-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathknapsack.py
263 lines (207 loc) · 10.7 KB
/
knapsack.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
#to test the code run:> python ./knapsack.py -d H_Beds.csv -t 150000 -n 3
#node can be a city, hospital, distribution center, store, or etc.
#capacity is the maximum content that can be allocated at the node
#e.g. sick people, people it can serve, vaccines or products it can hold;
#status is the currently utilized capacity of the product in percentage %
#impact value - the main parameter to be optimized for:
# e.g.: GDP, health, nutrition, or social measure
from pprint import pprint
from typing import List, Dict
from math import log, ceil
import argparse
import pandas as pd
#from dwave.system import LeapHybridSampler
import dimod
import neal
def knapsack_bqm(cities, values, weights, total_capacity, value_r=0, weight_r=0):
"""
build the knapsack binary quadratic model
From DWave Knapsack examples
Originally from Andrew Lucas, NP-hard combinatorial problems as Ising spin glasses
Workshop on Classical and Quantum Optimization; ETH Zuerich - August 20, 2014
based on Lucas, Frontiers in Physics _2, 5 (2014)
See # Q-Alpha version for original introduction of value_r and weight_r
value_r: the proportion of value contributed from the objects outside of the knapsack.
For the standard knapsack problem this is 0,
but in the case of GDP a closed city retains some % of GDP value;
or for health problems it may contribute negative value (-1).
weight_r: the proportion of weight contributed from the objects outside of the knapsack.
For the standard knapsack problem this is 0,
but in the case of sick people we might consider that a closed city
retains some % of its sick people over time;
or for health problems it may contribute negative value (-1)
"""
# Initialize BQM - use large-capacity BQM so that the problem can be
# scaled by the user.
bqm = dimod.AdjVectorBQM(dimod.Vartype.BINARY)
# Lagrangian multiplier
# First guess as suggested in Lucas's paper
lagrange = max(values)
# Number of objects
x_size = len(values)
# Lucas's algorithm introduces additional slack variables to handle
# the inequality. max_y_index indicates the maximum index in the y
# sum; hence the number of slack variables.
max_y_index = ceil(log(total_capacity))
# Slack variable list for Lucas's algorithm. The last variable has
# a special value because it terminates the sequence.
y = [2**n for n in range(max_y_index - 1)]
y.append(total_capacity + 1 - 2**(max_y_index - 1))
# Q-Alpha - calculate the extra constant in second part of problem hamiltonian
C = sum([weight * weight_r for weight in weights])
# Q-Alpha - change weights to weight*(1-weight_r)
weights = [weight*(1-weight_r) for weight in weights]
# Q-Alpha - change values to value*(1-value_r)
values = [value*(1-value_r) for value in values]
# Hamiltonian xi-xi terms
for k in range(x_size):
# Q-Alpha add final term lagrange * C * weights[k]
bqm.set_linear(
cities[k],
lagrange * (weights[k] ** 2) - values[k] + lagrange * C * weights[k])
# Hamiltonian xi-xj terms
for i in range(x_size):
for j in range(i + 1, x_size):
key = (cities[i], cities[j])
bqm.quadratic[key] = 2 * lagrange * weights[i] * weights[j]
# Hamiltonian y-y terms
for k in range(max_y_index):
# Q-Alpha add final term -lagrange * C * y[k]
bqm.set_linear('y' + str(k), lagrange *
(y[k]**2) - lagrange * C * y[k])
# Hamiltonian yi-yj terms
for i in range(max_y_index):
for j in range(i + 1, max_y_index):
key = ('y' + str(i), 'y' + str(j))
bqm.quadratic[key] = 2 * lagrange * y[i] * y[j]
# Hamiltonian x-y terms
for i in range(x_size):
for j in range(max_y_index):
key = (cities[i], 'y' + str(j))
bqm.quadratic[key] = -2 * lagrange * weights[i] * y[j]
return bqm
def solve_nodes(nodes: List, values: List, status: List, total_capacity: int,
value_r=0, weight_r=0, num_reads=1, verbose=False) -> Dict:
"""
Solves problem: "Which cities should should be shut down in order to stay
within healthcare resources constraints while maximizing overall GDP"
parameters:
nodes as cities - list of city names
value as gdps - list of GDP for each city
status as sick - number of sick people within the city
total_capacity - max capacity for sick people summed over all cities
num_reads - number of samples to take
verbose - whether to print out best result
returns:
(dict) - list of dictionaries with individual results and selected attributes
sorted in order of least energy (maximum value) first
"""
sum_status=sum(status)
if sum_status < total_capacity:
print(f"Warning while solveing: Total utilized capacity needed {sum_status} is less ",
f"than total capacity {total_capacity}. There's no knapsack problem to solve!")
bqm = knapsack_bqm(nodes, values, status, total_capacity, value_r=value_r, weight_r=weight_r)
#VGG sampler = LeapHybridSampler()
sampler = neal.SimulatedAnnealingSampler()
samplesets = [sampler.sample(bqm) for _ in range(num_reads)]
df = pd.DataFrame({'node': nodes, 'value': values, 'status': status})
df = df.set_index('node')
solution_set = []
for sampleset in samplesets:
open_cities = []
closed_cities = []
for k, v in sampleset.first.sample.items():
if k in nodes:
if v == 1:
open_cities.append(k)
else:
closed_cities.append(k)
solution_set.append({
'open_cities': open_cities,
'closed_cities': closed_cities,
'solution_indicator': sampleset.first.energy,
'total_value': sum(df.loc[open_cities]['value']) + sum(df.loc[closed_cities]['value']) * value_r,
'used_capacity': int(round(sum(df.loc[open_cities]['status'])))
})
# do sorting from lowest to highest energy (solution_indicator)
if num_reads > 1:
energies = [solution['solution_indicator'] for solution in solution_set]
solution_set = [x for _, x in sorted(zip(energies, solution_set))]
if verbose:
print('\nBEST SOLUTION\n')
print('nodes in the knapsack:')
print(solution_set[0]['open_cities'])
print('\n')
print('nodes outside the knapsack:')
print(solution_set[0]['closed_cities'])
print('\n')
total_value = sum(df['value'])
solutin_value = solution_set[0]['total_value']
print(
f'Total Impact Value: {solutin_value} of {total_value} ({(100*solutin_value/total_value):.1f}%)')
used_capacity = solution_set[0]['used_capacity']
print(
f'Used up capacity: {used_capacity:d} of {total_capacity} ({(100*used_capacity/total_capacity):.1f}%)')
if num_reads > 1:
print('\nNEXT BEST SOLUTION\n')
print('nodes in the knapsack:')
print(solution_set[1]['open_cities'])
print('\n')
print('nodes outside the knapsack:')
print(solution_set[1]['closed_cities'])
print('\n')
total_value = sum(df['value'])
solutin_value = solution_set[1]['total_value']
print(
f'Total Impact Value: {solutin_value} of {total_value} ({(100*solutin_value/total_value):.1f}%)')
used_capacity = solution_set[1]['used_capacity']
print(
f'Used up capacity: {used_capacity:d} of {total_capacity} ({(100*used_capacity/total_capacity):.1f}%)')
return solution_set
def solve_nodes_using_csv(filepath: str, total_capacity: int, value_r=0, weight_r=0,
num_reads=1, verbose=False) -> Dict:
"""
Example: to solve for cities as nodes the given a csv file must be in the format:
cities, gdps, and sick people where the cvs file needs to have the header: city, gdp, sick;
In general the format will be: nodes,capacity,value,status; #VGG
"""
df0 = pd.read_csv(filepath)
#VGG update to the new data format of node, capacity, status
#assert ','.join(df.columns) == 'node,value,status', "Ensure csv header is node,value,status"
#assert ','.join(df.columns) == 'city,gdp,sick', "Ensure csv header is city,gdp,sick"
#solution_set = solve_cities(list(df['city']), list(df['gdp']), list(df['sick']), total_capacity,
#"City","State","Total","Available","ICUs","Available_ICU"
df1 = pd.DataFrame()
df1['node']=df0['City']
#df1['status']=abs(df0['ICUs']-df0['Available_ICU']) #number of sick people in the ICU
df1['status']=(5*df0['ICUs']//5 +10*abs(df0['Total']-df0['ICUs'])//10)
#assume medical team of 5 and vaccine efficiency 85%
df1['value']=(5*(df0['ICUs']//5 +abs(df0['Total']-df0['Available']-df0['ICUs'])//10)*85)//100
df=df1[0:100] #consider 100 cities
#VGG note the weight_r has to be selected so that the over all number of sick people is under the max. value
solution_set = solve_nodes(list(df['node']), list(df['value']), list(df['status']), #list(df['capacity']),
total_capacity, value_r=value_r, weight_r=weight_r, num_reads=num_reads, verbose=verbose)
return solution_set
def main():
""" CLI
"""
description = "Solve the problem: \"Which nodes should be considerd to be in the knapsack "
description += "in order to stay within the resource limits (capacity <= max capacity)"
description += "while maximizing overall impact measure\""
parser = argparse.ArgumentParser(description=description)
parser.add_argument('--data', '-d',
help="path to csv file with columns: node, capacity, status [%]. Header expected")
parser.add_argument('--total-capacity', '-t', type=int,
help="Maximum capacity for all nodes combined.")
parser.add_argument('--num-reads', '-n', type=int, default=1,
help="Number of sample solutines to return")
args = parser.parse_args()
solution_set = solve_nodes_using_csv(
args.data, args.total_capacity, value_r=0.01, weight_r=0.02,
num_reads=args.num_reads, verbose=True)
#see the function knapsack_bqm for details
#for GDP use value_r=.8, weight_r=0.2
#VGG note the weight_r has to be selected so that the over all number of sick people is under the max. value
#to test the code run:> python ./knapsack.py -d H_Beds.csv -t 150000 -n 3
if __name__ == '__main__':
main()