generated from UofSC-Fall-2022-Math-587-001/homework11
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.tex
114 lines (107 loc) · 3.98 KB
/
main.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
\documentclass[12pt]{amsart}
\usepackage{amsmath}
\usepackage{amsthm}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage[margin=1in]{geometry}
\usepackage{graphicx}
\usepackage{stackengine}
\usepackage{hyperref}
\hypersetup{
colorlinks=true,
linkcolor=blue
}
\theoremstyle{definition}
\newtheorem{theorem}{Theorem}[section]
\newtheorem{lemma}[theorem]{Lemma}
\newtheorem{definition}[theorem]{Definition}
\newtheorem{corollary}[theorem]{Corollary}
\newtheorem{proposition}[theorem]{Proposition}
\newtheorem{conjecture}[theorem]{Conjecture}
\newtheorem{remark}[theorem]{Remark}
\newtheorem{example}[theorem]{Example}
\newtheorem{problem}[theorem]{Problem}
\newtheorem{notation}[theorem]{Notation}
\newtheorem{question}[theorem]{Question}
\newtheorem{caution}[theorem]{Caution}
\begin{document}
\title{Homework}
\maketitle
For this week, please answer the following questions from the text.
I've copied the problem itself below and the question numbers for
your convenience.
\begin{enumerate}
\item (6.14) Alice and Bob agree to use elliptic curve
Diffie-Hellman key exchange with the prime, elliptic
curve, and point
\begin{displaymath}
p = 2671,~ E: y^2 = x^3 + 171x + 853,~ P = (1980,431)
\in E(\mathbb{F}_p)
\end{displaymath}
\begin{enumerate}
\item Alice sends Bob the point $Q_A = (2110,543)$. Bob
decides to use the secret multiplier $n_B =
1943$. What point should Bob send to Alice?
\item What is their secret shared value?
\item How difficult is it for Eve to figure out Alice's
secret multiplier $n_A$? Use a computer to
find $n_A$.
\item Alice and Bob decide to exchange a new piece of
secret information using the same prime, curve, and
point. This time Alice sends Bob only the $x$-
coordinate $x_A = 2$ of her point $Q_A$. Bob decides
to use the secret multiplier $n_B = 875$. What
single number modulo $p$ should Bob send to
Alice, and what is their shared secret value?
\end{enumerate}
\item (6.17) The Menezes-Vanstone variant of the ellipic Elgamal
public key cryptosystem improves the message expansion
while avoiding the difficulty of directly attaching
plaintext to points in $E(\mathbb{F}_p)$. The MV-Elgamal
cryptosystem is described in Figure~\ref{fig:mv}.
\begin{enumerate}
\item The last line of the table claims that $m_1^\prime =
m_1$ and $m_2^\prime = m_2$. Prove that this is
true, so the decryption process does work.
\item What is the message expansion of MV-Elgamal?
\item Alice and Bob agree to use
\begin{displaymath}
p=1201,~ E:y^2 = x^3 + 19x + 17,~ P = (278,285) \in
E(\mathbb{F}_p)
\end{displaymath}
for MV-Elgamal. Alice's secret value is $n_A = 595$.
What is her public key? Bob sends Alice the encrypted
message $((1147,640),279,1189)$. What is the plaintext?
\end{enumerate}
\item (6.20) This exercise asks you to compute some numerical
instances of the elliptic curve digital signature algorithm
described in Table 6.7 for the public parameters
\begin{displaymath}
E: y^2 = x^3 + 231x + 473,~ p = 17389,~ q = 1321,~
G = (11259,11278) \in E(\mathbb{F}_p)
\end{displaymath}
You should begin by verifying that $G$ is a point of
order $q$ in $E(\mathbb{F}_q)$.
\begin{enumerate}
\item Samantha's private signing key is $s=542$. What is her
public verification key? What is her digital
signature on the document $d = 644$ using the
random element $e=847$?
\item Tabitha's public verification key is $V = (11017,14637)$.
Is $(s_1,s_2) = (907,296)$ a valid signature on the
document $d=993$?
\item Umberto's public verification key is $V = (14594,308)$.
Use any method you want to find Umberto's private signing
key, and then use the private key to forge his
signature on the document $d=516$ using the random
element $e=365$.
\end{enumerate}
\begin{center}
\begin{figure}[ht]
\caption{MV-Elgamal}
\includegraphics[width=6.5in]{mv-elgamal.png}
\label{fig:mv}
\end{figure}
\end{center}
\end{enumerate}
\end{document}