generated from UofSC-Fall-2022-Math-587-001/homework11
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathimpl.go
69 lines (60 loc) · 1.55 KB
/
impl.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
package hw12
import (
"github.com/UofSC-Fall-2022-Math-587-001/homework12/ec"
"github.com/UofSC-Fall-2022-Math-587-001/homework12/lib"
"errors"
"math/rand" // no for use in prod :)
"fmt"
)
// A struct to represent the public data for ECDSA:
// The prime we are working over, the elliptic curve E,
// the point P in E(F_p), and the Order of P under
// addition
type Data struct {
Prime int
E ec.EllipticCurve
P ec.Point
Order int
}
// Check that
// - E has nonzero discriminant mod p
// - P is on E
// - ord is the order of P
func (D Data) Validate() error {
return nil
}
type PrivateKey struct {
D Data
s int // secret key 0 <= s < K.D.Order
}
type PublicKey struct {
D Data
V ec.Point // public key
}
// PublicKey resturns the public verification key
// V = sP
func (K PrivateKey) PublicKey() PublicKey {
V := ec.Multiple(K.D.E,K.D.Prime,K.s,K.D.P)
return PublicKey{K.D, V}
}
type Signature struct{
s, t int
}
// Sign the document d using the PrivateKey K
func (K PrivateKey) Sign(d int) Signature {
// 1. Get a random integer e using rand.Int()
// 2. Compute Q = e*K.D.P
// 3. Set s1 = Q.X mod Order
// 4. Set s2 = (d + K.s*s1) e^{-1} mod Order
// 5. Return (s1,s2)
return Signature{0,0}
}
// Verify that the Signature is valid for the document d
// using the K.PublicKey()
func (K PublicKey) Verify(d int, S Signature) error {
// 1. Compute v1 = d*S.t^{-1} mod K.Order
// 2. Compute v2 = S.s*S.t^{-1} mod K.Order
// 3. Compute Q := v1*P + v2*K.PublicKey()
// 4. Check that Q.X mod Order = S.s
return errors.New("Forgery")
}