-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathevaluate.py
72 lines (55 loc) · 2.03 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
import argparse
import gym
import gym_rili
import numpy as np
from algos.rili import RILI
from replay_memory import ReplayMemory
parser = argparse.ArgumentParser()
parser.add_argument('--env-name', default="rili-circle-v0")
parser.add_argument('--resume', default="None")
parser.add_argument('--change_partner', type=float, default=0.99)
parser.add_argument('--batch_size', type=int, default=50)
parser.add_argument('--save_name')
parser.add_argument('--start_eps', type=int, default=100)
parser.add_argument('--num_eps', type=int, default=30000)
args = parser.parse_args()
# Environment
env = gym.make(args.env_name)
env.set_params(change_partner=args.change_partner)
# Agent
agent = RILI(env.action_space, env.observation_space.shape[0], env._max_episode_steps)
# Memory
memory = ReplayMemory(capacity=args.num_eps, interaction_length=env._max_episode_steps)
# Resume Training
if args.resume != "None":
agent.load_model(args.resume)
memory.load_buffer(args.resume)
args.start_eps = 0
z_prev = np.zeros(10)
z = np.zeros(10)
# Main loop
for i_episode in range(1, args.num_eps+1):
if len(memory) > 4:
z = agent.predict_latent(
memory.get_steps(memory.position - 4),
memory.get_steps(memory.position - 3),
memory.get_steps(memory.position - 2),
memory.get_steps(memory.position - 1))
episode_reward = 0
episode_steps = 0
done = False
state = env.reset()
while not done:
if i_episode < args.start_eps:
action = env.action_space.sample()
else:
action = agent.select_action(state, z)
next_state, reward, done, _ = env.step(action)
episode_steps += 1
episode_reward += reward
mask = 1 if episode_steps == env._max_episode_steps else float(not done)
memory.push_timestep(state, action, reward, next_state, mask)
state = next_state
z_prev = np.copy(z)
memory.push_interaction()
print("Episode: {}, partner: {}, reward: {}".format(i_episode, env.partner, round(episode_reward, 2)))