metadata = get_metadata(args.name)
train_set = get_dataset(args.name, args.dataset_path)
sampler = DistributedSampler(train_set) if ngpus > 1 else None
train_loader = DataLoader(
train_set,
batch_size=args.batchsize,
shuffle=sampler is None,
sampler=sampler,
num_workers=4,
pin_memory=True,
)
# optimizer
optimizer = torch.optim.Adam(net.parameters(), lr=args.lr)
optimizer_fstar = torch.optim.Adam(f.parameters(), lr=args.f_lr)
optimizer_v = torch.optim.Adam(v.parameters(), lr=args.v_lr)
# train
if not os.path.exists("generated"):
os.makedirs("generated")
for epoch in range(args.n_epochs):
if args.local_rank == 0:
if epoch > 0:
# generate 64 images for visualization
Xi, log_prob_list = VAR_sampling(net, (64, C, H, W),
diffusion_hyperparams,
user_defined_eta,
kappa=generation_param["kappa"],
continuous_steps=continuous_steps)
Xi = Xi[-1]
# save image
save_image(make_grid(rescale(Xi)[:64]), fp=os.path.join('generated', '{}.jpg'.format(output_name)))
# save checkpoint
# torch.save(net.state_dict(), '{}finetuned.pt'.format(output_name))
else:
# generate 64 images for visualization
Xi, log_prob_list = VAR_sampling(net, (64, C, H, W),
diffusion_hyperparams,
user_defined_eta,
kappa=generation_param["kappa"],
continuous_steps=continuous_steps)
Xi = Xi[-1]
# save image at init
# save_image(make_grid(rescale(Xi)[:64]), fp=os.path.join('generated', '{}init.jpg'.format(output_name)))
print('epoch', epoch)
train_one_epoch(net=net, dataloader = train_loader, optimizer = optimizer, f = f, v = v, optimizer_fstar = optimizer_fstar, optimizer_v = optimizer_v, continuous_steps = continuous_steps, diffusion_hyperparams = diffusion_hyperparams, size = (args.batchsize, C, H, W), user_defined_eta=user_defined_eta, kappa = kappa, args = args, train = (epoch >-1), n_critic = args.n_critic, n_generator = args.n_generator)
a = next(net.parameters())
print(a)
torch.save(a, 'test_0.pt')