-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathhnet_handler.py
549 lines (502 loc) · 22.9 KB
/
hnet_handler.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
#NOTE: Code adapted from https://github.com/sunset1995/HorizonNet
import json
import toolz
import sys
import numpy as np
import os
import logging
import torch
import io
import cv2
import typing
import requests
import open3d
logger = logging.getLogger(__name__)
logger.info("HorizonNet handler initialization.")
from PIL import Image
from scipy.ndimage.filters import maximum_filter
from scipy.spatial.distance import pdist, squareform
try:
from hnet.model import HorizonNet
logger.info("Handler spawned from torchserve.")
except ImportError:
from model import HorizonNet
from shapely.geometry import Polygon
from obj_handler import ObjHandler
from usdz_exporter import UsdzExporter
from boundary_handler import BoundaryHandler
from urllib.parse import urlparse
def is_url(url):
try:
result = urlparse(url)
return all([result.scheme, result.netloc])
except ValueError:
return False
class HNetHandler(ObjHandler, UsdzExporter, BoundaryHandler):
PI = float(np.pi)
def __init__(self):
super(HNetHandler, self).__init__()
def _np_coorx2u(self, coorx, coorW=1024):
return ((coorx + 0.5) / coorW - 0.5) * 2 * HNetHandler.PI
def _np_coory2v(self, coory, coorH=512):
return -((coory + 0.5) / coorH - 0.5) * HNetHandler.PI
def _mean_percentile(self, vec, p1=25, p2=75):
vmin = np.percentile(vec, p1)
vmax = np.percentile(vec, p2)
return vec[(vmin <= vec) & (vec <= vmax)].mean()
def _np_refine_by_fix_z(self, coory0, coory1, z0=50, coorH=512):
'''
Refine coory1 by coory0
coory0 are assumed on given plane z
'''
v0 = self._np_coory2v(coory0, coorH)
v1 = self._np_coory2v(coory1, coorH)
c0 = z0 / np.tan(v0)
z1 = c0 * np.tan(v1)
z1_mean = self._mean_percentile(z1)
v1_refine = np.arctan2(z1_mean, c0)
coory1_refine = (-v1_refine / HNetHandler.PI + 0.5) * coorH - 0.5
return coory1_refine, z1_mean
def _find_N_peaks(self, signal, r=29, min_v=0.05, N=None):
max_v = maximum_filter(signal, size=r, mode='wrap')
pk_loc = np.where(max_v == signal)[0]
pk_loc = pk_loc[signal[pk_loc] > min_v]
if N is not None:
order = np.argsort(-signal[pk_loc])
pk_loc = pk_loc[order[:N]]
pk_loc = pk_loc[np.argsort(pk_loc)]
return pk_loc, signal[pk_loc]
def _get_gpid(self, coorx, coorW):
gpid = np.zeros(coorW)
gpid[np.round(coorx).astype(int)] = 1
gpid = np.cumsum(gpid).astype(int)
gpid[gpid == gpid[-1]] = 0
return gpid
def _vote(self, vec, tol):
vec = np.sort(vec)
n = np.arange(len(vec))[::-1]
n = n[:, None] - n[None, :] + 1.0
l = squareform(pdist(vec[:, None], 'minkowski', p=1) + 1e-9)
invalid = (n < len(vec) * 0.4) | (l > tol)
if (~invalid).sum() == 0 or len(vec) < tol:
best_fit = np.median(vec)
p_score = 0
else:
l[invalid] = 1e5
n[invalid] = -1
score = n
max_idx = score.argmax()
max_row = max_idx // len(vec)
max_col = max_idx % len(vec)
assert max_col > max_row
best_fit = vec[max_row:max_col+1].mean()
p_score = (max_col - max_row + 1) / len(vec)
l1_score = np.abs(vec - best_fit).mean()
return best_fit, p_score, l1_score
def _gen_ww_cuboid(self, xy, gpid, tol):
xy_cor = []
assert len(np.unique(gpid)) == 4
# For each part seperated by wall-wall peak, voting for a wall
for j in range(4):
now_x = xy[gpid == j, 0]
now_y = xy[gpid == j, 1]
new_x, x_score, x_l1 = self._vote(now_x, tol)
new_y, y_score, y_l1 = self._vote(now_y, tol)
if (x_score, -x_l1) > (y_score, -y_l1):
xy_cor.append({'type': 0, 'val': new_x, 'score': x_score})
else:
xy_cor.append({'type': 1, 'val': new_y, 'score': y_score})
# Sanity fallback
scores = [0, 0]
for j in range(4):
if xy_cor[j]['type'] == 0:
scores[j % 2] += xy_cor[j]['score']
else:
scores[j % 2] -= xy_cor[j]['score']
if scores[0] > scores[1]:
xy_cor[0]['type'] = 0
xy_cor[1]['type'] = 1
xy_cor[2]['type'] = 0
xy_cor[3]['type'] = 1
else:
xy_cor[0]['type'] = 1
xy_cor[1]['type'] = 0
xy_cor[2]['type'] = 1
xy_cor[3]['type'] = 0
return xy_cor
def _np_x_u_solve_y(self, x, u, floorW=1024, floorH=512):
c = (x - floorW / 2 + 0.5) / np.sin(u)
return -c * np.cos(u) + floorH / 2 - 0.5
def _np_y_u_solve_x(self, y, u, floorW=1024, floorH=512):
c = -(y - floorH / 2 + 0.5) / np.cos(u)
return c * np.sin(u) + floorW / 2 - 0.5
def _np_xy2coor(self, xy, z=50, coorW=1024, coorH=512, floorW=1024, floorH=512):
'''
xy: N x 2
'''
x = xy[:, 0] - floorW / 2 + 0.5
y = xy[:, 1] - floorH / 2 + 0.5
u = np.arctan2(x, -y)
v = np.arctan(z / np.sqrt(x**2 + y**2))
coorx = (u / (2 * HNetHandler.PI) + 0.5) * coorW - 0.5
coory = (-v / HNetHandler.PI + 0.5) * coorH - 0.5
return np.hstack([coorx[:, None], coory[:, None]])
def _gen_ww_general(self, init_coorx, xy, gpid, tol):
xy_cor = []
assert len(init_coorx) == len(np.unique(gpid))
# Candidate for each part seperated by wall-wall boundary
for j in range(len(init_coorx)):
now_x = xy[gpid == j, 0]
now_y = xy[gpid == j, 1]
new_x, x_score, x_l1 = self._vote(now_x, tol)
new_y, y_score, y_l1 = self._vote(now_y, tol)
u0 = self._np_coorx2u(init_coorx[(j - 1 + len(init_coorx)) % len(init_coorx)])
u1 = self._np_coorx2u(init_coorx[j])
if (x_score, -x_l1) > (y_score, -y_l1):
xy_cor.append({'type': 0, 'val': new_x, 'score': x_score, 'action': 'ori', 'gpid': j, 'u0': u0, 'u1': u1, 'tbd': True})
else:
xy_cor.append({'type': 1, 'val': new_y, 'score': y_score, 'action': 'ori', 'gpid': j, 'u0': u0, 'u1': u1, 'tbd': True})
# Construct wall from highest score to lowest
while True:
# Finding undetermined wall with highest score
tbd = -1
for i in range(len(xy_cor)):
if xy_cor[i]['tbd'] and (tbd == -1 or xy_cor[i]['score'] > xy_cor[tbd]['score']):
tbd = i
if tbd == -1:
break
# This wall is determined
xy_cor[tbd]['tbd'] = False
p_idx = (tbd - 1 + len(xy_cor)) % len(xy_cor)
n_idx = (tbd + 1) % len(xy_cor)
num_tbd_neighbor = xy_cor[p_idx]['tbd'] + xy_cor[n_idx]['tbd']
# Two adjacency walls are not determined yet => not special case
if num_tbd_neighbor == 2:
continue
# Only one of adjacency two walls is determine => add now or later special case
if num_tbd_neighbor == 1:
if (not xy_cor[p_idx]['tbd'] and xy_cor[p_idx]['type'] == xy_cor[tbd]['type']) or\
(not xy_cor[n_idx]['tbd'] and xy_cor[n_idx]['type'] == xy_cor[tbd]['type']):
# Current wall is different from one determined adjacency wall
if xy_cor[tbd]['score'] >= -1:
# Later special case, add current to tbd
xy_cor[tbd]['tbd'] = True
xy_cor[tbd]['score'] -= 100
else:
# Fallback: forced change the current wall or infinite loop
if not xy_cor[p_idx]['tbd']:
insert_at = tbd
if xy_cor[p_idx]['type'] == 0:
new_val = self._np_x_u_solve_y(xy_cor[p_idx]['val'], xy_cor[p_idx]['u1'])
new_type = 1
else:
new_val = self._np_y_u_solve_x(xy_cor[p_idx]['val'], xy_cor[p_idx]['u1'])
new_type = 0
else:
insert_at = n_idx
if xy_cor[n_idx]['type'] == 0:
new_val = self._np_x_u_solve_y(xy_cor[n_idx]['val'], xy_cor[n_idx]['u0'])
new_type = 1
else:
new_val = self._np_y_u_solve_x(xy_cor[n_idx]['val'], xy_cor[n_idx]['u0'])
new_type = 0
new_add = {'type': new_type, 'val': new_val, 'score': 0, 'action': 'forced infer', 'gpid': -1, 'u0': -1, 'u1': -1, 'tbd': False}
xy_cor.insert(insert_at, new_add)
continue
# Below checking special case
if xy_cor[p_idx]['type'] == xy_cor[n_idx]['type']:
# Two adjacency walls are same type, current wall should be differen type
if xy_cor[tbd]['type'] == xy_cor[p_idx]['type']:
# Fallback: three walls with same type => forced change the middle wall
xy_cor[tbd]['type'] = (xy_cor[tbd]['type'] + 1) % 2
xy_cor[tbd]['action'] = 'forced change'
xy_cor[tbd]['val'] = xy[gpid == xy_cor[tbd]['gpid'], xy_cor[tbd]['type']].mean()
else:
# Two adjacency walls are different type => add one
tp0 = xy_cor[n_idx]['type']
tp1 = xy_cor[p_idx]['type']
if xy_cor[p_idx]['type'] == 0:
val0 = self._np_x_u_solve_y(xy_cor[p_idx]['val'], xy_cor[p_idx]['u1'])
val1 = self._np_y_u_solve_x(xy_cor[n_idx]['val'], xy_cor[n_idx]['u0'])
else:
val0 = self._np_y_u_solve_x(xy_cor[p_idx]['val'], xy_cor[p_idx]['u1'])
val1 = self._np_x_u_solve_y(xy_cor[n_idx]['val'], xy_cor[n_idx]['u0'])
new_add = [
{'type': tp0, 'val': val0, 'score': 0, 'action': 'forced infer', 'gpid': -1, 'u0': -1, 'u1': -1, 'tbd': False},
{'type': tp1, 'val': val1, 'score': 0, 'action': 'forced infer', 'gpid': -1, 'u0': -1, 'u1': -1, 'tbd': False},
]
xy_cor = xy_cor[:tbd] + new_add + xy_cor[tbd+1:]
return xy_cor
def _np_coor2xy(self, coor, z=50, coorW=1024, coorH=512, floorW=1024, floorH=512):
'''
coor: N x 2, index of array in (col, row) format
'''
coor = np.array(coor)
u = self._np_coorx2u(coor[:, 0], coorW)
v = self._np_coory2v(coor[:, 1], coorH)
c = z / np.tan(v)
x = c * np.sin(u) + floorW / 2 - 0.5
y = -c * np.cos(u) + floorH / 2 - 0.5
return np.hstack([x[:, None], y[:, None]])
def _gen_ww(self, init_coorx, coory, z=50, coorW=1024, coorH=512, floorW=1024, floorH=512, tol=3, force_cuboid=True):
gpid = self._get_gpid(init_coorx, coorW)
coor = np.hstack([np.arange(coorW)[:, None], coory[:, None]])
xy = self._np_coor2xy(coor, z, coorW, coorH, floorW, floorH)
# Generate wall-wall
if force_cuboid:
xy_cor = self._gen_ww_cuboid(xy, gpid, tol)
else:
xy_cor = self._gen_ww_general(init_coorx, xy, gpid, tol)
# Ceiling view to normal view
cor = []
for j in range(len(xy_cor)):
next_j = (j + 1) % len(xy_cor)
if xy_cor[j]['type'] == 1:
cor.append((xy_cor[next_j]['val'], xy_cor[j]['val']))
else:
cor.append((xy_cor[j]['val'], xy_cor[next_j]['val']))
cor = self._np_xy2coor(np.array(cor), z, coorW, coorH, floorW, floorH)
cor = np.roll(cor, -2 * cor[::2, 0].argmin(), axis=0)
return cor, xy_cor
def _infer_coory(self, coory0, h, z0=50, coorH=512):
v0 = self._np_coory2v(coory0, coorH)
c0 = z0 / np.tan(v0)
z1 = z0 + h
v1 = np.arctan2(z1, c0)
return (-v1 / HNetHandler.PI + 0.5) * coorH - 0.5
def initialize(self, context):
"""
Initialize model. This will be called during model loading time
:param context: Initial context contains model server system properties.
:return:
"""
self._context = context
self.manifest = context.manifest
properties = context.system_properties
model_dir = properties.get("model_dir")
self.device = torch.device("cuda:" + str(properties.get("gpu_id")) if torch.cuda.is_available() else "cpu")
serialized_file = self.manifest['model']['serializedFile']
model_pt_path = os.path.join(model_dir, serialized_file)
if not os.path.isfile(model_pt_path):
error_message = f"Missing the serialized model weights file({model_pt_path})"
logger.error(error_message)
raise RuntimeError(error_message)
checkpoint = torch.load(model_pt_path, map_location=self.device)['state_dict']
self.model = HorizonNet()
self.model.load_state_dict(checkpoint)
self.model.to(self.device)
self.model.eval()
self.initialized = True
logger.info("Coarse Geometry Model Loaded Successfully.")
def preprocess(self, data):
"""
Transform raw input into model input data.
:param batch: list of raw requests, should match batch size
:return: list of preprocessed model input data
"""
for row in data:
if isinstance(row.get("data"), torch.Tensor):
image = row.get("data").to(self.device)
mesh_url = row.get('outputs', {}).get('mesh', '')
viz_url = row.get('outputs', {}).get('boundary', '')
metadata = row.get('Source', {'sceneId': 'test', 'type': 'panorama'})
#metadata = row.get('Source')
#logger.info(metadata)
break
elif 'data' in row and isinstance(row.get('data'), dict):
json = row['data']
logger.warning(f"json: {json}")
color_url = json['inputs']['color']
viz_url = json['outputs']['boundary']
mesh_url = json['outputs']['mesh']
metadata = json.get('Source', {'sceneId': 'test', 'type': 'panorama'})
#metadata = json.get('Source')
#logger.info(metadata)
r = requests.get(color_url, timeout=1.0) #TODO: make timeout configurable
image = r.content
elif 'body' in row and isinstance(row.get('body'), dict):
json = row['body']
logger.warning(f"json: {json}")
color_url = json['inputs']['color']
viz_url = json['outputs']['boundary']
mesh_url = json['outputs']['mesh']
metadata = json.get('Source', {'sceneId': 'test', 'type': 'panorama'})
#metadata = json.get('Source')
#logger.info(metadata)
r = requests.get(color_url, timeout=1.0) #TODO: make timeout configurable
image = r.content
else:
image = row.get("data") or row.get("body")
mesh_url, viz_url = '', ''
metadata = row.get('Source', {'sceneId': 'test', 'type': 'panorama'})
#metadata = row.get('Source')
#logger.info(metadata)
raw = io.BytesIO(image)
image = Image.open(raw)
image = np.array(image) # cvt color?
image = image.transpose(2, 0, 1)
image = torch.from_numpy(image).unsqueeze(0).float() / 255.0
image = image.to(self.device)
break
logger.info(f"metadata : {metadata}")
original = image.clone()
resolution = image.shape[2:]
image = torch.nn.functional.interpolate(
image, size=[512, 1024], mode='bilinear', align_corners=True)
return {
'metadata': metadata,
'panorama': {
'original': original,
'scaled': image,
},
'resolution': {
'width': resolution[-1],
'height': resolution[0],
},
'outputs': {
'mesh': mesh_url,
'boundary': viz_url,
},
'floor_distance': row.get('floor_distance', -1.6),
'ignore_ceiling': row.get('remove_ceiling', True)
}
def inference(self, model_inputs):
"""
Internal inference methods
:param model_input: transformed model input data
:return: list of inference output in NDArray
"""
with torch.no_grad():
y_bon, y_cor = self.model(model_inputs['panorama']['scaled'])
return toolz.merge({
'heights': y_bon,
'corners': torch.sigmoid(y_cor),
# 'original': model_inputs['panorama']['original'],
}, model_inputs)
def postprocess(self, inference_output):
"""
Return inference result.
:param inference_output: list of inference output
:return: list of predict results
"""
force_cuboid = False #TODO: add as param
r = 0.05
W = 1024
H = W // 2
min_v = None
# Take output from network and post-process to desired format
y_bon_ = inference_output['heights']
y_cor_ = inference_output['corners']
img = inference_output['panorama']['scaled']
# H, W = inference_output['resolution']['height'], inference_output['resolution']['width']
y_bon_ = (y_bon_[0].cpu().numpy() / np.pi + 0.5) * H - 0.5
y_cor_ = y_cor_[0, 0].cpu().numpy()
# Init floor/ceil plane
z0 = 50
_, z1 = self._np_refine_by_fix_z(*y_bon_, z0)
# Detech wall-wall peaks
if min_v is None:
min_v = 0 if force_cuboid else 0.05
r = int(round(W * r / 2))
N = 4 if force_cuboid else None
xs_ = self._find_N_peaks(y_cor_, r=r, min_v=min_v, N=N)[0]
# Generate wall-walls
cor, xy_cor = self._gen_ww(xs_, y_bon_[0], z0, tol=abs(0.16 * z1 / 1.6), force_cuboid=force_cuboid)
if not force_cuboid:
# Check valid (for fear self-intersection)
xy2d = np.zeros((len(xy_cor), 2), np.float32)
for i in range(len(xy_cor)):
xy2d[i, xy_cor[i]['type']] = xy_cor[i]['val']
xy2d[i, xy_cor[i-1]['type']] = xy_cor[i-1]['val']
if not Polygon(xy2d).is_valid:
print(
'Fail to generate valid general layout!! '
'Generate cuboid as fallback.',
file=sys.stderr)
xs_ = self._find_N_peaks(y_cor_, r=r, min_v=0, N=4)[0]
cor, xy_cor = self._gen_ww(xs_, y_bon_[0], z0, tol=abs(0.16 * z1 / 1.6), force_cuboid=True)
# Expand with btn coory
cor = np.hstack([cor, self._infer_coory(cor[:, 1], z1 - z0, z0)[:, None]])
# Collect corner position in equirectangular
cor_id = np.zeros((len(cor)*2, 2), np.float32)
for j in range(len(cor)):
cor_id[j*2] = cor[j, 0], cor[j, 1]
cor_id[j*2 + 1] = cor[j, 0], cor[j, 2]
# Normalized to [0, 1]
cor_id[:, 0] /= W
cor_id[:, 1] /= H
cor_id[:, 0] *= W
cor_id[:, 1] *= H
boundary_uri = inference_output['outputs']['boundary']
mesh_uri = inference_output['outputs']['mesh']
if boundary_uri or mesh_uri:
img = cv2.cvtColor(
img.cpu().numpy().squeeze().transpose(1, 2, 0),
cv2.COLOR_BGR2RGB
)
img = (img * 255.0).astype(np.uint8)
# mesh
if mesh_uri:
floor_z = inference_output.get('floor_distance', -1.6)
ignore_ceiling = inference_output.get('remove_ceiling', True)
mesh = self.create_obj_mesh(img, cor_id, floor_z, ignore_ceiling)
out_file = io.BytesIO()
tex = Image.fromarray(np.asarray(mesh.texture)) # np.asarray(mesh.texture)[:, :, ::-1]
tex.save(out_file, 'JPEG')
out_file.seek(0)
scene_name = inference_output['metadata']['sceneId']
if is_url(mesh_uri):
requests.post(inference_output['outputs']['mesh'],
files={
'json': (None, json.dumps({
'metadata': inference_output['metadata'],
'mesh': {
'vertices': np.asarray(mesh.vertices).tolist(),
'triangles': np.asarray(mesh.triangles).tolist(),
'normals': np.asarray(mesh.vertex_normals).tolist(),
'triangle_uvs': [uv.tolist() for uv in mesh.triangle_uvs],
}
}), 'application/json'),
'texture': ('test.obj', out_file, 'application/octet-stream'),
'mesh': (f'{scene_name}.usdz', self.export_usdz(mesh, scene_name, io.BytesIO()), 'application/octet-stream'),
}
)
elif os.path.exists(os.path.dirname(mesh_uri) or os.getcwd()):
if '.obj' in mesh_uri:
open3d.io.write_triangle_mesh(mesh_uri, mesh)
elif '.usdz' in mesh_uri:
self.export_usdz(mesh, scene_name)
else:
logger.error(f'Mesh file type ({mesh_uri}) not supported.')
else:
logger.warning(f'Mesh URI ({mesh_uri}) is not valid.')
if boundary_uri:
pano = self.create_boundary(img, cor_id)
out_img = Image.fromarray(pano.astype(np.uint8))
out_file = io.BytesIO()
out_img.save(out_file, 'JPEG')
out_file.seek(0)
if is_url(boundary_uri):
requests.post(boundary_uri, files={
'json': (None, json.dumps({
'metadata': inference_output['metadata']
})),
'image': out_file
})
elif os.path.exists(os.path.dirname(boundary_uri) or os.getcwd()):
with open(boundary_uri, 'wb') as f:
f.write(out_file.getbuffer())
else:
logger.warning(f'Boundary URI ({boundary_uri}) is not valid.')
return [cor_id.tolist()]
def handle(self, data, context):
"""
Invoke by TorchServe for prediction request.
Do pre-processing of data, prediction using model and postprocessing of prediciton output
:param data: Input data for prediction
:param context: Initial context contains model server system properties.
:return: prediction output
"""
model_input = self.preprocess(data)
model_output = self.inference(model_input)
return self.postprocess(model_output)